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We extend m-tuples of functions from the Besov spaces on both face of a smooth
hypersurface S with the smooth boundary Γ = ∂S 6= ∅ in Rn into the ambient
domain slit by the hypersurface Rn

S := Rn \S . These tuples satisfy a compati-
bility conditions on the boundary Γ. The traces are defined by arbitrary Dirichlet
system of boundary operators and extension is performed by two different meth-
ods, one implicit and one explicit. Explicit extension is based on the solution to
the Dirichlet BVP for the poly harmonic equation and permits the extension of
distributions from the Besov space Bsp,p(S ) with a negative s < 0.

Coretractions have essential applications in boundary value problems for par-
tial differential equations when, for example, it is necessary to reduce a BVP with
non-homogeneous boundary conditions to a BVP with the homogeneous bound-
ary conditions.

The extended version of the present paper will appear in [Du2].

Preliminaries
We distinguish two faces S − and S + of the hypersurface and the normal vector
field ν is directed, as usual, from the face S + to S −. Let Rn

C := Rn \ C be the
“cutted” space by a hypersurface S . Let S be a subsurface of an equally smooth
surface C without boundary ∂C = ∅, which borders a compact inner domain Ω+.
Let Ω− = R3 \ Ω+ be the complemented domain and ν-the outer unit normal
vector field, which extends the existed field from the subsurface S .

For the definition of the Bessel potential Hθ
p(C ), H̃θ

p(S ) and the Besov Bθp,p(C ),
B̃θp,p(S ) spaces used below, we refer, e.g., to [Tr1].

For a pair of Besov spaces we introduce the following shortcut
2

Bsp,p(S ) :=

Bsp,pS ) ⊗ B̃sp,p(S ). The notation [s]− ∈ Z is used for the largest positive or
negative integer less than s, i.e., s− 1 6 [s]− < s.

A partial differential operator with matrix coefficients A(x,D) is called nor-
mal on S if it’s homogeneous principal symbol is non-degenerated on the normal
vector field inf |detApr(X ,ν(X ))| 6= 0 for all X ∈ S . Obviously, the class of el-
liptic operators inf |detApr(X , ξ))| 6= 0 for all X ∈ S , and all |ξ| = 1, is a
subclass of the class of the normal operators. For operators with constant symbols
these classes coincide.

It is well known (see [Tr1]) that the trace operators γ±SB(x,D) map the fol-
lowing spaces continuously

γ±SB(x,D) : Hs
p,loc(Rn

S ) −→ B
s− 1

p
−r

p,p (S ), 1 < p <∞ ,
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provided s > r+ 1/p and the ”jump” function meets the compatibility condition:

[γSB(x,D)Φ] := γ+
SB(x,D)Φ−γ−SB(x,D)Φ ∈ B̃

s− 1
p
−r

p,p (S ), ∀Φ ∈ Hs
p,loc(Rn

S ).

The trace operator can be viewed as a continuous mapping by the operator pairs

RS (B)Φ :=
{
γ+

SB(x,D)Φ + γ−SB(x,D)Φ, γ+
SB(x,D)Φ− γ−SB(x,D)Φ

}
(1)

RS (B) : Hs
p,loc(Rn

S ) −→ B
s− 1

p
−r

p,p (S )⊗ B̃
s− 1

p
−r

p,p (S ). (2)

1 An implicit extension from a hypersurface

For a pair of spaces we introduce the following shortcut
2

Bsp,p(S ) := Bsp,pS ) ⊗
B̃sp,p(S ). The notation [s]− ∈ Z is used for the largest positive or negative integer
less than s, i.e., s− 1 6 [s]− < s.

Theorem 1.1 Let A(x,D) be a PDO of order k ∈ N0 and of normal type, 1 <
p <∞, k ∈ N0, s > 0, k 6 s + 1 and denote ps := p if s 6= 0,±1, . . . , ps < p if
s = 0,±1, . . ..

Further let ~B(k)(x,D) := {B0(x,D), . . . ,Bk−1(x,D)}> be a Dirichlet sys-
tem of boundary operators and

{
ϕ±j
}k−1

j=0
be vector functions such that

Φj := (ϕ+
j + ϕ−j , ϕ

+
j − ϕ−j ) ∈

2

Bs−jp,p (S ), for all j = 0, 1, . . . , k − 1. (3)

Then there exists a continuous linear operator

PA :
k−1
⊗
j=0

2

Bs−jp,p (S )→ Hs+1/ps
ps,loc

(Rn
S ) (4)

such that γS ±BjPAΦ = ϕ±j for j = 0, 1, . . . , k−1 andAPAΦ ∈ H̃s−k+1/ps
ps,loc

(Rn
S ),

where Φ :=
{

Φj

}k−1

j=0
.

Proof: First we extend the pairs (ϕ+
j + ϕ−j , ϕ

+
j − ϕ−j ) to the closed hypersur-

face C , which contains S . The second components are extended by 0. The ob-
tained system is then extended into Ω+ and Ω− by coretraction for closed surfaces
(see [Tr1]) and, due to the conditions ϕ+

j − ϕ−j = 0 on the complement surface
S c := C \S we prove that this particular extension is ”continuous” across the
complement surface S c.

2 Perturbed poly-harmonic equations
The perturbed poly-harmonic (poly-Laplacian) operator

∆m
ω ϕ := ∆mϕ+ (−ω2)mϕ = (div∇)m ϕ+ (−ω2)mϕ , (5)

m = 1, 2, . . . , k > 0,

is elliptic, self-adjoint (∆m
ω )∗ = ∆m

ω and is sign definite in the following sense

((−1)m∆m
ω ϕ, ϕ) = ‖∇mϕ

∣∣L2(Rn)‖2 + ω2m‖ϕ
∣∣L2(Rn)‖2 > c‖ϕ

∣∣Hm(Rn)‖2 (6)
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for some c > 0. Then ∆m
ω : Hm(Rn) → H−m(Rn) has the trivial kernel

Ker ∆m
ω = {0} and cokernel Coker ∆m

ω = {0}.
If K∆m

ω
(x) denotes the fundamental solution of ∆m

ω , it decays at infinity fast

xβ∂αK∆m

ω
(x) = O

(
|x||α|+|β|e−ω|x|

)
= O(1) as |x| → ∞, ∀α, β ∈ Nn. (7)

Let

gj ∈ Bs−j−1/p
p,p (C ) , j = 0, . . . ,m− 1, f ∈ H̃s−2m

p (Ω), (8)

1 < p <∞, s ∈ R

and look for a solution ϕ ∈ Hs
p(Ω) of the boundary value problem{

(∆m
ω ϕ)(x) = f(x), x ∈ Ω,

(γCDj(x,D)ϕ)(X ) = gj(X ), X ∈ C , j = 0, . . . ,m− 1,
(9)

where

D0(x,D) := I, Dj(x,D) :=

{
−∆r if j = 2r,

∂ν∆
r if j = 2r + 1,

(10)

j = 1, . . . , 2m− 1

are the natural boundary operators from Green formula below (11) and (12).
The proof of the next Lemma 2.1 is standard, based on the Gauss formula.

Lemma 2.1 For the operator ∆m
ω in the domain Ω ⊂ Rn with the smooth bound-

ary C := ∂Ω the following I and II Green formulae are valid:

(∆m
ω ϕ, ψ)Ω =

2m−1∑
j=[m/2]

((Dj(X , D)ϕ)+, (Cj(X , D)ψ)+)C + A(ϕ, ψ), (11)

(∆m
ω ϕ, ψ)Ω − (ϕ,∆m

ω ψ)ω =
2m−1∑
j=0

((Dj(X , D)ϕ)+, (Cj(X , D)ψ)+)C .(12)

for arbitrary ϕ, ψ ∈ X2m(Ω), where A(ϕ, ψ) is the bilinear form:

A(ϕ, ψ) :=

{
(∆`ϕ,∆`ψ)Ω + ω2m(ϕ, ψ)Ω m = 2` ,

−(∇∆`ϕ,∇∆`ψ)Ω − ω2m(ϕ, ψ)Ω m = 2`+ 1.
(13)

For a solution ϕ ∈ Xm
p (Ω) of the equation ∆m

ω ϕ = f with f ∈ X̃−mp (Ω) the
traces γC ∆`+jϕ and γC∂ν∆

`+jϕ, j = 0, 1, . . . , [(m+ 1)/2] exist and

γC ∆jϕ ∈ B
m−2j− 1

p
p,p (C ) , γC∂ν∆

jϕ ∈ B
m−2j−1− 1

p
−1

p,p (C ) . (14)

Corollary 2.2 A solution ϕ ∈ Hm
p (Ω) to boundary value problem (8)-(9) is rep-

resented as follows:

ϕ(x) = (NΩf)(x) +
2m−1∑
j=0

Vj
(
Dj(x,D)ϕ

)+
(x) , x ∈ Ω , (15)
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where

(NΩϕ)(x) :=

∫
Ω

K∆m

ω
(x− y)ϕ(y) dy (16)

(Vjψ)(x) :=

∮
C

(Cj(X , D)K∆m

ω
)(X − x)ψ(X ) dσ (17)

are, respectively, the volume (Newton) potential and the layer potentials (cf. [Du1]).

Theorem 2.3 If solution ϕ ∈ Hm(Ω) to BVP (9)-(8) for p = 2 and s = m exists,
it is unique.

Dirichlet problem (9)-(8) for p = 2 and s = m has a unique solution ϕ ∈
Hm(Ω) for arbitrary right-hand side gj ∈ Hm−j− 1

2 , j = 0, . . . ,m − 1 and for
f ∈ H̃−m(Ω).

Lemma 2.4 NΩ is a ΨDO of order −2m with a proper symbol, while Vj is the
potential operator of order −j − 1/p and map the spaces

NΩ : H̃θ
p(Ω) −→ Hθ−2m

p (Ω),

Vj : Bθp,p(C ) −→ H
θ+j+ 1

p
p (Ω)

⋂
S(Ω) j = 0, 1, . . . , 2m− 1

(18)

continuously for arbitrary 1 < p <∞ and θ ∈ R.
The following Plemelji formulae are valid

[(DjVjψ)]± (X ) = ±1

2
ψ(X ) + (Vjjψ)(X ) ,

[(DjVkψ)]− (X ) = (Vjkψ)(X ) = [(DjVkψ)]+ (X ) , (19)

X ∈ C , j, k = 0, 1, . . . , 2m− 1 , j 6= k , ψ ∈ C(C ),

where Vjk(X , D) is the direct value of the potential operator Dj(t, ∂)Vk on the
boundary C . It represents a ΨDO of order ordVjk(X , D) = −2m+1+j+2m−
1− k = j − k, j, k = 0, 1, . . . , 2m− 1.

Proof: For the standard proofs we refer to [Du1, DNS1]. QED

Theorem 2.5 BVP (9) has a solution for arbitrary right-hand side f and data
g0, . . . , gm−1 which satisfy conditions (8), represented by formula

ϕ(x) = (NΩf)(x) +
m−1∑
j=0

(Vjgj)(x) + +
2m−1∑
j=m

(Vjψj)(x) , x ∈ Ω (20)

where the vector-function Ψ := (ψ0, . . . , ψm−1)> ∈
m−1
⊗
j=0

Bs−m−j−1/p
p,p (C ) is a

unique solution to the following boundary pseudodifferential system

W (X , D)Ψ(X ) =
1

2
G(X )− ~D(m)(x,D)NΩ f(X )−W 0G(X ), X ∈ C , (21)

G := (g0, . . . , gm−1)> ∈
m−1
⊗
j=0

Bs−j−1/p
p,p (C ),

~D(m)(x,D) := (D0(x,D), . . . ,Dm−1(x,D))>
(22)
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and W , W0 are matrix operators

W :=


V0m · · · V0(2m−1)

V1m · · · V1(2m−1)

· · · · · · · · ·
V(m−1)m · · · V(m−1)(2m−1)

 ,W 0 :=


V00 · · · V0(m−1)

V10 · · · V1(m−1)

· · · · · · · · ·
V(m−1)0 · · · V(m−1)(m−1)

 .
If s > m, any solution ϕ to BVP (9) is represented by formula (20) and the

solution is unique.

Proof: With the help of the Green formulae (11) and (12), invoking Lax-Milgram
lemma, the result is proved first for p = 2 (see similar proofs in [DNS1, DS1]).

Then, using the representation formulae (18), Plemelji formulae (19) we de-
rive equivalent boundary ΨDOs and prove their solvability for a general p and s.

3 Extension with potentials from a hypersurface
Based on Theorem 2.5 we can prove similar result for the BVP with general
boundary conditions{

(∆m
ω ϕ)(x) = f(x), x ∈ Ω,

(γC
~B(m)(x,D)ϕ)(X ) = G(X ), X ∈ C ,

(23)

G := (g0, . . . , gm−1)> ∈
m−1
⊗
j=0

Bs−j−1/p
p,p (C ),

where ~B(m) (B0(x,D), . . . ,Bm−1(x,D))> is a Dirichlet system of orderm, ordBj =
j, j = 0, 1, . . . ,m− 1 and conditions (8) hold. Let

~B(m)(x,D) = M
(m×m)
B,D (x,D) ~D(m)(x,D) , (24)

where ~D(m)(x,D) is defined in (21) and M (m×m)
B,D (x,D) is a lower triangular

invertible matrix operator (called admissible).
Let us explain what is meant under the generalized traces γ±C ψ = ψ± ∈

B
θ− 1

p
p,p (C ) for distributions ψ ∈ Hθ

p(Ω
±) when−∞ < θ 6

1

p
. For this in a vicinity

Ω±C ⊂ Ω± of the surface C consider a local coordinate system x = (X , t) ∈ Ω±C ,
where X ∈ C and 0 6 ±t < ε is the transverse variable, equal to the signed
distance from the reference point x to the surface C . Then we define

ψ± := γS ±ψ if lim
0<±t→0

∥∥ψ(·, t)− ψ±(·)
∣∣Bθ− 1

p
p,p (C )

∥∥. (25)

Lemma 3.1 The Plemelji formulae (19) are valid for ψ ∈ Bθp,p(C ) when 1 < p <
∞ and θ ∈ R are arbitrary.

Theorem 3.2 BVP (23) has a solution for arbitrary f and data G, represented
by the formula

ϕ(x) = (NΩf)(x) +
m−1∑
j=0

(Vj g̃j)(x) +
2m−1∑
j=m

(Vjψj−m)(x) , x ∈ Ω . (26)
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Here the vector Ψ := (ψ0, . . . , ψm−1)> ∈
m−1
⊗
j=0

Bs−m−j−1/p
p,p (C ) is a unique solu-

tion to the following boundary pseudodifferential system

W (X , D)Ψ(X ) =
1

2
G̃(X )− ~D(m)(x,D)NΩf(X )−W 0G̃(X ), X ∈ C ,(27)

with the ΨDOW (X , D) from (21)

G̃ := (g̃0, . . . , g̃m−1)> =
[
Mm×m

B,D (X ,D)
]−1

G ∈
m−1
⊗
j=0

Bs−j−1/p
p,p (C ). (28)

If s > m, any solution ϕ to BVP (23) is represented by formula (26) and the
solution is unique.

As we see, the space setting for the BVP (23) is also general and arbitrary
s ∈ R can be taken, involving the Bessel potential spaces of distriburions for
s < 0.

Applying this result, we can prove the following result on (explicit) continua-
tion of the set of functions from a hypersurface.

Theorem 3.3 Let m ∈ N0,
{
ϕ±j
}m−1

j=0
be two m-tuples of functions (distributions,

if s < 0)

Φj := (ϕ+
j +ϕ−j ,ϕ

+
j −ϕ−j ) ∈

2

Bs−jp,p (S ), j = 0, 1, . . . ,m− 1, (29)

1 < p <∞, s ∈ R

and and denote ps := p if s 6= 0,±1, . . . , ps < p if s = 0,±1, . . ..
For a given Dirichlet system of boundary operators

~B(m)(x,D) := {B0(x,D), . . . ,Bm−1(x,D)}> (30)

and the preassigned boundary data (29) there exists an operator

P :
m−1
⊗
j=0

2

Bs−jp,p (S )→ Hs+1/ps
ps (Rn

S ) ∩ S(Rn
S ) (31)

which is a co-retraction γS ±BjPΦ = ϕ±j , j = 0, 1, . . . ,m − 1 to the trace
operator γC (~B(m)) := {γCB0(x,D), . . . , γCBm−1(x,D)}>.
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