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Abstract. In the present paper we consider Maxwell’s equations in an anisotropic
media, when the dielectric permittivity € and the magnetic permeability p are 3 x 3
matrices. We formulate relevant boundary value problems, investigate a fundamental
solution and find a Silver-Miiller type radiation condition at infinity which ensures the
uniqueness of solutions when permittivity and permeability matrices are real valued,
symmetric, positive definite and proportional € = ku, & > 0.
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Introduction

In the paper we analyse the uniqueness of solutions to the time harmonic exterior three-
dimensional boundary value problems (BVPs) for anisotropic Maxwell’s equations. It is
well known that in the electro-magnetic wave scattering theory the most important ques-
tion is the formulation of appropriate radiation conditions at infinity, which are crucial in
the study of uniqueness questions. In the case of isotropic Maxwell’s equations such con-
ditions are the Silver-Miiler radiation conditions which are counterparts of the Sommer-
feld radiation conditions for the Helmholtz equation. In view of the celebrated Rellich-
Vekua lemma it follows that the Helmholtz equation and isotropic Maxwell’s equations
do not admit non-trivial solutions decaying at infinity as &(|z|~*~%) with § > 0. This
property plays an essential role in the study of direct and inverse acoustic and electro-
magnetic wave scattering (see, e.g., [CK1, Eol, HW1, Jol, Lel, Nel, Vel] and the refer-
ences therein).

The investigation was supported by the grant of the Georgian National Science Foundation GNSF/ST07/3-175.
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Investigation of the same type problems for the general anisotropic case proved to
be much more difficult and only few results are worked out so far. The main problem
here consists in finding the appropriate radiation conditions at infinity, which, in turn, is
closely related to the asymptotic properties of the corresponding fundamental solutions
(see, e.g., [Val, Wil, Nal, Agl] for special classes of strongly elliptic partial differential
equations). As we will see below anisotropic Maxwell’s equations, as well as the isotropic
one, is not strongly elliptic and its characteristic surface represents a self-intersecting two
dimensional manifold, in general.

In the present paper, we consider a special case of anisotropy when the electric
permittivity ¢ = [ex;]3x3 and the magnetic permeability ;1 = [ux;]3x3 are real valued,
symmetric, positive definite and proportional matrices € = k, « > 0. For this particular
case we explicitly construct fundamental matrices, formulate the corresponding Silver-
Miiler type radiation conditions and prove the uniqueness theorems for the exterior BVPs.

1. Basic boundary value problems for Maxwell’s equations

Throughout the paper we denote by {2 a domain, which can be bounded or unbounded,
while the notation Q7 stands for a bounded domain and Q~ := R?\ Q+.
Maxwell’s equations

curl H +iweE =0,
{ in QcR? (1)
curl ¥ —iwuH =0,
for w > 0 govern the scattering of time-harmonic electromagnetic waves with frequency
win a domain Q. E = (Ey, By, E3)" and H = (Hy, Hy, H3)" are 3 vector-functions,
representing the scattered electric and magnetic waves respectively. Here and in what
follows the symbol (-) T denotes transposition and

0 —-03 O
curl .= | & 0 -0
-0y  Oh 0

System (1) can also be written in matrix form

M(D)( i ) —0, M(D) ;_l

0
D= —i(01,00,03)", 0j:=5—, j=12,3
J aCCj

The scope of the present investigation is to consider an anisotropic case when rela-

tive dielectric permittivity € = [€x]3x3 and relative magnetic permeability ;1 = [1t;x]3x3
in (1) are real valued symmetric positive definite constant matrices, i.e.,

(e£,6) > cle]?,  (ug, &) >dl¢)?, VEeC? 3)

iwels curl
2

curl —iwpls
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with some positive constants ¢ > 0, d > 0 and where

3
(&) => m&, m £eC”.

j=1

Consequently, these matrices admit the square roots '/2, 1;*/2. In some models of aniso-
tropic media the positive definiteness (3) is a consequence of the energy conservation law
(cf., e.g., [BDS1]).

By solving E from the first equation in (1) and introducing the result into the second
one we obtain an equivalent system

curle 'curl H — w?pH =0,
in Q) 4
E = i(we) " lcurl H

or, by first solving H from the second equation and introducing the result into the first
one we obtain another equivalent system

curly~'curl E — w?¢E =0,
in Q. (5)
H = —i(wp) lcurl E

Since div curl = 0, after applying the divergence operator div to the first equations
of the systems (4) and (5), we get

div(u H) =div(e E) = 0. (6)

Here we will only investigate the system (5). Results for the system (4) can be
worked out analogously.

For a rigorous formulation of conditions providing the unique solvability of the for-
mulated boundary value problems we use the Bessel potential HJ,(€2), H, (%), Hy |,.(€2),
H}, com(£2) and Besov B (), B}, ,(-’) spaces, —oo < 1 < 00, 1 < p,q < oo, when
Q) C R? is a domain and . is the sufficiently smooth boundary surface of 2. Note that,
for an unbounded domain €2, the space HJ | .(§2) comprises all distributions u for which

Yu € Hy(Q) where ¢ € C3°(R?) is arbitrary. As usual, for the spaces Hj5(Q2), H5(.7),
HY . (), HE .. (©) we use the notation H"(Q2), H"(.), H] (), HZ, . ().

2,loc 2,com loc

It is well known that W, */?(.#) = B},,"/?(.#) (Sobolev-Slobodetski space) is
a trace space for H,(Q2), provided » > 1/p. If € is an open smooth subsurface of a
hypersurface . in R?, we use the spaces H,(¢') and H,(4'). The space H (%) comprises
those functions ¢ which have extensions to functions ¢ € HJ (). The space HJ (%)

comprises functions ¢ € H;(Y ) which are supported in % (functions with “vanishing
traces on the boundary 0%”). For detailed definitions and properties of these spaces we
refer to, e. g., [Hrl, HW1, Tr1]).

Finally, as usual for the Maxwell’s equations, we need the following special space

H(curl; ) := {U € L2(R2) : curlU € Ly(Q)}.
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We also use the notation Hj,.(curl; 2), meaning the Frechet space of all locally inte-
grable vector functions U and curl U instead of global integrability if the underlying
domain €2 is unbounded, and the space H(curl; ) if €2 is bounded.

Note that H* (€2) is a proper subspace of H(curl; Q). Indeed, U +grad 1) € H(curl; )
for a vector function U € H'(f2) and a scalar function vy € H!(Q) but, in general,
U + grady ¢ HY(Q).

Next we recall basic boundary value problems for Maxwell’s equations written for
the electric field:

I. The “magnetic” BVP
{ curlpy lcurl E — w?*cE =0 in QCR?,

(7a)
vy (v x (plcurlE)) =e on . :=0Q,

E € Hyo(curl; ), ec H V%),

where v.» is the trace operator on the boundary and the symbol x denotes the vector
product of vectors;
II. The “electric” BVP

curly~leurl E — w?cE =0 in QcCcR?,
(7b)
vy (Vv x E)=f on .7,
E € Hyc(curl; ), f e HY2(.7);
III. The “mixed” BVP

curly~tcurl E — w?¢E =0 in QCR3,

VI (1/ X (/flcurl E)) =eN on .y, (7¢)

Yo, (v x E) =1fp on “p,

E € Hie(curl;Q), ex € H V2(y), fpeHY?(o),

where . and .y are disjoint parts of the boundary surface .7 := INUID.

If . is an orientable, smooth, open surface in R3 with a boundary I' := 0.7, it has
two faces .~ and .1, which differ by the orientation of the normal vector field v(x),
which points from . T to ./ ~. The natural BVPs for scattering of electromagnetic field
by an open surface .7 in R? \ .7 are the following:

I. The crack type “magnetic-magnetic” BVP
{ curlpy tcurl E — w?:E =0 in R3\.7,

(8a)
Yot (V X (,u_lcurlE)) =et on .7,

E S ]HIIOC(CLII.I;IR3 \y)7 e:t c H*l/?(y);
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II. The screen type “electric-electric” BVP

{ curly tcurl E — w?:E =0 in R3\.7,
(8b)
Yot (v x E) =f* on .7,
E € Hipo(cur, R®\ ), £+ ¢ HY?(¥);
III. The “magnetic-electric” BVP
curlp tcurl E — w?:E =0 in R3\.7,
{ Yo+ (v x (plcurl E)) =et, yy- (vxE)=f" on .7, (8
E € Hyo(curl; R? \ .7), et e H V2(.y), £~ eHY?(¥);
IV. The “mixed-mixed” type BVP
curly~tcurl E — w*cE =0 in R3\.7,
Vot v x (pteurl E)| = ef\ﬁ, on Yﬁ,[, (8d)
Vot v x E]=f3 on 5,

E € Hyioe(curl; R? \ %), ef cH V3(7Y), fEcHY?(7D),

where Y5 U.YE = F and S5 NI =@, Sy NS = @.

All BVPs (8a)-(8d) and BVPs (7a)-(7c¢) for an unbounded domain €2 should be en-
dowed with a special condition at infinity. If the medium is isotropic, i. e., the perme-
ability and the permittivity coefficients are scalar constants, the radiation conditions are
well-known (cf., e.g., [CK1, Eol, Jol, Nel] etc.). For example, the classical radiation
condition imposed on the electric field reads

OF
(z) ickE = 0 (R™?) for R =|z| — oo, 9)
OR
where k¥ = w,/ep and either 0 = —1 for incoming waves or 0 = +1 for outgoing

waves. Similar condition can also be imposed on the magnetic field H. The Silver-Miiller
radiation condition is imposed on both fields either

|VEE(z) x & + /uH(z)| = 0 (R™?) for R=|z| — o0 (10)
or

|VEE(z) — uH (z) x &| = 0 (R™?) for R=|z| — oo, (a1
where T := |%|

The basic boundary value problems for the magnetic field H and the differential
equation (4) are formulated similarly to (7a)-(7c) and (8a)-(8d).
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Remark 1.1. We can derive solutions to the screen type (the “electric”) BVP for electric
FE field indirectly, provided we can solve the crack type (the “magnetic”) BVP for the
magnetic field H and vice versa.

Indeed, let H be a solution to the “magnetic” boundary value problem with a
boundary data h for the magnetic field H. Due to the second equations in (4), we get

] ]
E)=— -1 1H)) = —h.
v (v x E) w'yy(ux (e 'curl H)) -

Therefore the vector field E = i(we)~‘curl H is a solution to the “electric” BVP (7b)

with the boundary data f = 'h.

w
The same is true, due to the second equations in (5) and (4), for the all three re-
maining BVPs for the magnetic H and the electric E vector fields.

Radiation conditions for the matrix coefficients £ and u are unknown so far. In §5 a
radiation condition for anisotropic Maxwell’s equations is derived when the permittivity
and permeability matrices € and p are real valued, positive definite, symmetric and pro-
portional € = ku. The radiation conditions ensure the uniqueness of a solution. As a first
step to the investigation let us simplify the main object, namely, the system (1).

Let €1, €9, €3, (1, p2, p3 be the eigenvalues of the permittivity and permeability
matrices. Due to (3) they are positive €; > 0, pu; > 0, j = 1,2, 3. Consider following
Maxwell’s equations

curl H* + jwe*E* =0,
in QF cR?, (12)
curl E* —iwp*H* =0,
with the diagonal permittivity and permeability matrices
er 0 0 w0 0
=10 e 0 |, w = 0 pe O
0 0 e3 0 0 p3

Lemma 1.2. Let the permittivity € and the permeability i be real valued, positive definite
and proportional matrices

€ = K, k> 0. (13)
Then there exists an orthogonal matrix
X :R—R |Za|=|z|, Z =T,

which establishes the following equivalence between Maxwell’s equations (1) and (12):
Q* :=#%Q and

E*(z*):=RE®# ") H*(x):=ZH(Z z*), Va* :=Rr e Q. (14)

Proof: The proof is based on the following well known result (see, e.g., [Mel, § 7.5]

and [Gal, § IX.10]): a matrix o/ € C"*"™ is unitarily similar to a diagonal matrix 2, i.e.,

o = UTDU with %" % = I, if and only if the matrix o is normal, i.e., commutes
with its adjoint o/ *of = of A *.
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Since the matrices € and p are real valued, positive definite and proportional matri-
ces there exists an orthogonal, i.e., real valued and unitary, matrix &% which reduces them
to the diagonal (Jordan) form simultaneously

=R R, u=2"1"%. (15)
By introducing the representations (15) into the system (1), applying the transformation
Z to both sides of equations and changing the variable to a new one * = % x, we obtain
the following:
curl" H* (z*) + iwe*E*(z*) = 0,
x* e, (16)
curl* E*(2*) — iwp*H*(2*) =0,
where curl*U (z*) := Z curl Z U (z). Let Ry, R, R3 be the vector columns of the
transposed matrix % ' . Then

Z" = (R1,R2, R3), (Rj,Ry) =i, (17)
and we find
R/
curl’'U=ZcurlZ'U = | R] | V. x (Ri, Ry, R3)U
Ry

= [<Rja Vi X Rk>]3><3 U=- KRJ X Rkvvz>]3><3 U

[ 0 —(R3,V.) (Ra,Vy)
=| (B3, Va) 0 —(Ry,Vy) | U
| —(R2,Vy) (Ry,Vy) 0
[0 —0py  Ouy
= 0 0 -0, |U, (18)
[ Oy Oz O

since the variables after transformation are z; = (Rj,x), j = 1,2,3. The last three
equalities in (18) follow with the help of the formulae:

<Rj7v X Rk) = _<Rj X Rk7v> = _5j/€m<Rm7v>7
R1XR2=R3, RQXR3:R1, R3XR1=R2,

where € ., is the Levi-Civita symbol (the permutation sign), j, k, m = 1, 2, 3. The equal-
ity (18) acomplishes the proof. ]

Remark 1.3. Hereafter, if not stated otherwise, we will assume that € and | are real
valued, positive definite, proportional (cf. (13)) and diagonal matrices

€1 0 0 12451 0 0
e=| 0 e 0 |, p=10 p 0 |. (19)
0 0 e3 0 0 p3
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Remark 1.4. Finally, let us note that for a complex valued wave frequency Im w # 0 and
arbitrary real valued, symmetric and positive definite matrices p and €, a fundamental
solution to Maxwell’s operator exists and decays at infinity exponentially.

Moreover, each above formulated basic BVPs for Maxwell’s equations has a unique
solution in the class of polynomially bounded vector-functions, represented by layer po-
tentials and actually these solutions decay exponentially at infinity.

For real valued frequencies matters are different and we consider the case in the
next section.

2. A fundamental solution to Maxwell’s operator
The equation
M, (D)F(z) = §(z)I3, M,(D):=curly ‘curl, (20)
F=(F,FF)", zcR

(cf. (5)), where I3 is the identity matrix, has no fundamental solution. In fact, the deter-
minant of the symbol (the characteristic polynomial) of this operator vanishes identically,

det M ,,(¢€) = det eur1(€) det p ' det geurt (€) =0, (1)
where ocur1(€) is the symbol of the operator curl:
0 i3 —i&2
Ocurl (5) = —ifg O ’L{l . (22)
i —i& 0

The absence of the fundamental solution is a consequence of the following theorem.

Theorem 2.1. A partial differential operator P(D) = > p,,0® with constant matrix

lor|<m
coefficients p, € CN*N has a fundamental solution Fp € S'(R™) if and only if the
determinant of the symbol

PE) =op() = > pa(—i€)*, LR,
la|<m

does not vanish identically.

Proof: The proof is based on the Malgrange-Ehrenpreis theorem on the existence of
the fundamental solution for the scalar equation (cf., e.g., [Hr1]).
Let det P(¢) # 0 and consider the formal co-factor matrix of P(D)

Ap(D) = [Ajr(D)] v, v+ Ajr(D) = (=1)T*M; (D), (23)
where My, (D) are the (N — 1)-dimensional minors of P(D). Then
Ap(D)P(D) = P(D)Ap(D) = diag{det P(D),...,det P(D)}.

The distribution
Fp := Ap(D)diag{Fact P, ..., Faet P},
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where Fye; p is the fundamental solution of the scalar equation det P(D)F(z) = §(x)
(cf. Malgrange-Ehrenpreis theorem; cf. [Hrl]) is the claimed fundamental solution of
P(D).

Next we assume that the determinant vanishes identically, i.e., det P(¢) = 0. Then
det P(D) = 0 and the rows of the operator matrix are linearly dependent. There exists a
non-singular permutation N x N matrix .7# with constant entries, such that the first row
of the matrix-operator P(D) = #P(D) is identically 0. If we assume that a fundamental
solution exists, i.e., P(D)Fp = é1y, we get the following equality

(0,¢2,...,cen)" = (#P(D))Fpu = #(P(D)Fpu) = #5u = #u(0)

for all v € S(R™). Since the test vector-function v is arbitrary and the matrix ¢ is
invertible, the latter equality is a contradiction. ]

In contrast to equations (20) the corresponding spectral equation

M. (D)®, = i1, M (D) := M, (D) — w?ul (24)
has a fundamental solution.
Theorem 2.2. The fundamental solution of the equation in (24) is given by
¢, = M7 (D) Fae .13 (25)
where Mf (D) denotes the formal co-factor matrix operator of M .(D) and F 4et pr, is
a fundamental solution of the equation

det M (D) Faet nr, = 6.

Proof: Due to Theorem 2.1 the fundamental solution F4e ps, exists and implies
the existence of the fundamental solution ®. for M .(D):
M (D)®, = M .(D)M? (D) Fyei ar, Iz = det Mo(D)Faer pr, I3 = 013.
|

Remark 2.3. The symbol M. (&) of the operators M (D) in (24) is not elliptic and even
not hypoelliptic. To be hypoelliptic (of the class HIL"y"™* (R" x R™) for mi,m € No,
my < m), the principal symbol o o(x, &) of a matrix differential (or a pseudodifferential)
operator A(x, D) needs, by definition, to meet the following two conditions [Hr1]:

i. there exist positive constants C and Co, such that the inequalities
Cilg]™ < |det oa(z, )] < Colf]™ V£ eR" (26)

hold;
ii. for arbitrary o, € R",
p > 0, such that

det o' (z,6)(0a)(3) (@,8)]| < Cale| ™ Va,g R, 27)

al + 8] # 0, there exist positive constants Co g and

where (O'A)E?;; (x,8) = 858?0,4 (z,8).
Ifthe indices coincide my = m, the symbol o a(x, D) is elliptic from the Hormander
class HIL', (R™ x R™).
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To show that the symbol M. (£) is not hypoelliptic we will check that the second
condition (27) fails for it. In fact:

det M,(&) = det [oeurt(€)p  Teur1(€) — we]
= WP (&) + W Py(€) —wOdet €. (28)
Here &7, (€) is a homogeneous polynomial of order k = 2, 4. Then

ord [ M (¢) — w? ]_1 =0,

ord [ M () — w?e] 710, [Mo(€) — w?e] = +1, 2

and the condition (27) fails.
The next proposition is well known (cf. [Nel], [CK1]).
Proposition 2.4. Either of the following functions
N etiklzl 1 L eFikle]

O (z) = prp I3 + T2 \AY El 30)

is a fundamental solution of the equation
MBoy := curl? Doy — k2 Doy = §15. 31

Proof: The fundamental solution is equal to the inverse Fourier transform of the
inverse symbol

Pon(2) = FL, [MTH(E)] - (32)
Since the symbol equals (cf. (22))
0 g3 —i&2

MmE=1| —i&s 0 i& — kI = (¢ — k) — €7, £€R?, (33)
i€y —i& 0
let us look for the inverse in the form
1
-1 o T
M (E) = mfs —akg

where « is an unknown scalar function. Since £ "¢ = |£|2, the condition M~ (£)M(€) =
I provides the equality

1
O = weE -y
which is well-defined outside the sphere |£|? = k2. Then,
1 1
ML) 1= —— |13 — €T k. 34
© = e |- e[ 34

To regularize the singular integral, let us temporarily replace k£ by a complex valued pa-
rameter k £ 6, where 8 > 0 is small. By inserting (34) (with k + ¢6) into (32) and by
applying the identity

VoVl [en00] = —geTe 0 g g eR?,
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we proceed as follows:

Lo 1 _ e 9dg e~ eeT dg
@m@ﬁ_Qﬁefﬁ[A;KP—«kinLriés%iﬂﬁﬂKP—<kin] o

1 e Hz:8) g 1 e Hz:8) q¢
= lim — I " s |
604 273 [/R S RN e e /R GE= (kii@)?}

To calculate the integral in (35) it is convenient to introduce the spherical coordinates
€ = pn,n € S? C R? and apply the residue theorem. After a standard manipulation we
get the following:

1 e~ H®qg¢ 1 e sin(plx|)

+ . . psin(p

= 1 - 1 Vel AV
G @)= gmya /Rg €2 — (k £i0)2  2n2[z] ei%i/o 02— (kxif)2 "

e:l:ik\z\
=———, zeR3 (36)

4rr|x]
By inserting the obtained integral in (35) we arrive at (30). [ |

Theorem 2.5. Let coefficients € and p be diagonal and proportional (see (13) and Remark
1.3). Then the fundamental solution ®. in (24) is written in explicit form

O (2) =T, [M (& w)] (37)
1 0F + w2k pops —0102 —0103
= —0109 02 + wzﬁ,ulug —0053
2 3/2 2
drw K(det ’u) —8183 —8283 8§ +w21€,u1,u2
pHiwVRATR|E|  iwy/F de AlE] N
R wE e @F (Rl e el =,
where T := (El,ig,fg)T, T = &, j =1,2,3, and the matrix
Hy

|g|2 —E% v M3 fflgg £/ M2 ff{fg

p1|Z|2y/det i |Z|2 det p |7]2 det p
JIREE 2 — 32 L BaE
o U3 T122 |z| 5 M1 X2x3 (38)

|Z]2 det p w2|Z|?2v/det p |Z]2 det 1

V2 T123 VI 23 |z|? — 73
|Z[? det |Z[Pdet . palT[*y/detp |

is known as the far field pattern.
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Proof: If € and p are diagonal (cf. (19)), the operator M (D) in (24) acquires the
form:

Me (57 w) = Ocurl (5) :U‘_lo'curl (5) - W2EI

0 igs —i& | [w' 0 0 0 i —i&
=] —i& 0 i& 0 wy' 0 —ié3 0 i& | —w?el

i —i& 0 0 0 pu3' i&  —i& 0

[ 03"+ 158 — wie —p3 &6 —py 'E1€s
_ —1 —1¢2 —142 2 —1
= —pg §1é2 Mg &7+ py €3 —wier —uy 6283
—py M 1&s —pi M ads py €7+ py R — wies

‘We have:
det M. (&, w)

= (1316 + 3185 — W] [ug €] 4+ €S — WPen] [ 1€ 4 1 TES — wPes]
=27y gt 6 — P [pg 6 + gy N6 — wPer €363
—po 2 (3 + py 6 — wPea] €16 — pg P [y TS 4y 6 — wies|E1ES
= —w” [e1€] + €265 + €385 — werE3p2]
X [pg s 6 A iy iy T g g T — wPeany ]
+wleduy 't +erespy Tpaps ! — e16apy " — e2e3py )65
& & T & _wz] [ & + & I & —wﬂ

+ — -
H2€E3 51u253g21 €12 H3E2 u1€2usu21 H1€2

= —w?det 5{

+w? [63#51 +erespy papy b — ereapyt — eaesuy €.

For diagonal and proportional matrices (see (13) and (19)), we get the following simplifi-
cation

Me(ga W) = Ocurl (5) M_lo'curl (5) - WQKNI (39)

py €3+ py T3 — win —pz s —piy &3
= —pz 61k s e+ py ' — wine —py "Eaés :

—py 618 —py ks po 'EF 4 pi €S — wing
2 det 2 2 2 2
det M(§,w) = -2 S g + & + S Kw?
K M2 3 13 12
w?det 2
=~ [1& + 1283 + p3€3 — kw? det (40)

" K2det p
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2
= —wi (€] + poés + sl — widet p)”, 41)

where w% := w?k. It is easy to see that all minors of the matrix (39) have the factor

&3 + 123 + ps€s — widet p. Indeed, we have

(Me(&,w)),, = (13 € + u1' €3 — winalluy '€ + p 63 — wins] — uy 26363

2 2 2
=(€f—w2fiuzus)[ SR < B —wzﬁ]
203 13 12

£ — wlkpugps
= W [11€] + p2&s + psés — wi det 4]

(Mc(&,w)),, = (65 — w?Kpips) [ & + & + & —WQH}
o 2 2 H2 3 13 1 2
_ & —wikmps

ot [116F + 1283 + psés — wi det p]

(Me(§w)),, = (65 — wPkpap2) [ 3 + & + & —W%}
o 33 3 M3 H1p3 H1p2
& — Wk e

= T dety [11€] + p2&3 + psés — wi det 4] ,

(Mc(&w))y, = (Me(§,w)),, = 13 "&a&oluy "65 + 1y '65 — wins] — py 'py 61683
— ¢ [ £ & & 2]
=618 + + WK
H2p3  pip3 H1p2
__&&

det p

[ngf + p2&s + psés — wi det u] ,

B P I < & &g o
(Me(§7w))13 = (Me(§7w))31 - 5153 | o3 + 13 + H1p2 o
_ 5153

= " det g (11167 + 1283 + pa&s — wi det ]
_ _ & & & 5
(Me(§7w))23 - (Me(§7w))32 - 5253 e + L1 )3 + L1} W K
S

= et (1167 + p2&3 + pads — widet p] .

Applying the variable transformation ,/11;§; = 7; and the Fourier transformation
formula (36), we easily obtain

. 1 eiiwﬁ\\/n det p

Z, = — :
§70 | &} + 263 + psé? — kw2 det p %40 Ar|Z|\/det p
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where 7 is defined in (38). From the obtained expressions for the determinant, minors and
the latter formula for Fourier transformation we easily derive formula (38)

O (x) = F, (M (6 w)]

1

ag—1

1

S x
rw2det p” 7T | 1 €d 4 123 + psé2 — kw? det p £ 00

& — wrrpaps —&162 —&1&3
X —&162 &5 — wkpips —&283
—&1&3 —&283 &5 — Wik pn |
1 0% 4+ wrkpuaps —010; —0103
= W —81(92 8% +w2/<:u1u3 —8283
hw K —81(93 —82(93 8§ + w2/£,u1u2 i
1
x F !
| 1 &d + pak3 + paél — rw?det p 0
1 0? +u;gu2u3 . —5%32 _glgﬁl tiw|E Vet B
=— —0109 S+ WK —0203 — =
kw? det p 9,05 0505 02 + w2k 47|Z|\/det p
where the variable 7 is defined in (38). [ |

Remark 2.6. It can be checked that the necessary and sufficient condition for the polyno-
mial det M.(€,w) to be factored into two second degree polynomials, det M.(§,w) =
Py (§)P5(8), is the condition that one of the following equalities hold:

€1 _ €2 €1 _ €3 €2 €3

241 H2 7 H1 M3 ’ H2 H3

.
N
Fig. 1: Outer characteristic ellipsoid Fig. 2: Section of the characteristic surface

If (13) is not fulfilled, then the equations P;(§) = 0, i = 1,2, determine two
different ellipsoidal surfaces with two touching points at the endpoints of common axes
(see Fig.1 and Fig.2). If conditions (13) and (19) hold, the ellipsoids coincide.
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3. Green’s formulae

Here we apply the results of [Dul] and derive Green’s formulae for Maxwell’s equations
(5), needed for our analysis. For convenience we also use the notation vfﬂU =U*

Lemma 3.1. For a domain Qt C R? with a smooth boundary . = 0Q+ the following
Green’s formula holds

(curlU,V)q+ —(U,curl V)q+ = (v x U, V+)y =—UT,v x V+)y, 42)
U,V cHY(QY),
where Ut = (U7, Uy, U;) T denotes the trace on the boundary .7,
U, V)g:= /(U(z), V(z))dx.

G
In particular,

(curlU,Vv)gr = —(UT, Movh)y, UeH(Q), veH(QY), @3
where the brackets (-, -) & denotes the duality between adjoint spaces H* () and H™* (),
My =V XN = (Moz, Ms1, M12) ", (44)

and M, = v;0), — v,0; are Stoke’s tangential differentiation operators on the boundary
surface & .

Proof: Formula (42) is a simple consequence of the Gauss integration by parts for-
mula

(aj U, u})Q* = (Vju+7 1/}+)Y - (’LL, aj 1/})Q+ ) u, U) S Hl(Q+) (45)
In fact,
(curlU, V)q+

_ /+ (02U — 85 U)V* + (9501 — 0, Us)V2 + (01Us — 0, Uy)V?] dar
Q

_ / [(aUsf — vsUH Vit + (sUst — 1 U )Vs" + Uy — U )V5H] dS
7

+/ [(02V5 — 03 Va)Us + (05V1 — 01 V) Uz + (01 Va — 92 V1)Us] da
o+

= —(wxU" VN, 4+ (U, curlV)q,. (46)
Since v x U can be interpreted as the application of the skew symmetric matrix
0 —U3 1]
vxU=/4U, N = V3 0 -1 :—JVT,
—U %1 0

we get
wxU'VH=uWU' vVH=—-U", /VH=—-U"vxV"h,
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and this accomplishes the proof of (42).
To prove (43) first note that

vx (Vo)m =wxVo)" = (lov)t = H#ovt Vo € H*(QT), 47)

because .#;), are tangential derivatives (cf. (44)) and therefore it commutes with the trace
operator

(///yv)+ = l%/yv-i_. (48)

Moreover, due to equality (48) it is sufficient to suppose v € H*(QF) in (47): if v €
H'(QF) then v € H'/2(.#) by the classical trace theorem and therefore (.Z5v) =
Movt € H2(P).

Equation (43) is a consequence of (42). In fact,

(curlU,Vv)gr = —UT,v x (Vo)) g + (U, curlVo)gr = —(UT, (///yv)Jr)y
=—-U", Msvh) ¥

since curlV = 0. [ |

For anisotropic Maxwell’s equations we have the following.
Theorem 3.2. The operator
M, = curl u_lcurl — w2l (49)
(cf. (6)) is formally self adjoint M, = M . and the following Green’s formulae hold
(MU, V)qr+
=wx (p leurlU)T, VH, + (uteurlU,curl Vg —w?(cU, V)g+  (50a)
= —((p teurlU) ", v x VN, + (u'eurl U, curl Vg — w?(c U, V)q+,(50b)
(MU, V)g+r — (U, M.V)q+
=wx (p lteurl)", V', — U, v x (u teurl V)1, (50c)
=—((p teurlU) "o x V), + w x U", (p tecurl V) ), (50d)

provided U,V € H(QV), and additionally, M. U € H~*(Q") in (50a) and (50b),
while M .U, M.V € H™'(Q") in (50c) and (50d).

Proof: The claimed formulae follow from Lemma (3.1). [ |

4. Representation of solutions and layer potentials

In the present section we continue to apply the results of [Dul] to Maxwell’s equations
(also see [CK1]). For simplicity we suppose that the boundary . = 92 is a C'°° smooth
surface.
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Let us consider the following operators, related to the Maxwell systems (4) and (5):
Newton’s potential

N§U(z) = /Q Bo(r—y)U(y)dy, xR, s51)

the single layer potential
VeU(z) = 7{ ®.(z —7)U(7)dS, reR?\ .7, (52)
%
and the double layer potential
WeU (z) == 7{ (V4 ®e)(z —7)]TU(T)dS,  xeR*\.Z, (53)
%
where @, denotes one of the fundamental solutions ®_ or & and
YV (1) == v(1) X pteurl V(7), TES, (54)
denotes the “magnetic” trace operator.

Theorem 4.1. L{:iQJr be a bounded domain with infinitely smooth boundary ¥ = 0Q+
and Q= := R3 \ Q+. The potential operators

NG, HQF) - HQ),
Ve s E(S) - HLE o),
() — Hy 7 H@),
We s H() - HL @), (55)
() — Hy 7 (@),
WAVE s H(S) = HS (),
W () — H (),

are continuous for all 1 < p < 0o, s € R. Here (7 VU)(x) := U(x) is the Dirichlet trace
operator on the boundary . = 9QT.

Proof: The operators N¢, ., 7.+ V¢, and v~ W€ are all pseudodifferential (abbrevi-
ated as WDO; cf. [DNS1, DNS2]). The symbol N¢,, (§) = F ¢ [Pc(z)] of the pseu-
dodifferential operator N§,, coincides with the inverse symbol M L(&) of the initial op-
erator M ., which is a rational function uniformly bounded at infinity (cf. Theorem 2.2).
Therefore the ¥DO Ng,, has order 0, has the transmission property (as a YDO with a
rational symbol), which implies the mapping property (55) for N¢,, .

For the potential operators V¢ and W*€ the proof is based on the above proved
property of ¥DOs N¢,. and the trace theorem and follows the proof of [Dul, Theorem
3.2].
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Let us consider the following surface J-function

(98070 == f g(ru(n)dS, g€ CF), veCFE).  (56)
S
Obviously, supp(g ® d.») = suppg C ..

The definition (56) is extendible to less regular functions. More precisely, the fol-
lowing holds: Let 1 < p < 00, s < 0, g € W5 (7). Then

o= o=
9@y €My ¥ () C Hpebm(R), 57

where p' = p/(p — 1) (cf. [Dul, Lemma 4.9]).
The layer potential V' can be written in the form

VeU(z)::%yfbe(:c—T)U(T)dS:/Qfl)e(:c—y)(U(EOJy)(y)dy,

=Ng(U @ 6.5)(x), (58)

where (2 is compact and . C (), and can be interpreted as a pseudodifferential operator.
Assume, for simplicity, {2 is compact. From the inclusion (57) and the mapping property
of the pseudodifferential operator N¢, in (55) we derive the mapping property of V' in
(55):

1

[veules @) < Naw s sl @) <

W i) @

<G Ul )]

provided s < 0.
The layer potential W€ is written in the form

WeU(z) = f;}[T(Dy,V)(I)e(CC—T)]TU(T)dS

- / [T(Dy. N (0)Be(z — 1)) (U © 65)(y) dy

= DEU®Ir)(x), S CO (59)
and the principal symbol of the ¥DO D¢, is
D§(x,€) == N (2)u ™ ocurt (E)NG(E) = A (2)p ™ ocurt () Fume [Pe()], (60)

0 M) (o)
N@)=| M) 0 M) |,
~ M@ M) 0

where (A1 (z), A3(z), A3(x))T is some smooth extension of the normal vector field
v(z) from .# onto the domain 2. Therefore, ord D§, = +1 and this pseudodifferential
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operator has the following mapping property

Dy H3(Q) — HI L (RY). (61)

p,loc

From the inclusion (57) and the mapping property (61) we derive, as above, the mapping
property of W€ in (55) provided s < 0.

For the case s > 0 we quote a similar proof in [Dul, Theorem 3.2] and drop the
details since it needs some auxiliary assertions, proved in [Dul].

The mapping properties of YDOs v.»V¢ and v W€, which are the traces of the
potential operators V¢ and W€, follow immediately due to the generalized trace theorem
(see, e.g. [Sel]). |

Theorem 4.2. Solutions of Maxwell’s equations (1) in a compact domain Q" with diag-
onal and proportional coefficients € and | (see (13) and Remark 1.3) are represented as
follows

E(z) = W(ypE)(z) -V (1§ E)(z), z€Q". (62)
Here 7§, E is the “magnetic” trace operators (cf. (54)) and (ypE)(x) := E™(x) is the

“electric” trace operator on the boundary . = 9.

Proof: By introducing the substitution
(MU, V)i —(U, M. V)qr = wx(p teurlU)", V) ,—(U, vx(p tcurl V) ),

in the Green formula, where U is the fundamental solution U = &, and V is the electric
field V = E, we obtain the representation of the solution E of the system (5). If we
take into account that the Newton potential eliminates since we deal with a homogeneous
system (U, M. V)q+ = (®., M. E)q+ = 0, then we see that the system (5) is equivalent
to original Maxwell’s equations (1) (see similar arguments in [Dul]). ]

Remark 4.3. The case of an unbounded domain 2~ will be treated in Theorem 5.1 after
we establish asymptotic properties of fundamental solutions.

For non-homogeneous Maxwell’s equations

curl H + iweE =1
in Q (63)
curlE —iwpH =g

the equivalent systems are

curle ‘curl H — w?uH = wlcurl(e7!f) + g,
n Q64
{ E =i(we) tcurl H — i(we)~f
and
curl p~lcurl E — w?E = f —w lcurl(p'g),
in Q. (65
{ H = —i(wp) teurl E +i(wp) g
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Theorem 4.4. Solutions of Maxwell’s equations (63) in a domain Q with diagonal and
proportional coefficients € and p (see (13) and Remark 1.3) are represented as follows

H(z) =Ngy [wlcurl(e™'f) + g] (z) + W™ (ypH)(z) = V(v H)(z),
E(z) = N§, [f —w curl(p'g)] () + We(ypE)(x) — V(7§ E)(x), xe€Qt.

Proof: The proof is analogous to the proof of the foregoing Theorem 4.2 with a
single difference: Newton’s potential does not disappear

U, M V)gr = (@, M.E) g = N§, [f—w curl(p'g)]
(cf. equation (65)). |

5. The uniqueness of a solution

A solution E of the system (1) is called radiating in an unbounded domain Q~ if the
asymptotic condition

0,B(r) —i 2 o B(x) = O(jal 2 as [a] 00, j=1,2,3, (60
1y 1%

~ X1 i) I3
He = wy/k det u, T:= <—,—,—) , (67)

VHL N H2 /13

holds uniformly in all directions z* /|x*|, where

* * k% T1 T2 503)
= (z],x5,23) = (—,—,— ). 68
(21,25, x3) (M1M2M3 (68)

A radiating solution H of the system (1) is defined similarly.

Without loss of generality we assume that the origin of the co-ordinate system be-
long to the bounded domain Q7 and R be a sufficiently large positive number, such that
the domain Q7 lies inside the ellipsoid

SR U S B

TR uR? M232+M3R2

—1. (69)

Further, let Br denote the interior of the ellipsoid and {27 := €2~ N Bg. Note that the
exterior unit normal vector to the ellipsoidal surface X p := OBp defined by equation
(69) at the point x € X reads as

_ o V(@) 1 gz @ 23
V(‘T) - (Vl(.%')ﬂ/g(fb),yg(l')) T |V\IJ(I)| = |CC*| (,UJI 7,&2 ) ,UJ3)7 (70)
(cf. (68) for x*), where,
S B I
VJ(‘:C) VJ( )_ 14 |$*| - |(E*| y )= 17273' (71)
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Theorem 5.1. Let E, H € H{. (27) be radiating solutions to Maxwell’s equations (1)

with diagonal and proportional anisotropic coefficients € and i (cf. (13) and (19)) in an
exterior domain Q2~. Then

H(z) = W"(ypH)(z) - V" (v H)(2),

(72)
E() = W*(1pE)) - V(1§ B)a), 2.

Proof: We prove this proposition for the electric field £ and fundamental solution
®7; the proof for other cases (for ®, for the field H and fundamental solutions ®:) are
similar.

First note that the radiation condition (66) implies

|27
|z]

curl E — iz,

[v(#) x E] =0 (|z|7?) as |z| — oo, (73)
and further

%2|£C*|2
/ {(ulcurl E,curlE) + ——5 (v x E),vxE)
dBr |z

*
—I—Q%TET | Im(u'curlE, v x E>} ds
T
_1 1|z 2
= p 2curl E —ip 23, — (v X E]| dS—0 as R — oo,
9Br |Z]
where ,u’% is a square root of p .
Using the fact that ¢; < % < co with some positive constants c¢; and ¢y for all
T

x € R? and since the integrand in the first integral is positive for all x € OB, we obtain
|77
|z]
+25¢. Im(p*curlE, v x E)} dS —0 as R — oco. (74)

/ { 121 (v ‘curl E,curl E) + (W' (v x E),v x E)
OBRr

||

Green’s formula in the domain Q, gives us

(un'curl E,curl E),- — w?(¢E,E)o- + (u 'curl E,v x E) »
R R

= (u'curl E,v x E)yp,,.
Now taking the imaginary part of the last equation and applying (74) we find that

||

/ { 121 (" ‘curl E,curl E) +
OBrRr

|z*]

(W v x E),v x E)} ds

|z

= —23,Im (p teurlE, v x E)dS. (75)
07
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Since both summands in the left hand side of (75) are nonnegative, they are bounded at
infinity:

/ lv x E*ds = 0(1) as R — oc. (76)
OBRr

Write the representation formula (62) in the bounded domain Q7:

E(z) = jéB Uyz‘v@i)(x -] (v E)(1)dS — - Ugi(x = 7)( N E)(7) dS,
= W*(1pE)(z) — V(1% B)(@) + . 7
where

I = _j{ O (z — 7)(VGE)(T)dS + j{ (V% ®5) (@ —7)] (v E)(r)dS
OBRr OBRr

:7{ [V x ®f(z — T)]T(/flcurl E)(r)dS
9Br

—7({9 [(1 'curl @) (z — T)]T(V x E)(1)dS

Br
:j{ (1) x ®f(z — T)}T pteurl E(1) — i%e%,u_l(u(r) X E(T))] ds
9Br
—7{ {[curl O (x — T)}T — i%eﬁ [I/(T) x O (z — T)}T:| p (v x E)(T)dS.
OBRr |‘T|

Since @ (z) = O(|x|~1) at infinity, due to (79), (73), (76) and Schwartz inequality
both integrals on the right-hand side vanish as R — oo and the claimed representation for
FE in (72) follows from (77). [ |

Corollary 5.2. Radiating solutions to Maxwell’s equations (1) with anisotropic coeffi-
cients € and p as in (13) and (19) in an exterior domain 2~ have the following asymptotic
behaviour:

H(z) = 6’(|x|_1), E(z) = ﬁ(|x|_1) as |z| — oo, (78)
Proof: The proof follows immediately from the representation formulae (72) since

the potential operators have the indicated asymptotic behaviour automatically. ]

Clearly, each column of the fundamental matrix & () is a radiating vector due to
the asymptotic formulae (38). Moreover, we have the following asymptotic relations for
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sufficiently large |z|
1

i — i 52 |3 ~ 2
o () = e D, oo (Z) + O(|2]77),
1 isxex; . =
0,0 (z) = eI il g, () + O z|72),
0,07 (2) — i 6o —I— &F (z) = O(|2|72), j=1,2,3, (79)

py |2
where s, and ¥ are given by (67), Z = x/|z| and ®., o () is defined by (38).
Further, if y belongs to a compact set and |z| is sufficiently large then we have

@ gl =2 - 27" (@,9) + O(|2|7),

-7 =27+ o277,

i e [Tl — i e [B] g—ise |77 H@H) 4 O(lz|7Y),
whence it follows that

Of(x—y)=—=¢€" 7] gmisee 717 (20) e, o (T) + o(|x|7?),

e

1 iz

9,0 (x —y) el Tl =i lH @0 @, (7) + 0| 72),

Anz] T

L

i (x —y) —ixe Or(x—y)=0(z|7%), j=1,2,3.

py |Z|
These formulae can be differentiated arbitrarily many times

. \a+ﬁ| a+p
13, T _
) Emet-n=old?) 6o

90000 (a — y) — (1)) (

Va,B€N} as |z] — oo, |yl <M < oo,

|z

where besides standard notation ® and 9% we use fi := (u1, pi2, 43), 4% = u ug? psg>.

Applying the above asymptotic relations and taking into account that radiating so-
lutions to the homogeneous equation M. (D)E(x) = 0 in the outer domain {2~ are rep-
resentable by linear combination of the single and double layer potentials (see Theorem
5.1) we easily derive

el e |z| T

B@) = —z— Be@ + 0(e 7). 7= 1)
; . plote |T]
) _ 17Ty € ~ _92 C_

where E o (%) = (E1, 00(7), B2, 00 (), B3, 00(Z)) T is the far field pattern of the radiating
vector F, cf. (38). Note that these asymptotic relations can be differentiated arbitrarily
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many times as well (cf. (80)):

; lal o
0°E(x) — <%> ;—aEm(f) =0(z%) VaeN:. (83)
Now we prove the uniqueness theorems for the above formulated exterior boundary
value problems.

Theorem 5.3. Let E be a radiating solution to the homogeneous equation

M.(D)E = curlpy 'curlE — w?c E =0 (84)

» o«

in Q7 satisfying the homogeneous boundary conditions for the “electric”, “magnetic” or

“mixed” problems on 02, cf. (8a)—(8d). Then E vanishes identically in )~

LEINT3

Proof: Let U be a solution of the homogenous exterior “electric”, “magnetic” or
“mixed” problem. By Green’s formula (50b) for the domain 25 with vectors U = F and
V = E, we obtain

- /(,u_l curl E,[vx E]) dZR—l—/(/fl curl E, curl E) dz—w? /(5 E. E)d: =0,
2r Qn Qg
(85)
where v is the exterior unit normal vector to X r . Note that the surface integral over
. expires due to the homogenous boundary conditions. Since the matrices p and € are
positive definite the second and third summands in the left hand side expression of (85)
are real and we conclude

Im/ LeurlE,[v x E])dYXr = 0. (86)

In view of (68) the radiation condition (82) can be rewritten as

i %, el #e [

0;B() = Y=~z 7 Boo(@) + O(|2] %), j=1.2.3. (87)
X X
Therefore for sufficiently large R and for x € X by (71) we have

Z%e i se

curlE(x) = Vx E(z) = FE 2" x Eoo()] + (|| %)

= B (@) B @)+ 0(al ), =123 59)

Take into account the asymptotic formulae (81) and (88) and transform equation (86)

Im / “Ealf L @) % Bac8)), [0(3) x Boc(@)]) di + 6(R™) = 0. 39)

3R

It can be easily verified that the integrand in (89) does not depend on R. Furthermore,

since ;11 is positive definite, |Z| = R for z € X and d¥ i = R%d¥, by passing to the
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limit in (89) as R — oo we finally arrive at the relation

/|117*| (W [v(@) x Ex(@)],[¥(T) x Ex(T)])d%1 =0, (90)
P

where 31 = 0B is the ellipsoidal surface defined by (69) with R = 1 and the integrand

is non-negative. Note that [x*| > min{u{lm, ugl/Q, ugl/Q} > 0 for z € ¥ in view of

(68). Therefore from (90) it follows that
(! [¥(7) x BEx(@)],[¥(T) x Ex(@)]) =0
which implies
v(Z) x Ex(Z) =0,
ie.,
" x Ex(Z) =0,
where z* is given by (68). Now from (88) we get
curl E(z) = 0(|z|?), 1)
which leads to the asymptotic relation
O°E(z) = O(|x|~2) for arbitrary multi-index o = (aq, as, a3), 92)
due to equation (84) and since we can differentiate (91) any times with respect to the
variables x;, j = 1,2, 3.
To show that E vanishes identically in 2~ we proceed as follows. From (41) and
(84) it is clear that
det Mc(D) := kw” [107 + p203 + psds + %3}2
and
det M(D)E(x) =0 in Q7.
Therefore
A’ (D)E(z) =0,  A(D):= 107 + 1202 + 1303 + 52 .

Let us introduce new variables z;.,

T = \/ Kk Rk k:172737
and set

E(z) = E(\/i1 21, /H2 22, /113 23) =: V ().
It can be easily shown that the components of the vector function V' solves the homoge-
neous equation
[A+ 3212V (2)=0 for |z|> Ry,
where R; is some positive number and A is the Laplace operator. Moreover, in view of
(92) we have
0V (2) = O(|2| ) 93)
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for arbitrary multi-index a.. Thus, W (2) := [ A + 52| V/(z) solves the Helmholtz equa-
tion and for sufficiently large |z|

W(z) = [A+5]V(2) = 0(]7%),
i.e., there holds the equality

Jim |W(2)]2dS = 0.
|z|=A
Therefore, due to the well known Rellich-Vekua theorem W (z) vanishes identically for
|z| > Ry, cf. [Vel], [CK1],

W(2)=[A+2|V(2)=0 for |z| > Ry.

Again with the help of the asymptotic behavior (93) and the Rellich-Vekua theorem we
conclude that V'(z) vanishes for |z| > Rj. In turn this yields that E(z) vanishes for
|z| > Ry with some positive number Rs. Since E(x) is real analytic vector function with
respect to the real variable x € {27, we finally conclude that E = 0 in ™. ]
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