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Abstract. In the present paper we consider Maxwell’s equations in an anisotropic
media, when the dielectric permittivity ε and the magnetic permeability µ are 3 × 3

matrices. We formulate relevant boundary value problems, investigate a fundamental
solution and find a Silver-Müller type radiation condition at infinity which ensures the
uniqueness of solutions when permittivity and permeability matrices are real valued,
symmetric, positive definite and proportional ε = κµ, κ > 0.
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Introduction
In the paper we analyse the uniqueness of solutions to the time harmonic exterior three-
dimensional boundary value problems (BVPs) for anisotropic Maxwell’s equations. It is
well known that in the electro-magnetic wave scattering theory the most important ques-
tion is the formulation of appropriate radiation conditions at infinity, which are crucial in
the study of uniqueness questions. In the case of isotropic Maxwell’s equations such con-
ditions are the Silver-Müler radiation conditions which are counterparts of the Sommer-
feld radiation conditions for the Helmholtz equation. In view of the celebrated Rellich-
Vekua lemma it follows that the Helmholtz equation and isotropic Maxwell’s equations
do not admit non-trivial solutions decaying at infinity as O(|x|−1−δ) with δ > 0. This
property plays an essential role in the study of direct and inverse acoustic and electro-
magnetic wave scattering (see, e.g., [CK1, Eo1, HW1, Jo1, Le1, Ne1, Ve1] and the refer-
ences therein).

The investigation was supported by the grant of the Georgian National Science Foundation GNSF/ST07/3-175.
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Investigation of the same type problems for the general anisotropic case proved to
be much more difficult and only few results are worked out so far. The main problem
here consists in finding the appropriate radiation conditions at infinity, which, in turn, is
closely related to the asymptotic properties of the corresponding fundamental solutions
(see, e.g., [Va1, Wi1, Na1, Ag1] for special classes of strongly elliptic partial differential
equations). As we will see below anisotropic Maxwell’s equations, as well as the isotropic
one, is not strongly elliptic and its characteristic surface represents a self-intersecting two
dimensional manifold, in general.

In the present paper, we consider a special case of anisotropy when the electric
permittivity ε = [εkj ]3×3 and the magnetic permeability µ = [µkj ]3×3 are real valued,
symmetric, positive definite and proportional matrices ε = κµ, κ > 0. For this particular
case we explicitly construct fundamental matrices, formulate the corresponding Silver-
Müler type radiation conditions and prove the uniqueness theorems for the exterior BVPs.

1. Basic boundary value problems for Maxwell’s equations
Throughout the paper we denote by Ω a domain, which can be bounded or unbounded,
while the notation Ω+ stands for a bounded domain and Ω− := R

3 \ Ω+.
Maxwell’s equations

{
curlH + iωεE = 0 ,

curlE − iωµH = 0 ,
in Ω ⊂ R

3 (1)

for ω > 0 govern the scattering of time-harmonic electromagnetic waves with frequency
ω in a domain Ω. E = (E1, E2, E3)

> and H = (H1, H2, H3)
> are 3 vector-functions,

representing the scattered electric and magnetic waves respectively. Here and in what
follows the symbol (·)> denotes transposition and

curl :=




0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0



.

System (1) can also be written in matrix form

M(D)

(
E

H

)
= 0 , M(D) :=

[
iωεI3 curl

curl −iωµI3

]
. (2)

D := −i(∂1, ∂2, ∂3)
>, ∂j :=

∂

∂xj
, j = 1, 2, 3.

The scope of the present investigation is to consider an anisotropic case when rela-
tive dielectric permittivity ε = [εjk]3×3 and relative magnetic permeability µ = [µjk]3×3

in (1) are real valued symmetric positive definite constant matrices, i.e.,

〈εξ, ξ〉 ≥ c|ξ|2 , 〈µξ, ξ〉 ≥ d|ξ|2 , ∀ξ ∈ C
3 (3)
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with some positive constants c > 0, d > 0 and where

〈η, ξ〉 :=

3∑

j=1

ηjξj , η, ξ ∈ C
3.

Consequently, these matrices admit the square roots ε1/2, µ1/2. In some models of aniso-
tropic media the positive definiteness (3) is a consequence of the energy conservation law
(cf., e.g., [BDS1]).

By solving E from the first equation in (1) and introducing the result into the second
one we obtain an equivalent system

{
curl ε−1curlH − ω2µH = 0 ,

E = i(ωε)−1curlH
in Ω , (4)

or, by first solving H from the second equation and introducing the result into the first
one we obtain another equivalent system

{
curlµ−1curlE − ω2εE = 0 ,

H = −i(ωµ)−1curlE
in Ω . (5)

Since div curl = 0, after applying the divergence operator div to the first equations
of the systems (4) and (5), we get

div(µH) = div(εE) = 0 . (6)

Here we will only investigate the system (5). Results for the system (4) can be
worked out analogously.

For a rigorous formulation of conditions providing the unique solvability of the for-
mulated boundary value problems we use the Bessel potential Hr

p(Ω), Hr
p(S ), Hr

p,loc(Ω),
Hr

p,com(Ω) and Besov Br
p,q(Ω), Br

p,p(S ) spaces, −∞ < r < ∞, 1 < p, q < ∞, when
Ω ⊂ R3 is a domain and S is the sufficiently smooth boundary surface of Ω. Note that,
for an unbounded domain Ω, the space Hr

p,loc(Ω) comprises all distributions u for which
ψ u ∈ Hr

p(Ω) where ψ ∈ C∞
0 (R3) is arbitrary. As usual, for the spaces Hr

2(Ω), Hr
2(S ),

Hr
2,loc(Ω), Hr

2,com(Ω) we use the notation Hr(Ω), Hr(S ), Hr
loc(Ω), Hr

com(Ω).

It is well known that W
r−1/p
p (S ) = B

r−1/p
p,p (S ) (Sobolev-Slobodetski space) is

a trace space for Hr
p(Ω), provided r > 1/p. If C is an open smooth subsurface of a

hypersurface S in R3, we use the spaces Hr
p(C ) and H̃r

p(C ). The space Hr
p(C ) comprises

those functions ϕ which have extensions to functions φ ∈ Hr
p(S ). The space H̃r

p(C )

comprises functions ϕ ∈ H
r
p(S ) which are supported in C (functions with ”vanishing

traces on the boundary ∂C ”). For detailed definitions and properties of these spaces we
refer to, e. g., [Hr1, HW1, Tr1]).

Finally, as usual for the Maxwell’s equations, we need the following special space

H(curl; Ω) := {U ∈ L2(Ω) : curlU ∈ L2(Ω)}.
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We also use the notation Hloc(curl; Ω), meaning the Frechet space of all locally inte-
grable vector functions U and curlU instead of global integrability if the underlying
domain Ω is unbounded, and the space H(curl; Ω) if Ω is bounded.

Note that H1(Ω) is a proper subspace of H(curl; Ω). Indeed, U+gradψ ∈ H(curl; Ω)
for a vector function U ∈ H1(Ω) and a scalar function ψ ∈ H1(Ω) but, in general,
U + gradψ 6∈ H

1(Ω).
Next we recall basic boundary value problems for Maxwell’s equations written for

the electric field:

I. The “magnetic” BVP
{

curlµ−1curl E − ω2εE = 0 in Ω ⊂ R3 ,

γS

(
ν ×

(
µ−1curlE

))
= e on S := ∂Ω ,

(7a)

E ∈ Hloc(curl; Ω), e ∈ H
−1/2(S ),

where γS is the trace operator on the boundary and the symbol × denotes the vector
product of vectors;

II. The “electric” BVP
{

curlµ−1curlE − ω2εE = 0 in Ω ⊂ R
3 ,

γS (ν × E) = f on S ,
(7b)

E ∈ Hloc(curl; Ω), f ∈ H
1/2(S );

III. The “mixed” BVP




curlµ−1curlE − ω2εE = 0 in Ω ⊂ R3 ,

γSN

(
ν ×

(
µ−1curlE

))
= eN on SN ,

γSD
(ν × E) = fD on SD ,

(7c)

E ∈ Hloc(curl; Ω), eN ∈ H
−1/2(SN ), fD ∈ H

1/2(SD),

where SD and SN are disjoint parts of the boundary surface S := S N ∪ S D.

If S is an orientable, smooth, open surface in R3 with a boundary Γ := ∂S , it has
two faces S − and S +, which differ by the orientation of the normal vector field ν(x),
which points from S + to S −. The natural BVPs for scattering of electromagnetic field
by an open surface S in R3 \ S are the following:

I. The crack type “magnetic-magnetic” BVP
{

curlµ−1curlE − ω2εE = 0 in R3 \ S ,

γS ±

(
ν ×

(
µ−1curl E

))
= e± on S ,

(8a)

E ∈ Hloc(curl; R3 \ S ), e± ∈ H
−1/2(S );
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II. The screen type “electric-electric” BVP
{

curlµ−1curlE − ω2εE = 0 in R
3 \ S ,

γS ± (ν × E) = f± on S ,
(8b)

E ∈ Hloc(curl; R3 \ S ), f± ∈ H
1/2(S );

III. The “magnetic-electric” BVP
{

curlµ−1curl E − ω2εE = 0 in R3 \ S ,

γS +

(
ν ×

(
µ−1curlE

))
= e+ , γS − (ν × E) = f− on S ,

(8c)

E ∈ Hloc(curl; R3 \ S ), e+ ∈ H
−1/2(S ), f− ∈ H

1/2(S );

IV. The “mixed-mixed” type BVP




curlµ−1curlE − ω2εE = 0 in R3 \ S ,

γ
S

±

N

[
ν ×

(
µ−1curlE

)]
= e±

N
, on S

±
N ,

γ
S

±

N

[ν × E] = f±
D

on S
±
D ,

(8d)

E ∈ Hloc(curl; R3 \ S ), e±
N

∈ H
−1/2(S ±

N ), f±
D

∈ H
1/2(S ±

D ),

where S
±
N ∪ S

±
D = S and S

+
N ∩ S

+
D = ∅, S

−
N ∩ S

−
D = ∅.

All BVPs (8a)-(8d) and BVPs (7a)-(7c) for an unbounded domain Ω should be en-
dowed with a special condition at infinity. If the medium is isotropic, i. e., the perme-
ability and the permittivity coefficients are scalar constants, the radiation conditions are
well-known (cf., e.g., [CK1, Eo1, Jo1, Ne1] etc.). For example, the classical radiation
condition imposed on the electric field reads

∂E(x)

∂R
− iσkE = O

(
R−2

)
for R = |x| → ∞, (9)

where k = ω
√
εµ and either σ = −1 for incoming waves or σ = +1 for outgoing

waves. Similar condition can also be imposed on the magnetic field H. The Silver-Müller
radiation condition is imposed on both fields either

∣∣√εE(x) × x̂+
√
µH(x)

∣∣ = O
(
R−2

)
for R = |x| → ∞ (10)

or
∣∣√εE(x) −√

µH(x) × x̂
∣∣ = O

(
R−2

)
for R = |x| → ∞, (11)

where x̂ :=
x

|x| .
The basic boundary value problems for the magnetic field H and the differential

equation (4) are formulated similarly to (7a)-(7c) and (8a)-(8d).
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Remark 1.1. We can derive solutions to the screen type (the “electric”) BVP for electric
E field indirectly, provided we can solve the crack type (the “magnetic”) BVP for the
magnetic field H and vice versa.

Indeed, let H be a solution to the “magnetic” boundary value problem with a
boundary data h for the magnetic field H. Due to the second equations in (4), we get

γS (ν × E) =
i

ω
γS (ν ×

(
ε−1curl H

)
) =

i

ω
h.

Therefore the vector field E = i(ωε)−1curlH is a solution to the “electric” BVP (7b)

with the boundary data f =
i

ω
h.

The same is true, due to the second equations in (5) and (4), for the all three re-
maining BVPs for the magnetic H and the electric E vector fields.

Radiation conditions for the matrix coefficients ε and µ are unknown so far. In §5 a
radiation condition for anisotropic Maxwell’s equations is derived when the permittivity
and permeability matrices ε and µ are real valued, positive definite, symmetric and pro-
portional ε = κµ. The radiation conditions ensure the uniqueness of a solution. As a first
step to the investigation let us simplify the main object, namely, the system (1).

Let ε1, ε2, ε3, µ1, µ2, µ3 be the eigenvalues of the permittivity and permeability
matrices. Due to (3) they are positive εj > 0, µj > 0, j = 1, 2, 3. Consider following
Maxwell’s equations

{
curlH∗ + iωε∗E∗ = 0 ,

curlE∗ − iωµ∗H∗ = 0 ,
in Ω∗ ⊂ R

3, (12)

with the diagonal permittivity and permeability matrices

ε∗ =



ε1 0 0
0 ε2 0
0 0 ε3


 , µ∗ =



µ1 0 0
0 µ2 0
0 0 µ3


 .

Lemma 1.2. Let the permittivity ε and the permeability µ be real valued, positive definite
and proportional matrices

ε = κµ, κ > 0. (13)

Then there exists an orthogonal matrix

R : R
3 −→ R

3, |R x| = |x|, R
−1 = R

>,

which establishes the following equivalence between Maxwell’s equations (1) and (12):
Ω∗ := R Ω and

E
∗(x∗) := R E(R>x∗) H

∗(x) := R H(R>x∗), ∀x∗ := Rx ∈ Ω∗. (14)

Proof: The proof is based on the following well known result (see, e.g., [Me1, § 7.5]
and [Ga1, § IX.10]): a matrix A ∈ Cn×n is unitarily similar to a diagonal matrix D , i.e.,
A = U >DU with U >U = I , if and only if the matrix A is normal, i.e., commutes
with its adjoint A ∗A = A A ∗.
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Since the matrices ε and µ are real valued, positive definite and proportional matri-
ces there exists an orthogonal, i.e., real valued and unitary, matrix R which reduces them
to the diagonal (Jordan) form simultaneously

ε = R
>ε∗R, µ = R

>µ∗
R. (15)

By introducing the representations (15) into the system (1), applying the transformation
R to both sides of equations and changing the variable to a new one x∗ = R x, we obtain
the following:

{
curl

∗
H

∗(x∗) + iωε∗E∗(x∗) = 0 ,

curl∗E∗(x∗) − iωµ∗H∗(x∗) = 0 ,
x∗ ∈ Ω∗, (16)

where curl∗U (x∗) := R curlR>U (x). Let R1, R2, R3 be the vector columns of the
transposed matrix R>. Then

R
> = (R1,R2,R3), 〈Rj ,Rk〉 = δjk, (17)

and we find

curl∗U =RcurlR>
U =




R
>
1

R
>
2

R
>
3


∇x × (R1,R2,R3)U

=[〈Rj ,∇x × Rk〉]3×3 U = − [〈Rj × Rk,∇x〉]3×3 U

=




0 −〈R3,∇x〉 〈R2,∇x〉
〈R3,∇x〉 0 −〈R1,∇x〉
−〈R2,∇x〉 〈R1,∇x〉 0


 U

=




0 −∂x∗
3

∂x∗
2

∂x∗
3

0 −∂x∗
1

−∂x∗
2

∂x∗
1

0


 U , (18)

since the variables after transformation are x∗j = 〈Rj , x〉, j = 1, 2, 3. The last three
equalities in (18) follow with the help of the formulae:

〈Rj ,∇× Rk〉 = −〈Rj × Rk,∇〉 = −εjkm〈Rm,∇〉,

R1 × R2 = R3 , R2 × R3 = R1 , R3 × R1 = R2 ,

where εjkm is the Levi-Civita symbol (the permutation sign), j, k,m = 1, 2, 3. The equal-
ity (18) acomplishes the proof.

Remark 1.3. Hereafter, if not stated otherwise, we will assume that ε and µ are real
valued, positive definite, proportional (cf. (13)) and diagonal matrices

ε =



ε1 0 0
0 ε2 0
0 0 ε3


 , µ =



µ1 0 0
0 µ2 0
0 0 µ3


 . (19)
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Remark 1.4. Finally, let us note that for a complex valued wave frequency Imω 6= 0 and
arbitrary real valued, symmetric and positive definite matrices µ and ε, a fundamental
solution to Maxwell’s operator exists and decays at infinity exponentially.

Moreover, each above formulated basic BVPs for Maxwell’s equations has a unique
solution in the class of polynomially bounded vector-functions, represented by layer po-
tentials and actually these solutions decay exponentially at infinity.

For real valued frequencies matters are different and we consider the case in the
next section.

2. A fundamental solution to Maxwell’s operator
The equation

Mµ(D)F (x) = δ(x)I3 , Mµ(D) := curlµ−1curl , (20)

F = (F1, F2, F3)
>, x ∈ R

3,

(cf. (5)), where I3 is the identity matrix, has no fundamental solution. In fact, the deter-
minant of the symbol (the characteristic polynomial) of this operator vanishes identically,

det Mµ(ξ) = det σcurl(ξ) det µ−1 det σcurl(ξ) ≡ 0, (21)

where σcurl(ξ) is the symbol of the operator curl:

σcurl(ξ) :=




0 iξ3 −iξ2
−iξ3 0 iξ1
iξ2 −iξ1 0


 . (22)

The absence of the fundamental solution is a consequence of the following theorem.

Theorem 2.1. A partial differential operator P(D) =
∑

|α|≤m

pα∂
α with constant matrix

coefficients pα ∈ CN×N has a fundamental solution FP ∈ S′(Rn) if and only if the
determinant of the symbol

P (ξ) = σP(ξ) :=
∑

|α|≤m

pα(−iξ)α, ξ ∈ R
n,

does not vanish identically.

Proof: The proof is based on the Malgrange-Ehrenpreis theorem on the existence of
the fundamental solution for the scalar equation (cf., e.g., [Hr1]).

Let det P (ξ) 6≡ 0 and consider the formal co-factor matrix of P(D)

AP(D) :=
[
Ajk(D)

]
N×N

, Ajk(D) = (−1)j+kMkj(D) , (23)

where Mkj(D) are the (N − 1)-dimensional minors of P(D). Then

AP (D)P(D) = P(D)AP (D) = diag{det P(D), . . . , det P(D)} .
The distribution

FP := AP(D)diag{Fdet P, . . . ,Fdet P},
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where Fdet P is the fundamental solution of the scalar equation det P(D)F (x) = δ(x)
(cf. Malgrange-Ehrenpreis theorem; cf. [Hr1]) is the claimed fundamental solution of
P(D).

Next we assume that the determinant vanishes identically, i.e., det P (ξ) ≡ 0. Then
det P(D) = 0 and the rows of the operator matrix are linearly dependent. There exists a
non-singular permutationN ×N matrix H with constant entries, such that the first row
of the matrix-operator P̃(D) = H P(D) is identically 0. If we assume that a fundamental
solution exists, i.e., P(D)FP = δIN , we get the following equality

(0, c2, . . . , cN )> =
(
H P(D)

)
FPu = H

(
P(D)FPu

)
= H δu = H u(0)

for all u ∈ S(Rn). Since the test vector-function u is arbitrary and the matrix H is
invertible, the latter equality is a contradiction.

In contrast to equations (20) the corresponding spectral equation

Me(D)Φe = δI3 , M e(D) := Mµ(D) − ω2µI (24)

has a fundamental solution.

Theorem 2.2. The fundamental solution of the equation in (24) is given by

Φe = M
#
e (D)Fdet Me

I3 (25)

where M
#
e (D) denotes the formal co-factor matrix operator of M e(D) and Fdet Me

is
a fundamental solution of the equation

det Me(D)Fdet Me
= δ .

Proof: Due to Theorem 2.1 the fundamental solution Fdet Me
exists and implies

the existence of the fundamental solution Φe for Me(D):

Me(D)Φe = Me(D)M#
e (D)Fdet Me

I3 = det Me(D)Fdet Me
I3 = δI3.

Remark 2.3. The symbol Me(ξ) of the operators M e(D) in (24) is not elliptic and even
not hypoelliptic. To be hypoelliptic (of the class HL

m,m1

ρ,0 (Rn × Rn) for m1,m ∈ N0,
m1 ≤ m), the principal symbol σA(x, ξ) of a matrix differential (or a pseudodifferential)
operator A(x,D) needs, by definition, to meet the following two conditions [Hr1]:

i. there exist positive constants C1 and C2, such that the inequalities

C1|ξ|m1 ≤ | det σA(x, ξ)| ≤ C2|ξ|m ∀x, ξ ∈ R
n (26)

hold;
ii. for arbitrary α, β ∈ Rn, |α| + |β| 6= 0, there exist positive constants Cα,β and

ρ > 0, such that∣∣∣det [σ−1
A

(x, ξ)(σA)
(α)
(β)(x, ξ)]

∣∣∣ ≤ Cα,β |ξ|−ρ|α| ∀x, ξ ∈ R
n , (27)

where (σA)
(α)
(β)(x, ξ) := ∂β

x∂
α
ξ σA(x, ξ).

If the indices coincidem1 = m, the symbol σA(x,D) is elliptic from the Hörmander
class HL

m
ρ,0(R

n × R
n).
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To show that the symbol Me(ξ) is not hypoelliptic we will check that the second
condition (27) fails for it. In fact:

det Me(ξ) = det
[
σcurl(ξ)µ

−1σcurl(ξ) − ω2ε
]

= ω2
P4(ξ) + ω4

P2(ξ) − ω6 det ε . (28)

Here Pk(ξ) is a homogeneous polynomial of order k = 2, 4. Then

ord
[
Me(ξ) − ω2ε

]−1
= 0 ,

ord
[
Me(ξ) − ω2ε

]−1
∂j

[
Me(ξ) − ω2ε

]
= +1,

(29)

and the condition (27) fails.
The next proposition is well known (cf. [Ne1], [CK1]).

Proposition 2.4. Either of the following functions

Φ±
M

(x) =
e±ik|x|

4π|x| I3 +
1

4πk2
∇∇> e

±ik|x|

|x| . (30)

is a fundamental solution of the equation

MΦM := curl 2 ΦM − k2ΦM = δI3. (31)

Proof: The fundamental solution is equal to the inverse Fourier transform of the
inverse symbol

ΦM(x) = F
−1
ξ→x

[
M

−1(ξ)
]
. (32)

Since the symbol equals (cf. (22))

M(ξ) =




0 iξ3 −iξ2
−iξ3 0 iξ1
iξ2 −iξ1 0




2

− k2I3 = (|ξ|2 − k2)I3 − ξξ>, ξ ∈ R
3, (33)

let us look for the inverse in the form

M
−1(ξ) :=

1

|ξ|2 − k2
I3 − αξξ>,

where α is an unknown scalar function. Since ξ>ξ = |ξ|2, the condition M
−1(ξ)M(ξ) ≡

I3 provides the equality

α(ξ) =
1

k2(|ξ|2 − k2)
,

which is well-defined outside the sphere |ξ|2 = k2. Then,

M
−1(ξ) :=

1

|ξ|2 − k2

[
I3 −

1

k2
ξξ>

]
, |ξ| 6= k. (34)

To regularize the singular integral, let us temporarily replace k by a complex valued pa-
rameter k ± iθ, where θ > 0 is small. By inserting (34) (with k ± iθ) into (32) and by
applying the identity

∇x∇>
x

[
e−i〈x,ξ〉

]
= −ξξ>e−i〈x,ξ〉 , x, ξ ∈ R

3,
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we proceed as follows:

Φ±
M

(x)=
1

2π3
lim

θ→0+

[∫

R3

e−i〈x,ξ〉dξ

|ξ|2 − (k ± iθ)2
I3 −

∫

R3

e−i〈x,ξ〉ξξ>dξ

(k ± iθ)2
[
|ξ|2 − (k ± iθ)2

]
]

(35)

= lim
θ→0+

1

2π3

[∫

R3

e−i〈x,ξ〉dξ

|ξ|2 − (k ± iθ)2
I3 +

1

(k ± iθ)2
∇∇>

∫

R3

e−i〈x,ξ〉dξ

|ξ|2 − (k ± iθ)2

]
.

To calculate the integral in (35) it is convenient to introduce the spherical coordinates
ξ = ρη, η ∈ S

2 ⊂ R
3 and apply the residue theorem. After a standard manipulation we

get the following:

G±(x) :=
1

(2π)3
lim

θ→0+

∫

R3

e−i〈x,ξ〉dξ

|ξ|2 − (k ± iθ)2
=

1

2π2|x| lim
θ→0+

∫ ∞

0

ρ sin(ρ|x|)
ρ2 − (k ± iθ)2

dρ

=
e±ik|x|

4π|x| , x ∈ R
3. (36)

By inserting the obtained integral in (35) we arrive at (30).

Theorem 2.5. Let coefficients ε andµ be diagonal and proportional (see (13) and Remark
1.3). Then the fundamental solution Φe in (24) is written in explicit form

Φ±
e (x) = F

−1
ξ→x

[
M−1

e (ξ, ω)
]

(37)

=
1

4πω2κ(detµ)3/2



∂2
1 + ω2κµ2µ3 −∂1∂2 −∂1∂3

−∂1∂2 ∂2
2 + ω2κµ1µ3 −∂2∂3

−∂1∂3 −∂2∂3 ∂2
3 + ω2κµ1µ2




×e
±iω

√
κ det µ |x̃|

|x̃| =
e±iω

√
κ det µ|x̃|

4π|x̃| Φe,∞(x̃) + O
(
|x|−2

)
as |x| → ∞,

where x̃ := (x̃1, x̃2, x̃3)
>, x̃j :=

xj√
µj

, j = 1, 2, 3, and the matrix

Φe,∞(x̃) :=




|x̃|2 − x̃2
1

µ1|x̃|2
√

detµ

√
µ3 x̃1x̃2

|x̃|2 detµ

√
µ2 x̃1x̃3

|x̃|2 detµ
√
µ3 x̃1x̃2

|x̃|2 detµ

|x̃|2 − x̃2
2

µ2|x̃|2
√

detµ

√
µ1 x̃2x̃3

|x̃|2 detµ
√
µ2 x̃1x̃3

|x̃|2 detµ

√
µ1 x̃2x̃3

|x̃|2 detµ

|x̃|2 − x̃2
3

µ3|x̃|2
√

detµ




(38)

is known as the far field pattern.
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Proof: If ε and µ are diagonal (cf. (19)), the operator M e(D) in (24) acquires the
form:

Me(ξ, ω) = σcurl(ξ)µ
−1σcurl(ξ) − ω2εI

=




0 iξ3 −iξ2
−iξ3 0 iξ1
iξ2 −iξ1 0






µ−1

1 0 0
0 µ−1

2 0
0 0 µ−1

3







0 iξ3 −iξ2
−iξ3 0 iξ1
iξ2 −iξ1 0


 − ω2εI

=




µ−1
3 ξ22 + µ−1

2 ξ23 − ω2ε1 −µ−1
3 ξ1ξ2 −µ−1

2 ξ1ξ3

−µ−1
3 ξ1ξ2 µ−1

3 ξ21 + µ−1
1 ξ23 − ω2ε2 −µ−1

1 ξ2ξ3

−µ−1
2 ξ1ξ3 −µ−1

1 ξ2ξ3 µ−1
2 ξ21 + µ−1

1 ξ22 − ω2ε3


.

We have:

det Me(ξ, ω)

=
[
µ−1

3 ξ22 + µ−1
2 ξ23 − ω2ε1

][
µ−1

3 ξ21 + µ−1
1 ξ23 − ω2ε2

][
µ−1

2 ξ21 + µ−1
1 ξ22 − ω2ε3

]

−2µ−1
1 µ−1

2 µ−1
3 ξ21ξ

2
2ξ

2
3 − µ−2

1

[
µ−1

3 ξ22 + µ−1
2 ξ23 − ω2ε1

]
ξ22ξ

2
3

−µ−2
2

[
µ−1

3 ξ21 + µ−1
1 ξ23 − ω2ε2

]
ξ21ξ

2
3 − µ−2

3

[
µ−1

2 ξ21 + µ−1
1 ξ22 − ω2ε3

]
ξ21ξ

2
2

= −ω2
[
ε1ξ

2
1 + ε2ξ

2
2 + ε3ξ

2
3 − ω2ε1ε3µ2

]

×
[
µ−1

2 µ−1
3 ξ21 + µ−1

1 µ−1
3 ξ22 + µ−1

1 µ−1
2 ξ23 − ω2ε2µ

−1
2

]

+ω4[ε22µ
−1
2 + ε1ε3µ

−1
1 µ2µ

−1
3 − ε1ε2µ

−1
1 − ε2ε3µ

−1
3

]
ξ22

= −ω2 det ε
[ ξ21
µ2ε3

+
ξ22

ε1µ2ε3ε
−1
2

+
ξ23
ε1µ2

− ω2
][ ξ21
µ3ε2

+
ξ22

µ1ε2µ3µ
−1
2

+
ξ23
µ1ε2

− ω2
]

+ω4
[
ε22µ

−1
2 + ε1ε3µ

−1
1 µ2µ

−1
3 − ε1ε2µ

−1
1 − ε2ε3µ

−1
3

]
ξ22 .

For diagonal and proportional matrices (see (13) and (19)), we get the following simplifi-
cation

Me(ξ, ω) = σcurl(ξ)µ
−1σcurl(ξ) − ω2κµI (39)

=



µ−1

3 ξ22 + µ−1
2 ξ23 − ω2

1µ1 −µ−1
3 ξ1ξ2 −µ−1

2 ξ1ξ3

−µ−1
3 ξ1ξ2 µ−1

3 ξ21 + µ−1
1 ξ23 − ω2

1µ2 −µ−1
1 ξ2ξ3

−µ−1
2 ξ1ξ3 −µ−1

1 ξ2ξ3 µ−1
2 ξ21 + µ−1

1 ξ22 − ω2
1µ3


 ,

det Me(ξ, ω) = −ω
2 det ε

κ2

[
ξ21
µ2µ3

+
ξ22
µ1µ3

+
ξ23
µ1µ2

− κω2

]2

= −ω
2 det ε

κ2 det µ

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − κω2 det µ

]2
(40)
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= −ω2
1

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ
]2
, (41)

where ω2
1 := ω2κ. It is easy to see that all minors of the matrix (39) have the factor

µ1ξ
2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ. Indeed, we have

(
Me(ξ, ω)

)
11

= [µ−1
3 ξ21 + µ−1

1 ξ23 − ω2
1µ2][µ

−1
2 ξ21 + µ−1

1 ξ22 − ω2
1µ3] − µ−2

1 ξ22ξ
2
3

= (ξ21 − ω2κµ2µ3)

[
ξ21
µ2µ3

+
ξ22
µ1µ3

+
ξ23
µ1µ2

− ω2κ

]

=
ξ21 − ω2κµ2µ3

det µ

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ
]
,

(
Me(ξ, ω)

)
22

= (ξ22 − ω2κµ1µ3)

[
ξ21
µ2µ3

+
ξ22
µ1µ3

+
ξ23
µ1µ2

− ω2κ

]

=
ξ22 − ω2κµ1µ3

det µ

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ
]
,

(
Me(ξ, ω)

)
33

= (ξ23 − ω2κµ1µ2)

[
ξ21
µ2µ3

+
ξ22
µ1µ3

+
ξ23
µ1µ2

− ω2κ

]

=
ξ23 − ω2κµ1µ2

det µ

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ
]
,

(
Me(ξ, ω)

)
12

=
(
Me(ξ, ω)

)
21

= µ−1
3 ξ1ξ2[µ

−1
2 ξ21 + µ−1

1 ξ22 − ω2
1µ3] − µ−1

1 µ−1
2 ξ1ξ2ξ

2
3

= −ξ1ξ2
[
ξ21
µ2µ3

+
ξ22
µ1µ3

+
ξ23
µ1µ2

− ω2κ

]

= − ξ1ξ2
det µ

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ
]
,

(
Me(ξ, ω)

)
13

=
(
Me(ξ, ω)

)
31

= −ξ1ξ3
[
ξ21
µ2µ3

+
ξ22
µ1µ3

+
ξ23
µ1µ2

− ω2κ

]

= − ξ1ξ3
det µ

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ
]
,

(
Me(ξ, ω)

)
23

=
(
Me(ξ, ω)

)
32

= −ξ2ξ3
[
ξ21
µ2µ3

+
ξ22
µ1µ3

+
ξ23
µ1µ2

− ω2κ

]

= − ξ2ξ3
det µ

[
µ1ξ

2
1 + µ2ξ

2
2 + µ3ξ

2
3 − ω2

1 det µ
]
.

Applying the variable transformation √
µjξj = ηj and the Fourier transformation

formula (36), we easily obtain

F
−1
ξ→x

[
1

µ1ξ21 + µ2ξ22 + µ3ξ23 − κω2 det µ± i0

]
=
e±iω|x̃|

√
κ det µ

4π|x̃|
√

det µ
,
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where x̃ is defined in (38). From the obtained expressions for the determinant, minors and
the latter formula for Fourier transformation we easily derive formula (38)

Φ±
e (x) = F

−1
ξ→x

[
M−1

e (ξ, ω)
]

= − 1

κω2 det µ
F

−1
ξ→x

[
1

µ1ξ21 + µ2ξ22 + µ3ξ23 − κω2 det µ± i0
×

×



ξ21 − ω2κµ2µ3 −ξ1ξ2 −ξ1ξ3

−ξ1ξ2 ξ22 − ω2κµ1µ3 −ξ2ξ3
−ξ1ξ3 −ξ2ξ3 ξ23 − ω2κµ1µ2







=
1

κω2 det µ



∂2
1 + ω2κµ2µ3 −∂1∂2 −∂1∂3

−∂1∂2 ∂2
2 + ω2κµ1µ3 −∂2∂3

−∂1∂3 −∂2∂3 ∂2
3 + ω2κµ1µ2




×F
−1
ξ→x

[
1

µ1ξ21 + µ2ξ22 + µ3ξ23 − κω2 det µ± i0

]

=
1

κω2 det µ



∂2
1 + ω2κµ2µ3 −∂1∂2 −∂1∂3

−∂1∂2 ∂2
2 + ω2κµ1µ3 −∂2∂3

−∂1∂3 −∂2∂3 ∂2
3 + ω2κµ1µ2


 e±iω|x̃|

√
κ det µ

4π|x̃|√det µ
,

where the variable x̃ is defined in (38).

Remark 2.6. It can be checked that the necessary and sufficient condition for the polyno-
mial det Me(ξ, ω) to be factored into two second degree polynomials, det Me(ξ, ω) =
P1(ξ)P2(ξ), is the condition that one of the following equalities hold:

ε1
µ1

=
ε2
µ2
,

ε1
µ1

=
ε3
µ3
,

ε2
µ2

=
ε3
µ3

Fig. 1: Outer characteristic ellipsoid Fig. 2: Section of the characteristic surface
If (13) is not fulfilled, then the equations Pi(ξ) = 0, i = 1, 2, determine two

different ellipsoidal surfaces with two touching points at the endpoints of common axes
(see Fig.1 and Fig.2). If conditions (13) and (19) hold, the ellipsoids coincide.
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3. Green’s formulae
Here we apply the results of [Du1] and derive Green’s formulae for Maxwell’s equations
(5), needed for our analysis. For convenience we also use the notation γ±

S
U = U

±

Lemma 3.1. For a domain Ω+ ⊂ R3 with a smooth boundary S := ∂Ω+ the following
Green’s formula holds

(curlU ,V )Ω+ − (U , curlV )Ω+ = (ν × U
+,V +)S = −(U+,ν × V

+)S , (42)

U ,V ∈ H
1(Ω+) ,

where U
+ = (U+

1 , U
+
2 , U

+
3 )> denotes the trace on the boundary S ,

(U ,V )G :=

∫

G

〈U (x),V (x)〉 dx.

In particular,

(curlU ,∇ v)Ω+ = −(U+,MS v
+)S , U ∈ H

1(Ω+), v ∈ H
1(Ω+) , (43)

where the brackets (·, ·)S denotes the duality between adjoint spaces Hs(S ) and H−s(S ),

MS := ν ×∇ = (M23,M31,M12)
>, (44)

and Mjk = νj∂k −νk∂j are Stoke’s tangential differentiation operators on the boundary
surface S .

Proof: Formula (42) is a simple consequence of the Gauss integration by parts for-
mula

(∂j u, ψ)Ω+ = (νju
+, ψ+)S − (u, ∂j ψ)Ω+ , u, ψ ∈ H

1(Ω+) (45)

In fact,

(curlU ,V )Ω+

=

∫

Ω+

[
(∂2U3 − ∂3 U2)V

1 + (∂3U1 − ∂1 U3)V
2 + (∂1U2 − ∂2 U1)V

3
]
dx

=

∫

S

[
(ν2U

+
3 − ν3U

+
2 )V +

1 + (ν3U
+
1 − ν1 U

+
3 )V +

2 + (ν1U
+
2 − ν2 U

+
1 )V +

3

]
dS

+

∫

Ω+

[
(∂2V3 − ∂3 V2)U1 + (∂3V1 − ∂1 V3)U2 + (∂1V2 − ∂2 V1)U3

]
dx

= −(ν × U
+,V +)S + (U , curlV )Ω+ . (46)

Since ν × U can be interpreted as the application of the skew symmetric matrix

ν × U = N U , N :=




0 −ν3 ν2
ν3 0 −ν1
−ν2 ν1 0


 = −N

>,

we get

(ν × U
+,V +) = (N U

+,V +) = −(U+,N V
+) = −(U+,ν × V

+) ,
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and this accomplishes the proof of (42).
To prove (43) first note that

ν × (∇ v)+ = (ν ×∇ v)+ = (MS v)
+ = MS v

+ ∀ v ∈ H
2(Ω+), (47)

because Mjk are tangential derivatives (cf. (44)) and therefore it commutes with the trace
operator

(
MS v

)+
= MS v

+. (48)

Moreover, due to equality (48) it is sufficient to suppose v ∈ H1(Ω+) in (47): if v ∈
H1(Ω+) then v+ ∈ H1/2(S ) by the classical trace theorem and therefore

(
MS v

)+
:=

MS v
+ ∈ H−1/2(S ).
Equation (43) is a consequence of (42). In fact,

(curlU ,∇ v)Ω+ = −(U+,ν × (∇ v)+)S + (U , curl∇ v)Ω+ = −(U+,
(
MS v

)+)S

= −(U+,MS v
+)S

since curl∇ = 0.
For anisotropic Maxwell’s equations we have the following.

Theorem 3.2. The operator

Me = curlµ−1curl − ω2εI (49)

(cf. (6)) is formally self adjoint M
∗
e = M e and the following Green’s formulae hold

(M eU ,V )Ω+

= (ν × (µ−1curl U)+,V +)S + (µ−1curlU , curlV )Ω+ − ω2(εU ,V )Ω+ (50a)

= −((µ−1curlU )+,ν × V
+)S + (µ−1curl U , curl V )Ω+ − ω2(εU ,V )Ω+ ,(50b)

(M eU ,V )Ω+ − (U ,MeV )Ω+

= (ν × (µ−1curl U)+,V +)S − (U+,ν × (µ−1curlV )+)S (50c)

= −((µ−1curlU )+,ν × V
+)S + (ν × U

+, (µ−1curlV )+)S (50d)

provided U ,V ∈ H1(Ω+), and additionally, M eU ∈ H̃−1(Ω+) in (50a) and (50b),
while MeU , MeV ∈ H̃

−1(Ω+) in (50c) and (50d).

Proof: The claimed formulae follow from Lemma (3.1).

4. Representation of solutions and layer potentials
In the present section we continue to apply the results of [Du1] to Maxwell’s equations
(also see [CK1]). For simplicity we suppose that the boundary S = ∂Ω is a C∞ smooth
surface.
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Let us consider the following operators, related to the Maxwell systems (4) and (5):
Newton’s potential

Ne
Ω U (x) :=

∫

Ω

Φe(x− y)U (y) dy, x ∈ R
3, (51)

the single layer potential

VeU (x) :=

∮

S

Φe(x− τ)U (τ) dS, x ∈ R
3 \ S , (52)

and the double layer potential

WeU (x) :=

∮

S

[(γe
NΦe)(x − τ)]>U (τ) dS, x ∈ R

3 \ S , (53)

where Φe denotes one of the fundamental solutions Φ−
e or Φ+

e and

γe
NV (τ) := ν(τ) × µ−1curlV (τ), τ ∈ S , (54)

denotes the “magnetic” trace operator.

Theorem 4.1. Let Ω+ be a bounded domain with infinitely smooth boundary S = ∂Ω+

and Ω− := R3 \ Ω+. The potential operators

Ne
Ω+ : Hs

p(Ω
+) → Hs

p(Ω
+),

Ve : Hs
p(S ) → H

s+ 1
p
−1

p,loc (Ω−),

: Hs
p(S ) → H

s+ 1
p
−1

p (Ω+),

We : Hs
p(S ) → H

s+ 1
p
−2

p,loc (Ω−),

: H
s
p(S ) → H

s+ 1
p
−2

p (Ω+),

γS Ve : Hs
p(S ) → Hs−1

p (S ),

γS We : Hs
p(S ) → Hs−2

p (S ),

(55)

are continuous for all 1 < p <∞, s ∈ R. Here (γS Ψ)(x) := Ψ(x) is the Dirichlet trace
operator on the boundary S = ∂Ω+.

Proof: The operators Ne
Ω+ , γS Ve, and γS We are all pseudodifferential (abbrevi-

ated as ΨDO; cf. [DNS1, DNS2]). The symbol Ne
Ω+(ξ) = Fx→ξ [Φe(x)] of the pseu-

dodifferential operator Ne
Ω+ coincides with the inverse symbol M−1

e (ξ) of the initial op-
erator Me, which is a rational function uniformly bounded at infinity (cf. Theorem 2.2).
Therefore the ΨDO Ne

Ω+ has order 0, has the transmission property (as a ΨDO with a
rational symbol), which implies the mapping property (55) for Ne

Ω+ .
For the potential operators Ve and We the proof is based on the above proved

property of ΨDOs Ne
Ω+ and the trace theorem and follows the proof of [Du1, Theorem

3.2].
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Let us consider the following surface δ-function

(g ⊗ δS , v)R3 :=

∮

S

g(τ)γS v(τ)dS, g ∈ C∞(S ), v ∈ C∞
0 (R3). (56)

Obviously, supp(g ⊗ δS ) = supp g ⊂ S .
The definition (56) is extendible to less regular functions. More precisely, the fol-

lowing holds: Let 1 < p <∞, s < 0, g ∈ Ws
p(S ). Then

g ⊗ δS ∈ H
s− 1

p′

p (S ) ⊂ H
s− 1

p′

p,com(R3) , (57)

where p′ = p/(p− 1) (cf. [Du1, Lemma 4.9]).
The layer potential V

e can be written in the form

V
e
U (x) :=

∮

S

Φe(x− τ)U (τ) dS =

∫

Ω

Φe(x− y)(U ⊗ δS )(y) dy,

= Ne
Ω(U ⊗ δS )(x), (58)

where Ω is compact and S ⊂ Ω, and can be interpreted as a pseudodifferential operator.
Assume, for simplicity, Ω is compact. From the inclusion (57) and the mapping property
of the pseudodifferential operator Ne

Ω in (55) we derive the mapping property of V
e in

(55):
∥∥∥∥V

e
U

∣∣Hs+ 1
p
−1

p (Ω)

∥∥∥∥≤
∥∥∥∥N

e
Ω(U ⊗ δS )

∣∣H
s− 1

p′

p (Ω)

∥∥∥∥ ≤ C1

∥∥∥∥(U ⊗ δS )
∣∣H

s− 1

p′

p (Ω)

∥∥∥∥

≤C2

∥∥U
∣∣Hs

p(S )
∥∥ ,

provided s < 0.
The layer potential We is written in the form

W
e
U (x) =

∮

S

[T (Dy,ν)Φe(x− τ)]>U (τ) dS

=

∫

Ω

[T (Dy,N (y))Φe(x− y)]>(U ⊗ δS )(y) dy

= De
Ω(U ⊗ δS )(x), S ⊂ Ω (59)

and the principal symbol of the ΨDO De
Ω is

De
Ω(x, ξ) := N (x)µ−1σcurl(ξ)N

e
Ω(ξ) = N (x)µ−1σcurl(ξ)Fx→ξ [Φe(x)] , (60)

N (x) :=




0 −N3(x) N2(x)
N3(x) 0 −N1(x)
−N2(x) N1(x) 0


 ,

where (N1(x),N2(x),N3(x))
> is some smooth extension of the normal vector field

ν(x) from S onto the domain Ω. Therefore, ordDe
Ω = +1 and this pseudodifferential
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operator has the following mapping property

De
Ω : H̃

s
p(Ω) → H

s−1
p,loc(R

3). (61)

From the inclusion (57) and the mapping property (61) we derive, as above, the mapping
property of We in (55) provided s < 0.

For the case s ≥ 0 we quote a similar proof in [Du1, Theorem 3.2] and drop the
details since it needs some auxiliary assertions, proved in [Du1].

The mapping properties of ΨDOs γS Ve and γS We, which are the traces of the
potential operators Ve and We, follow immediately due to the generalized trace theorem
(see, e.g. [Se1]).

Theorem 4.2. Solutions of Maxwell’s equations (1) in a compact domain Ω+ with diag-
onal and proportional coefficients ε and µ (see (13) and Remark 1.3) are represented as
follows

E(x) = W
e(γDE)(x) − V

e(γe
NE)(x), x ∈ Ω+. (62)

Here γe
NE is the “magnetic” trace operators (cf. (54)) and (γDE)(x) := E

+(x) is the
“electric” trace operator on the boundary S = ∂Ω+.

Proof: By introducing the substitution

(MeU ,V )Ω+−(U ,MeV )Ω+ = (ν×(µ−1curlU )+,V +)S−(U+,ν×(µ−1curlV )+)S
in the Green formula, where U is the fundamental solution U = Φe and V is the electric
field V = E, we obtain the representation of the solution E of the system (5). If we
take into account that the Newton potential eliminates since we deal with a homogeneous
system (U ,M eV )Ω+ = (Φe,M eE)Ω+ = 0, then we see that the system (5) is equivalent
to original Maxwell’s equations (1) (see similar arguments in [Du1]).

Remark 4.3. The case of an unbounded domain Ω− will be treated in Theorem 5.1 after
we establish asymptotic properties of fundamental solutions.

For non-homogeneous Maxwell’s equations
{

curlH + iωεE = f ,

curlE − iωµH = g
in Ω (63)

the equivalent systems are
{

curl ε−1curlH − ω2µH = ω−1curl(ε−1f) + g ,

E = i(ωε)−1curlH − i(ωε)−1f
in Ω (64)

and {
curl µ−1curlE − ω2εE = f − ω−1curl(µ−1g) ,

H = −i(ωµ)−1curlE + i(ωµ)−1g
in Ω . (65)
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Theorem 4.4. Solutions of Maxwell’s equations (63) in a domain Ω+ with diagonal and
proportional coefficients ε and µ (see (13) and Remark 1.3) are represented as follows

H(x) = Nm
Ω+

[
ω−1curl(ε−1f) + g

]
(x) + Wm(γDH)(x) −Vm(γm

N H)(x),

E(x) = Ne
Ω+

[
f − ω−1curl(µ−1g)

]
(x) +W e(γDE)(x) − V e(γe

NE)(x), x ∈ Ω+.

Proof: The proof is analogous to the proof of the foregoing Theorem 4.2 with a
single difference: Newton’s potential does not disappear

(U ,M eV ) Ω+ = (Φm,M eE) Ω+ = Ne
Ω+

[
f − ω−1curl(µ−1g)

]

(cf. equation (65)).

5. The uniqueness of a solution
A solution E of the system (1) is called radiating in an unbounded domain Ω− if the
asymptotic condition

∂jE(x) − iκe
xj

µj |x̃|
E(x) = O(|x|−2) as |x| → ∞ , j = 1, 2, 3, (66)

κe := ω
√
κ det µ, x̃ :=

(
x1√
µ1
,
x2√
µ2
,
x3√
µ3

)
, (67)

holds uniformly in all directions x∗/|x∗|, where

x∗ = (x∗1, x
∗
2, x

∗
3) :=

(x1

µ1
,
x2

µ2
,
x3

µ3

)
. (68)

A radiating solution H of the system (1) is defined similarly.
Without loss of generality we assume that the origin of the co-ordinate system be-

long to the bounded domain Ω+ and R be a sufficiently large positive number, such that
the domain Ω+ lies inside the ellipsoid

Ψ(x) :=
|x̃|2
R2

=
x2

1

µ1R2
+

x2
2

µ2R2
+

x2
3

µ3R2
= 1 . (69)

Further, let BR denote the interior of the ellipsoid and Ω−
R := Ω− ∩ BR . Note that the

exterior unit normal vector to the ellipsoidal surface ΣR := ∂BR defined by equation
(69) at the point x ∈ ΣR reads as

ν(x) = (ν1(x), ν2(x), ν3(x)) :=
∇Ψ(x)

|∇Ψ(x)| =
1

|x∗|
(x1

µ1
,
x2

µ2
,
x3

µ3

)
, (70)

(cf. (68) for x∗), where,

νj(x) = νj(x̂) =
xj

µj |x∗|
=

x∗j
|x∗| , j = 1, 2, 3. (71)
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Theorem 5.1. Let E, H ∈ H1
loc(Ω

−) be radiating solutions to Maxwell’s equations (1)
with diagonal and proportional anisotropic coefficients ε and µ (cf. (13) and (19)) in an
exterior domain Ω−. Then

H(x) = W
m(γDH)(x) − V

m(γm
N H)(x),

E(x) = W
e(γDE)(x) − V

e(γe
NE)(x), x ∈ Ω−.

(72)

Proof: We prove this proposition for the electric field E and fundamental solution
Φ+

e ; the proof for other cases (for Φ−
e , for the field H and fundamental solutions Φ±

m) are
similar.

First note that the radiation condition (66) implies

curlE − iκe
|x∗|
|x̃| [ν(x̂) × E] = O

(
|x|−2

)
as |x| → ∞, (73)

and further
∫

∂BR

{
〈µ−1curl E, curlE〉 +

κ2
e |x∗|2
|x̃|2 〈µ−1(ν × E),ν × E〉

+2
κe|x∗|
|x̃| Im〈µ−1curlE,ν × E〉

}
dS

=

∫

∂BR

∣∣∣µ− 1
2 curlE − iµ− 1

2 κe
|x∗|
|x̃| [ν × E]

∣∣∣
2

dS → 0 as R→ ∞,

where µ− 1
2 is a square root of µ−1.

Using the fact that c1 ≤ |x∗|
|x̃| ≤ c2 with some positive constants c1 and c2 for all

x ∈ R3 and since the integrand in the first integral is positive for all x ∈ ∂BR, we obtain
∫

∂BR

{ |x̃|
|x∗| 〈µ

−1curlE, curlE〉 +
κ2

e |x∗|
|x̃| 〈µ−1(ν × E),ν × E〉

+2κe Im〈µ−1curlE,ν × E〉
}
dS → 0 as R→ ∞. (74)

Green’s formula in the domain Ω−
R gives us

(µ−1curlE, curlE)Ω−

R

− ω2(εE,E)Ω−

R

+ (µ−1curlE,ν × E)S

= (µ−1curlE,ν × E)∂BR
.

Now taking the imaginary part of the last equation and applying (74) we find that
∫

∂BR

{ |x̃|
|x∗| 〈µ

−1curlE, curlE〉 +
κ2

e |x∗|
|x̃| 〈µ−1(ν × E),ν × E〉

}
dS

= −2κe Im

∫

∂S

〈µ−1curlE,ν × E〉dS. (75)
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Since both summands in the left hand side of (75) are nonnegative, they are bounded at
infinity:

∫

∂BR

|ν × E|2ds = O(1) as R→ ∞. (76)

Write the representation formula (62) in the bounded domain Ω−
R:

E(x) =

∮

∂BR∪S

[(γe
NΦ+

e )(x− τ)]>(γDE)(τ) dS −
∮

∂BR∪S

Φ+
e (x− τ)(γe

NE)(τ) dS,

= W
e(γDE)(x) − V

e(γe
NE)(x) + IR, (77)

where

IR =−
∮

∂BR

Φ+
e (x − τ)(γe

NE)(τ) dS +

∮

∂BR

[
(γe

NΦ+
e )(x− τ)

]>
(γDE)(τ) dS

=

∮

∂BR

[
ν × Φ+

e (x − τ)
]>

(µ−1curlE)(τ) dS

−
∮

∂BR

[
(µ−1curl Φ+

e )(x− τ)
]>

(ν × E)(τ) dS

=

∮

∂BR

[
ν(τ) × Φ+

e (x− τ)
]>

[
µ−1curlE(τ) − iκe

|x∗|
|x̃| µ

−1(ν(τ) × E(τ))

]
dS

−
∮

∂BR

[[
curlΦ+

e (x− τ)
]> − iκe

|x∗|
|x̃|

[
ν(τ) × Φ+

e (x− τ)
]>

]
µ−1(ν × E)(τ) dS.

Since Φ+
e (x) = O(|x|−1) at infinity, due to (79), (73), (76) and Schwartz inequality

both integrals on the right-hand side vanish as R → ∞ and the claimed representation for
E in (72) follows from (77).

Corollary 5.2. Radiating solutions to Maxwell’s equations (1) with anisotropic coeffi-
cients ε and µ as in (13) and (19) in an exterior domain Ω− have the following asymptotic
behaviour:

H(x) = O

(
|x|−1

)
, E(x) = O

(
|x|−1

)
as |x| → ∞, (78)

Proof: The proof follows immediately from the representation formulae (72) since
the potential operators have the indicated asymptotic behaviour automatically.

Clearly, each column of the fundamental matrix Φ+
e (x) is a radiating vector due to

the asymptotic formulae (38). Moreover, we have the following asymptotic relations for
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sufficiently large |x|

Φ+
e (x) =

1

4π |x̃| e
i κe |x̃| Φe,∞(x̂) + O(|x|−2),

∂jΦ
+
e (x) =

1

4π |x̃|
iκe xj

µj |x̃|
ei κe |x̃| Φe,∞(x̂) + O(|x|−2),

∂jΦ
+
e (x) − iκe

xj

µj |x̃|
Φ+

e (x) = O(|x|−2), j = 1, 2, 3, (79)

where κe and x̃ are given by (67), x̂ = x/|x| and Φe,∞(x̂) is defined by (38).
Further, if y belongs to a compact set and |x| is sufficiently large then we have

|x̃− ỹ| = |x̃| − |x̃|−1 〈x̃, ỹ〉 + O(|x|−1) ,

|x̃− ỹ|−1 = |x̃|−1 + O(|x|−2) ,

ei κe |x̃−ỹ| = ei κe |x̃| e−i κe |x̃|−1〈x̃,ỹ〉 + O(|x|−1) ,

whence it follows that

Φ+
e (x− y) =

1

4π |x̃| e
i κe |x̃| e−i κe |x̃|−1 〈x̃,ỹ〉 Φe,∞(x̂) + O(|x|−2),

∂jΦ
+
e (x − y) =

1

4π |x̃|
iκe xj

µj |x̃|
ei κe |x̃| e−i κe |x̃|−1〈x̃,ỹ〉 Φe,∞(x̂) + O(|x|−2),

∂jΦ
+
e (x − y) − iκe

xj

µj |x̃|
Φ+

e (x− y) = O(|x|−2), j = 1, 2, 3.

These formulae can be differentiated arbitrarily many times

∂α
x ∂

β
y Φ+

e (x − y) − (−1)|β|
(
iκe

|x̃|

)|α+β|
xα+β

µ̃α+β
Φ+

e (x− y) = O(|x|−2) (80)

∀α , β ∈ N
3
0 as |x| → ∞, |y| ≤M <∞,

where besides standard notation xα and ∂α
x we use µ̃ := (µ1, µ2, µ3), µ̃α := µα1

1 µα2

2 µα3

3 .
Applying the above asymptotic relations and taking into account that radiating so-

lutions to the homogeneous equation Me(D)E(x) = 0 in the outer domain Ω− are rep-
resentable by linear combination of the single and double layer potentials (see Theorem
5.1) we easily derive

E(x) =
ei κe |x̃|

|x̃| E∞(x̂) + O(|x|−2), x̂ =
x

|x| , (81)

∂jE(x) =
iκe xj

µj |x̃|
ei κe |x̃|

|x̃| E∞(x̂) + O(|x|−2), j = 1, 2, 3, (82)

where E∞(x̂) = (E1,∞(x̂), E2,∞(x̂), E3,∞(x̂))> is the far field pattern of the radiating
vector E, cf. (38). Note that these asymptotic relations can be differentiated arbitrarily



24 Buchukuri, Duduchava, Kapanadze and Natroshvili

many times as well (cf. (80)):

∂α
E(x) −

(
iκe

|x̃|

)|α|
xα

µ̃α
E∞(x̂) = O(|x|−2) ∀α ∈ N

3
0. (83)

Now we prove the uniqueness theorems for the above formulated exterior boundary
value problems.

Theorem 5.3. Let E be a radiating solution to the homogeneous equation

Me(D) E = curlµ−1curlE − ω2 εE = 0 (84)

in Ω− satisfying the homogeneous boundary conditions for the “electric”, “magnetic” or
“mixed” problems on ∂Ω−, cf. (8a)–(8d). Then E vanishes identically in Ω−.

Proof: Let U be a solution of the homogenous exterior “electric”, “magnetic” or
“mixed” problem. By Green’s formula (50b) for the domain Ω−

R with vectors U = E and
V = E, we obtain

−
∫

ΣR

〈µ−1 curlE, [ ν×E ]〉 dΣR+

∫

Ω−

R

〈µ−1 curlE, curlE〉 dx−ω2

∫

Ω−

R

〈εE,E〉 dx = 0 ,

(85)
where ν is the exterior unit normal vector to ΣR . Note that the surface integral over
S expires due to the homogenous boundary conditions. Since the matrices µ and ε are
positive definite the second and third summands in the left hand side expression of (85)
are real and we conclude

Im

∫

ΣR

〈µ−1 curlE, [ ν × E ]〉 dΣR = 0 . (86)

In view of (68) the radiation condition (82) can be rewritten as

∂jE(x) =
iκe

|x̃|
ei κe |x̃|

|x̃| x∗j E∞(x̂) + O(|x|−2), j = 1, 2, 3. (87)

Therefore for sufficiently large R and for x ∈ ΣR by (71) we have

curlE(x) = ∇× E(x) =
iκe

|x̃|2 e
i κe |x̃| [x∗ × E∞(x̂) ] + O(|x|−2)

=
iκe |x∗|
|x̃|2 ei κe |x̃| [ ν(x̂) × E∞(x̂) ] + O(|x|−2), j = 1, 2, 3. (88)

Take into account the asymptotic formulae (81) and (88) and transform equation (86)

Im

∫

ΣR

iκe |x∗|
|x̃|3 〈µ−1 [ ν(x̂)×E∞(x̂) ], [ ν(x̂) × E∞(x̂) ]〉 dΣR + O(R−1) = 0 . (89)

It can be easily verified that the integrand in (89) does not depend on R. Furthermore,
since µ−1 is positive definite, |x̃| = R for x ∈ ΣR and dΣR = R2dΣ1, by passing to the
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limit in (89) as R → ∞ we finally arrive at the relation
∫

Σ1

|x∗| 〈µ−1 [ ν(x̂) × E∞(x̂) ], [ ν(x̂) × E∞(x̂) ]〉 dΣ1 = 0 , (90)

where Σ1 = ∂B1 is the ellipsoidal surface defined by (69) with R = 1 and the integrand
is non-negative. Note that |x∗| ≥ min{µ−1/2

1 , µ
−1/2
2 , µ

−1/2
3 } > 0 for x ∈ Σ1 in view of

(68). Therefore from (90) it follows that

〈µ−1 [ ν(x̂) × E∞(x̂) ], [ ν(x̂) × E∞(x̂) ]〉 = 0

which implies
ν(x̂) × E∞(x̂) = 0,

i.e.,
x∗ × E∞(x̂) = 0,

where x∗ is given by (68). Now from (88) we get

curlE(x) = O(|x|−2), (91)

which leads to the asymptotic relation

∂α
E(x) = O(|x|−2) for arbitrary multi-index α = (α1, α2, α3), (92)

due to equation (84) and since we can differentiate (91) any times with respect to the
variables xj , j = 1, 2, 3.

To show that E vanishes identically in Ω− we proceed as follows. From (41) and
(84) it is clear that

det Me(D) := κω2
[
µ1∂

2
1 + µ2∂

2
2 + µ3∂

2
3 + κ

2
e

]2

and
det Me(D)E(x) = 0 in Ω−.

Therefore

Λ2(D) E(x) = 0, Λ(D) := µ1∂
2
1 + µ2∂

2
2 + µ3∂

2
3 + κ

2
e .

Let us introduce new variables zk,

xk =
√
µk zk, k = 1, 2, 3,

and set
E(x) = E(

√
µ1 z1,

√
µ2 z2,

√
µ3 z3) =: V (z).

It can be easily shown that the components of the vector function V solves the homoge-
neous equation

[ ∆ + κ
2
e ]2 V (z) = 0 for |z| > R1,

where R1 is some positive number and ∆ is the Laplace operator. Moreover, in view of
(92) we have

∂α
V (z) = O(|z|−2) (93)
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for arbitrary multi-index α. Thus, W (z) := [ ∆ + κ2
e ] V (z) solves the Helmholtz equa-

tion and for sufficiently large |z|
W (z) = [ ∆ + κ

2
e ] V (z) = O(|z|−2),

i.e., there holds the equality

lim
A→∞

∫

|z|=A

|W (z)|2 dS = 0.

Therefore, due to the well known Rellich-Vekua theorem W (z) vanishes identically for
|z| > R1, cf. [Ve1], [CK1],

W (z) = [ ∆ + κ
2
e ] V (z) = 0 for |z| > R1.

Again with the help of the asymptotic behavior (93) and the Rellich-Vekua theorem we
conclude that V (z) vanishes for |z| > R1. In turn this yields that E(x) vanishes for
|x| > R2 with some positive numberR2. Since E(x) is real analytic vector function with
respect to the real variable x ∈ Ω−, we finally conclude that E = 0 in Ω−.
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