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1. Introduction

In the present work we investigate a class of convolution equations on the half-
line with mixed real and complex shifts in Sobolev space settings. More precisely,
for n € N := {1,2,...}, we will consider the initial value problem (IVP) for an
integro-differential equation

(J)
+Zm/ W) dy = f(z), x€)0,+oo],

y-—zr+a (1.1)
$(0) =do, ..., b (0) = dp_1,
where the function f and the constants dg,...,dn—1, cos--.,Cn, QQy-..,Qp, are

given data with ¢, # 0. The elements 1)) denote the derivatives of order j of the
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unknown v, which is sought in Bessel potential or Sobolev—Slobodeckij spaces. We
will reduce the IVP (1.1) to an equivalent Wiener—Hopf equation.

Singular integral operators with multiple complex shifts on the real line R =
(=00, +00) are translation invariant and can be written in the form

Wftpzf_la-}"tp, tpE]LP(]R), (1.2)

where a(§) = Fk(§), £ € R, is the Fourier transform of the integration kernel
k(z—1v). The following three conditions for the operator W2 : L?(R) — L?(R) are
equivalent: i) WY is Fredholm (i.e., has the Fredholm property); ii) W2 is invertible;
iii) the Fourier symbol a is elliptic, i.e., infecr |a(€)] > 0. The same holds for the
operator W2 : LP(R) — LP(R) in other Lebesgue spaces with 1 < p < +oo0,
provided the Fourier symbol a belongs to a proper class of multipliers (cf. [9, 10,
12-15]). In the recent paper [23], based on holomorphic functions properties, the
uniqueness of solution to a singular integral equation with multiple complex shifts
on the real line in a Lebesgue space was proved again. It is clear that non-real
shifts yield analytic symbol functions in the upper or lower complex half-planes
with corresponding well-known consequences.

Singular integro-differential equations with continuous coefficients on closed
contours and open arcs were investigated by many authors: I. Vekua, L. Mag-
naradze, G. Manjavidze, J. Krikunow etc. The famous airfoil Prandtl equation in
aerodynamics [16] belongs to the same class. We refer to [15, §117] for a survey on
this topic and cite here only a paper of N. Vekua in [21] (also cf. [15, §117]): using
a representation by potentials I. Vekua reduced the problem to the investigation
of the principal part of the equation. It was proved that elliptic equations have
the Fredholm property and an index formula was found. A case of equation (1.1)
with complex shifts, leading to equations with discontinuous symbols without os-
cillations, was treated in [17].

Let us start with some definitions. We denote by S(R) the Schwartz space of
rapidly decreasing C*° functions on R and by &’ (R) the space of tempered distribu-
tions. The Fourier transform of ¢ € S(R) is defined by Fv)(¢) = [, ¥(x)e™"dx, & €
R. It is a continuous operator in S(R) and is also defined for distributions, F :
S'(R) — S'(R), by duality. For 1 < p < 400, L?(R) denotes the well-known Ba-
nach space of complex-valued Lebesgue measurable functions ¢ on R, for which
|| is integrable. The space H*P?(R) of Bessel potentials, with s € R and p €
J1, +00], is defined as the space of distributions ¢ € S§’(R) such that |[¢) [H*?(R)|| =
|F=1(-)" - Fy [LP(R)|| < +oo, for (€) = (1+€2)"/% ¢ e R.

WeP(R) will denote the Sobolev-Slobodeckij spaces (s € R,1 < p < +00).
For definitions and basic properties of the spaces W*P?(R) we refer to [20].

Moreover, we denote by HY? the closed subspace of H*?(R) consisting of
those distributions which are supported in Ri. H*P(R,) denotes the space of
distributions on R, which have extensions into R that belong to H*P(R). The
space H*P(R, ) is endowed with the norm of the quotient space H*?(R)/H™>".
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Further let H*?(R,) be the subspace of H*?(R,) functionals that are ex-
tendable by zero to the full axis within H*P(R).

Analogous spaces are defined for the Sobolev—Slobodeckij case W*? [20]. For
1/p—1< s < 1/p, the spaces H*?(R,) and H*P(R,) coincide and H" can be
identified with the previous (by restriction to Ry or zero extension, respectively).
The same holds true for WP (R, ) and W*P(R, ) (cf. [20]) and W?7”, respectively.
For s = 0 these spaces coincide with the Lebesgue spaces and we use LP(R,)
instead of H*P(Ry ) and L for HY”.

Remark 1.1. The above notation is used in [8] and [11]. It is also common to denote
the present space H7” by H*? (R, ), see [20] and some work of the authors [2]. The
identification of both spaces is immediate (by restriction and zero extension) for
positive s but not valid in general:
~ 1
’I"+Hip = Hs’p(R+) iff s> - — 1. (13)
p
For s < 1/p — 1, the space H}” contains distributions F supported only at the
origin supp F' = {0} (e.g., the 6-functional and its derivatives), but the operator
r4 (in the distributional sense) annihilates such terms. The J-functional does not
belong to H*?(R,) nor to W#*P(R, ) for any s and p.

In the next Proposition 1.2 we expose interpolation properties of the spaces
defined in the present section. For the proof and further details we refer to [20,
§2.4.1, §2.4.2, §2.10.1, §2.10.4].

Proposition 1.2. Let

so,s1€R, 0<O<1, 1<pg,p1,r <00,
Lo 1_9—|—i, s=(1—-0)sg+ s .
p Po b1
For the real (-, - )g,p and the complex (-, -)g interpolation functors the following
holds:
i. (H®oPo(R), HS P (R))y = HSP(R);
ii. (He"(R),H"(R))g,, = W (R) provided so # s1;
ili. (Wso-Po(R), WsL-P1(R))g = WP (R).
The same interpolation results hold if the spaces H*Pi(R) are replaced by
the spaces H77 ™", H* P (Ry), H%Pi(Ry) and the space WiPi(R) by WP
Weips (Ry), WeiPi(Ry), respectively.

Corollary 1.3. Let for an operator
A H*P(R) — H*"P(R) (1.4)
hold one of the following properties: (i) A is an invertible operator, (ii) A is a

semi-invertible operator (i.e., A is invertible from the left or A is invertible from
the right), (iii) A is a Fredholm operator, (iv) A is a semi-Fredholm operator (i.e.,



330 L. P. de Castro, R. Duduchava, and F.-O. Speck Comp.an.op.th.

A has a left or has a right reqularizer), for some p € (1,400) and all s € (so, $1),
with —oo < 89 < §1 < +00.
Then, for the same p € (1,400) and all s € (so, s1), the operator

A WoP(R) — WP (R) (1.5)

is bounded or is (i) invertible, (i) semi-invertible, (iii) Fredholm, (iv) semi-Fred-
holm, respectively. Moreover, if A (in (1.4) and (1.5)) is a Fredholm operator then
it has the same kernel and cokernel in all these spaces.

The same invertibility, semi-invertibility, Fredholm and semi-Fredholm prop-
erties hold for arbitrary continuous operator mapping any couple of Bessel poten-
tial HP, HSP(Ry ), HSP(R4.) and Sobolev-Slobodeckij WP, WP (R.), WP (R, )
spaces.

Proof. The boundedness property follows due to the interpolation in Proposi-
tion 1.2.ii.

Concerning the invertibility: If A=! is the inverse to A, it is the same for all s
and, due to Proposition 1.2.ii, the operator A=! : W*="P(R) — W*P(R) is then
bounded for all s € (sg, s1) and, obviously, is the inverse to A in (1.5).

Similarly: if A : H*?(R) — H* "P(R) is Fredholm, then it has a regularizer R
fulfilling RA = I + K; and AR = I + K, where R : H* "P(R) — H*P(R) is
bounded, and K; : H*?(R) — H*?(R) and K, : H* "P(R) — H* "P(R) are
finite rank operators (i.e., have finite dimensional images). Using the stability
results, we can choose a regularizer R so that the finite rank operators K; and
K5 will be bounded for all s € (sg, s1). Then, obviously, R is a regularizer for all
s € (s0,$1) and, due to Proposition 1.2.ii, R : W*~"P(R) — W*?(R) is bounded
for all s € (sg,s1) and is a regularizer to A in (1.5).

Moreover, it is known that if A in (1.5) is Fredholm and has the same regu-
larizer for p € (po, p1) and all s € (so, s1), then its kernel and cokernel is the same
in these spaces (cf., e.g., [6]).

The remaining cases (when A is semi-invertible or semi-Fredholm, and when
the spaces are different H*, He P (R) etc.) are treated similarly. (]

Due to the foregoing Proposition 1.2 and Corollary 1.3, the results of the
present article hold for both scales of spaces (H and W) simultaneously. Therefore,
X*P(R), X3P, X*P(R, ) and X#?(Ry ) will stand for the corresponding spaces either
in the H or in the W scales. Anyway, some techniques are valid only for the H
scales. In these cases, the W spaces are treated separately.

2. Wiener—Hopf operators associated with the initial value problem

The initial value problem (1.1) will be considered in the following setting

1 1
feXs mP(Ry), ¢YeXPP(Ry), 1<p<+oo, n+§—1<s<n+§.(2.1)
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The conditions on s and p ensure the existence of the values ¥(0),...,9"1(0),
because, due to Sobolev’s lemma (cf. [20]), the embedding X*?(R;) C C"1(R;)
is continuous.

By introducing a new unknown function

(=
p(t) =) —e "> d , (2.2)

we find easily that the initial conditions for ¢ € X*P(R) in (1.1) are transformed
into

peXP(Ry), (0)=-=¢"D(0)=0. (2:3)
Since (2.3) can also be written in a compact form ¢ € X7”, we have proved the
following.

Theorem 2.1. The IVP (1.1) is equivalent to the following equation:

n

pl@) + Y

=0

e

. ftoeo (4)
eV (y)
—_ = R 2.4
/0 y_x_'_ajdy g(ZE), T E R4, ( )

gEXTMP(RY), peXP(Ry),
1 1
l<p<4+o0, n+-——-1<s<n+—,
p p

where the solution ¢ is related to the solution ¥ of (1.1) by formulae (2.2).

Equation (2.4) may be viewed as a convolution integral equation with shifts
on the half-line (if interpreting now the above ¢ in the role of its extension by zero
to the full real line):

r+g0+r+chTajK*<p(j) =1y (%) +T+ZCjTa,~K*<P(j) =9,
Jj=0 j=0

gEXTIR,), pEXI (25)
where r1 denotes the restriction from R to Ry, and § is the Dirac delta function.
In addition, (Tw,;¢)(§) = ¢(§ — ay) is the a;-shift operator, K (§) = 1/mif is the
singular kernel, and (k * ¢)(z) = fj;o k(x —y)p(y)dy, = € R, denotes, as usual,
the convolution.

The Hilbert transformation

Sepla) = (K o)) = - [ ) g, (2.6)

T y—
is understood in the Cauchy principal value sense (cf., e.g., [15], [14, Chapter II,
Section 1]). In the operators sense Sg and Ty, are convolutions

Sgp = F'(—signé)-F (2.7)
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(cf. [5]) and
T, = Ftexp(ia;€)x;(€) - F, (2.8)
1 if (e7] S R,
X (&) =149 x+() if Sma; >0, (2.9)

x—(§) if Sma; <0,

where x4+ (§) denote the characteristic (indicator) functions of the positive or neg-
ative half-line, respectively.

Since Fpl) = (—i¢)! Fop, (2.4) can be interpreted as a convolution equation
Wap = g where

W,=ryF ta-F, (2.10)

1= c;(sign &) (—i€)” explia;€)x; (&)
7=0

Therefore, we are interested to study the convolution type operator W, and the
solvability properties of the corresponding equation

Wep =g, (2.11)
W, : Xi’p — X7 (Ry)

given by (2.10).

Corollary 2.2. The IVP (1.1) and equation (2.4) are equivalent to the equation
(2.11) with the operator W, in (2.11), provided the symbol a in (2.11) is defined
by (2.10) and the solution ¢ is related to the solution v of (1.1) by formulae (2.2).

From the above-mentioned reduction and from the structure of the spaces in
the domain of (2.11) it is clear that the IVP (1.1) is equivalent to the equation
W = g provided the solutions are related by formula (2.2).

Theorem 2.3 (Lifting of Wiener—Hopf operators in spaces of Bessel potentials).
The operator Wy, in (2.10) and (2.11) is well-defined and continuous. In the H scale
it is toplinear (i.e., algebraically and topologically) equivalent to a Wiener—Hopf
operator acting on Lebesgue spaces

W,

As,n

= r  ASTETIWLATS  LE - LP(Ry),

i\ (2.12)
wunl® =COF L o= (5)
where
A= *1(£+z‘)*8-f'ﬂf — ",

(2.13)
re AT = Wi a6 D HESTMP(RY) — LP(Ry)
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are isomorphisms between the corresponding spaces. Here (05~ Hs~™P(Ry) —
H*=™P(R) is a bounded extension operator and can be replaced by any other exten-
sion into the space H*P(R), i.e., the particular choice does not change the definition
of the last mentioned operator in (2.13).

Proof. First of all, we realize that due to the particular form of (2.9), and also due
to the remaining factors of a, the function as , belongs to the algebra M?(R) of
Fourier multipliers in LP. In particular, this ensures that W, : L% — LP(R4)
is a well-defined bounded operator.

Secondly, with the help of the isomorphisms (2.13) (cf. [8, Lemma 4.4 and
Theorem 4.6] or [20, §2.3.4 and §2.10.3] and [5]), the operator W, in (2.11) is lifted
to the toplinear equivalent operator between the Lebesgue spaces (2.12). Due to the
analytic continuation properties of the symbols A*™"(§) := (£—4)°~" and A *(¢) :=
(€ +1i)7% we get the identity r A5 "0EIW AT = ry FINT"a - APSFW,,

which completes the proof. O

s,n

Remark 2.4. For W spaces, lifting works in a different way: the spaces W5 can
be lifted to LP-spaces for integer orders s = 1,2,... only (i.e., for the case of
pure Sobolev spaces). But we can apply Corollary 1.3 to extend invertibility, semi-
invertibility, Fredholm and semi-Fredholm properties to these spaces, provided
they are valid for the Bessel potential spaces.

2.1. Case o, =0

The Fourier symbol a, ,, of the operator W,
at £ =0 and at & = oo:

in (2.12) might have discontinuities

,n

(=1)°

asn(040) = o [1— cosign(£1)x0(0 £ 0)]
= €™ [T £ cox0(0 £ 0)] (2.14)
1 if ag€eR,
xo(0£0)=<¢ L if Smag >0,
12i1 if Smap <0,
s (—00) = e ™2, | agp(+o0) — ™2, (2.15)

To describe Fredholm properties and to obtain the index of the operator W,
we introduce a full symbol, filling the gaps between the possible discontinuities in
the image of the piecewise continuous symbol as,, (cf. [5]):

asn(§) i EER, £#0,

emils+n/2)

5 [al + as cothw(% + n)}
asn,p(€,n) = if ¢=0, nek, (2.16)
% |:|:1 _ e?ﬂis] 4 [1 4 627”'5} COthﬂ'(% +77):|

if ¢=o0, neRw,
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2 if ag€R,

a1 = 2—co if Smag>0, co if Smag£0
)

2 if ag€eR,
agz{
24cy if Smag<0,

where R := R U {+00} and R := R U {0} (cf. below) are the two point and the
one point compactification of the real axis with the standard topologies.

It is easy to ascertain that the full image of the symbol as ), in the complex
plane is a closed curve. If the full symbol is elliptic

inf |asn,p(&, 0, 2.17
5)ggleRla,,p(& > (2.17)

then the winding number ind as n p, of the oriented image {asnp(&,7) : € € R, ne
R} (the image curve of as ., p(§,n) when the variables ¢ and 7 range through R
and R, respectively) is called the index of Qs,m,p-

Theorem 2.5. Let o, = 0. The operator W, in (2.10)—(2.11) is Fredholm (in X
spaces) if and only if the symbol as n p in (2.16) is elliptic in the sense of (2.17).
If the operator is Fredholm, then the Fredholm indez is given by the formula

Ind W, = dim Ker W, — codimIm W, = —ind a; 5 ;. (2.18)

Moreover:

(a) If Ind W, =0, then the operator W, has trivial kernel and cokernel.

(b) If m = —Ind W, > 0, then the operator W, has trivial kernel and an m-
dimensional cokernel.

(¢) If m = IndW, > 0, then the operator W, has trivial cokernel and an m-
dimensional kernel.

Proof. By virtue of Corollary 1.3 it suffices to prove the theorem for the H scale
only.

Due to the equivalence relation explicitly given in (2.12) between operators
Wy and W, ,, we conclude that they have the same Fredholm characteristics.
Thus, we can proceed by studying the operator W,  in (2.12).

The Fourier symbol as,,, of W,, , (cf. (2.12) and (2.10))

E—1i
E+i

asn(§) = (

s 1 n—1 N i . |
) (&—i)m <1 B jgo cj (=)' €167 exp(ia; §)x;(€)

- cn(—i)”|€|€"1> (2.19)

is a piecewise continuous function having at most two discontinuities (at zero
and at infinity). Therefore, the well-known criterion for Wiener—Hopf operators
with piecewise continuous Fourier symbols to have the Fredholm property (cf. [5,
Theorem 4.2]) can be applied to W, , : L% — LP(R;). Namely, W, is a

Qs n
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Fredholm operator if and only if infe ,|asnp(€, 1) > 0, where
asn(§) f ¢eR\{0}

2 [as,n(0 = 0) + asn (0 + 0)]
[as,n(O —0)—asn(0+ O)} coth 77(% + 7]) if &€= O,nEfR

—-

+

aS,’I’hp(g? n) =

1

2
2 [as,n(—00) + as,n(+00)] )
43 [as,n(—00) — a5 (+00)] coth w(}—é + 77) if £€=o00,n€eR.
(2.20)

By inserting here the values (2.14) and (2.15), the full symbol (2.20) acquires the
form (2.16).

The proof is completed by a reference to [5, Theorem 4.2]. O
2.1.1. Case o, = ¢y = -+ = ¢p—1 = 0 and ¢, # 0. Let us use the following
standard notation: a real number s € R decomposes into the sum

s=1[s]+{s}, [s]=0,£1,£2,..., 0<{s}<1,

where [s] denotes the integer part and {s} the fractional part of s.
Corollary 2.6. Let o, = 0, and cg = -+ = ¢,—1 = 0 with ¢, # 0. The operator

W, : X3P — X57™P(R), defined in (2.10), is Fredholm if and only if
(% omg B0 i 1) e
Moreover, when the operator is Fredholm the indez is given by
N-ls] i {sh-3 <3

mdW,=q N—[s]-1 if {s}-1>1 . (2.22)

N—[s]+1 i {s}—5<—3

Proof. Once again, due to the equivalence relation of Theorem 2.3, we only need
to consider the operator Wy, ... By noting that the Fourier symbol of W, has a
special form

(as,n)o(§) = ¢ (E) AZ"(€) (1 — en(—0)"[8]€" ") (2.23)
(cf. (2.12) for ¢*(§)) we only have to consider the simplified full symbol as,
in (2.23) instead of that one in (2.12) and apply Theorem 2.5. O

Since a (well-defined) scalar Wiener—Hopf operator in Lebesgue spaces with
a non-identically zero Fourier symbol have a trivial kernel or a trivial cokernel (see
the Coburn—Simonenko Theorem [5]), from (2.22) we directly obtain the following.

Corollary 2.7. Let o, = cop =+ =c¢p—1 =0 and ¢, ¢ R if n is even or alterna-

tively ¢, (—)" ¢10,+oo] if n is odd.
(i) If ([s]=N and |s— N —1/p| <1/2) or ([s]=N—1 and {s} —1/p>1/2)
or ([s]=N+1and {s} —1/p < —1/2), then W, is an invertible operator.
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(i) If ([s] > N and |{s} —1/p| < 1/2) or ([s] > N —1 and {s} — 1/p >
1/2) or ([s] > N+1 and {s} — 1/p < —1/2), then operator W, is only left-
invertible.

(iil) If ([s] < N and |{s} —1/p| <1/2) or ([s] < N—1 and {s} —1/p>1/2) or
([s] < N+1 and {s}—1/p < —1/2), then operator W, is only right-invertible.

2.2. Case Sma, # 0
Theorem 2.8. If Sm oy, # 0, then the operator W, : X3P — X57™P(R), defined
in (2.10)-(2.11), is not a Fredholm operator.

Proof. In the present case, the Fourier symbol of W,

s,n?

a5 (€) = CEONT(©) [ 1= ¢j(—ig) (sign€)x; (€) explioye) |, (2.24)

Jj=0

turns out to be zero at infinity. This occurs essentially because of the combination
of the value of

 x+( if Sma, >0,
Xn(€) = { x—(&) if Smay, <0,

with the element exp(ia,&) = exp(i(Re a, )€) exp(—(Sm oy )E), where Sm ey, # 0.
As a consequence, we obtain in this case

inf |asnp(&n)| =0. (2.26)
&n

(2.25)

Therefore, since the Fredholm criterion used in the proof of Theorem 2.5
also applies to the present case (i.e., W,, , is a Fredholm operator if and only if
infe , |asnp(§,m)| > 0), the result is proved. O

2.3. Case Rea,, # 0 and Sma, =0

In the present case we shall see that the corresponding Fourier symbol of W,
oscillates at infinity (is almost periodic). Thus, we will start by defining some
known characteristics of such functions.

First of all, by APP we will denote the smallest closed subalgebra of MP(R)
that contains all the functions exp(icf) (with variable £ € R and real fixed con-
stants c):

AP?P = algMp(R){ exp(ic€) : c € R}. (2.27)
Every ¢ € APP has a finite mean value
. L[
M(9) = lm > [ 6(€)d. (2.28)

—w

We will use the notation GZ for the collection of all invertible elements of an
algebra Z. If ¢ € GAPP, Bohr proved that ¢ admits a multiplicative decomposition
in the form

o(€) = exp (in(qﬁ){) exp (w(ﬁ)) forall £ €R, (2.29)
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where » € APP, and k(¢) is a real number uniquely determined by ¢ and usually
called the mean motion of ¢. It is also known that (for ¢ € GAPP)

w(6) = lim (edW) — (argd)(zw)

w—+00 2w
Finally, for ¢ € GAPP, we will also need the so-called geometric mean
value of ¢:

(2.30)

d(¢) := exp (M(d))) , (2.31)
where ¢ € APP is the element that appears in the factorization (2.29).
We will subdivide the present case into two significant situations: When
co = 0, and when ¢ # 0.

2.3.1. Subcase ¢y = 0.

Theorem 2.9. Let a,, # 0, Sma,, = 0 and ¢o = 0. The operator W, : X7 —
Xs=mP(R,), defined in (2.10), is normally solvable if and only if the symbol is
elliptic:

nf |asn(€)] > 0. (2.32)

Under condition (2.32), we have only two possibilities:

(i) If Rea, > 0, then W, is a left invertible operator and dim cokerW, = co.
(i) If Re o, < 0, then W, is a right invertible operator and dimkerW, = oo.

Proof. Similarly as before, it is enough to consider here the H spaces case (then,
by the use of Corollary 1.3, the same conclusions hold for the W spaces case).
Under the present conditions the Fourier symbol a; , takes the form

Gan(€) = CHEAT(E) (1 =3 by (i) £]€ g explian€)
=1 (2.33)

—cn(—0)" €€ exp (i(%e an)§)> .

Thus, as,, is a semi-almost periodic function, i.e., it belongs to the smallest closed
subalgebra of MP(R) that contains the almost periodic functions and the contin-
uous ones on the real line with a possible jump at infinity:

s € SAPP = alg g {AP?, C(R)} . (2.34)

In the remaining part of the proof we will work with as ,, /(—c,(—7)") instead
of as p, for simplicity. Since the corresponding Wiener-Hopf operators are toplinear
equivalent, they posses the same Fredholm characteristics.

By a well-known criterion of Sarason [18], it is possible to present a different
representation of SAPP elements that is useful in our particular case. Namely,

s/ (= en(=0)") = (1 = )¢ + udy + ¢o , (2.35)

where u € C(R) with u(—o0) = 0 and u(+00) = 1, and ¢y € C(R) with ¢(c0) =0
and with ¢, exp(i(Re ap,)§) € APP.
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Thus, noticing that x(¢;) = x(¢,) = Re a,, and d(¢;) = d(¢r), theorems of
Duduchava—Saginashvili about Wiener—Hopf operators with semi-almost periodic
Fourier symbols in IL? spaces apply (cf. [7, Theorems 2.1 and 2.2]) and lead to the
above statement. O

2.3.2. Subcase ¢y # 0. For ¢y # 0 the Fourier symbol a; ,,(§) of the operator W,
in (2.12) has a jump discontinuity at £ = 0:

Gs.n (0 + O) = eﬂi(8+n/2) []‘ + COXO(O + 0)} ) (236)

s,m

where
1 if ap€eR,

xo(0£0)=<¢ &1 if Smag >0,

% if Smag<0.
Therefore the symbol a,, belongs to the algebra of piecewise almost periodic
functions, generated by the almost periodic functions and the piecewise continuous
functions. In fact, as , has the jump discontinuity at zero (see above) and almost

periodic oscillation at infinity (see the foregoing subsection).

Theorem 2.10. Let o, # 0, Smay, = 0 and c¢o # 0. The operator W, : X3¥ —
Xs=mP(Ry), defined in (2.10), is normally solvable if and only if the numbers c;

and o are such that

inf |asn >0 2.37
o (©) (237)

and
(a) ¢ coth n(i/p+mn) # —1 for all n € R, in the case of ay € R;
(b) co coth n(i/p+1n) # co—2 for all n € R, in the case of Smag > 0;

) co coth 7(i/p+1n) # —co — 2 for all n € R, in the case of Smag < 0.
Moreover, when W, is normally solvable, the following alternative holds:
(i) If Re o, > 0, then W, is a left invertible operator and dim cokerW, = oo;
(i1) If Re o, < 0, then W, is a right invertible operator and dimkerW, = co.

Proof. Observing the above identification of the Fourier symbol of the operator
(within the piecewise almost periodic class), the result follows by combining the
techniques of the last subsection with the Fredholm theory for Wiener—Hopf oper-
ators with discontinuous symbols (and acting between LP spaces; cf. [5]). In this
way, the condition prompted by the discontinuity of the Fourier symbol at zero

1
asﬂ’hp(ov 77) =35 [as,n (0 — O) + as,n(O + 0)}

2
1 j ..
+ 3 [@5,n(0 = 0) — asn (0 + 0)] coth W(]% + 17) #0, forall neR
turns out to be equivalent to (a), (b) or (¢) when ap € R, Sm g > 0 or Sm o < 0,

respectively.
As about propositions (i) and (ii), they follow exactly by the same reasoning
as in the previous subsection. O
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As a concretization of the previous result to the particular Hilbert spaces
case (p = 2) and invertible Fourier symbols a (within the present case), we remark
that the operator W, : Xi’Q — X*~™2(R, ) is normally solvable if and only if:

(@) 14 co—2cop # 0 for all p € [0,1], in the case of ap € R;
(") 1 —cop #0 for all € 0,1], in the case of Im gy > 0;
(¢") 14+ co—cop#0 for all € [0,1], in the case of Imagy < 0.

3. Explicit solution of the initial value problem for «,, = 0 and
cQ=-=Cp1=0

In the present section we suppose that the conditions (2.21) hold and hence that
W, is a Fredholm operator.
We will apply a generalized factorization of the symbol as, (see (2.23)) to
describe invertibility properties and the index of the operators W,
Let us start by observing that

s,n "

asn = Y2a, (3.1)

where

1 — cn(—)"[€l€" "

asn(€) = CFIm02() (32)
GRRRNGESV
is a non-vanishing continuous function and as ,(+00) = —¢, (—i)".
We will make use of the Cauchy projections:
1
Py = (I £58), (3.3)

where I is denoting the identity operator in LP(R).

Definition 3.1 ([5,14]). A function ® € GL*°(R) admits a generalized factorization
relative to LP(R), 1 < p < 400, if ® has a representation

D) =D_(§)CF () PL(E), foralmostall &R, (3.4)

where 5 € Z, A\['®; € PILIR), A\['®' € PILP(R), A\_'®_ € Py LP(R),
Mo~ € Py LY(R), for ¢ = p/(p—1), and ®_Sg®_'TI is an operator defined on a
dense subset of LP(R) possessing a bounded extension to LP(R).

Due to (3.1)—(3.2), and bearing in mind the last definition, we derive the
following.

Theorem 3.2. The function as, in (3.1) admits a generalized factorization with
respect to LP(R)

Qs n = Asn _ C% as7n+ (35)
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where
sl-N, i [{sh - <3
x=9q [s]-N+1, if {s}—%>% (3.6)

[s]-N—1, if {s}—3<-3

N\ Fsi-1/2)
v, (52) if sy -1 <4
N F({s}-3/2)
Gong ={ W (52) if {s}—1>1 (3.7)
N F({sr+1/2)
\Ili(;\—iz) if {s}—%<—%

and Uy = exp P In (CN*[S] Usn), with ag,, defined in (3.2).

Theorem 3.3. (a) For a given g € X°"™P(Ry), and under the conditions of
proposition (i) in Corollary 2.7, the IVP (2.4) admits a unique solution
p € X3P(Ry) in the form

=1y F N () PENT (ag, )t FOETg (3.8)

where as ., are given by (3.7), with » = 0.

(b) Under the conditions of proposition (ii) (or, respectively, (iii)) in Corollary 2.7
and corresponding situation in Theorem 3.2, the operator W, is left-invertible
(respectively, right-invertible) by

W, = F N (@) PO PEN T (g, ) FUET (3.9)

Proof. In all considered situations in (a) and (b), the result is a consequence
of the construction of the inverse or lateral inverse of W,, from the generalized
factorization of as , (presented in Theorem 3.2), and from the explicit equivalence
relation between W, and W, , (cf. Theorem 2.3) in the case of H spaces and from
Corollary 1.3 in the case of W spaces.

In detail, for the H spaces case (with A" and A7® in (2.13)), and s = 0,
or » > 0, or » < 0, a direct computation shows that

W, =AW, bory AP
= AP lory FHagn, ) Flor  F1C % Flory F M ag, )~ FATT S
= F N (s ) Flory F 1% Flor e FINT (g, )~ FOET)

is the inverse, left-inverse, or right-inverse of W, respectively and ¢y : LP(Ry) —
L® denoting the extension by zero. O

We end up by reminding that for piecewise almost periodic Fourier symbols
the Factorization Theory [1] is not well developed in contrast to the continuous
and even piecewise continuous cases. Therefore, we can not proceed further and
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obtain explicit lateral inverses to W, for the Fredholm operators considered in the
Subsection 2.3.

4. Concluding remarks

There are various possible generalizations which can be treated straightforwardly
by a similar approach. For instance, multiple shifts within the same derivative are
admissible, however leading to more complicated formulas.

In Case 3.2 one can find a criterion for the semi-Fredholm property, which
then is equivalent to one-sided regularizability and generalized invertibility. More-
over, the operator can be factorized, in that case, into a shift and a Fredholm
operator.

The reduction of the IVP (1.1) by substitution to an equivalent problem with
homogeneous initial data can be interpreted in terms of a so-called (toplinear)
equivalence after extension relation (see [3]) between the corresponding operators.
This relation is characteristic for the operators having isomorphic kernels and
co-kernels and, therefore, shows the (logical) equivalence of invertibility, of the
Fredholm property, etc.
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