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1. Introduction

In the present work we investigate a class of convolution equations on the half-
line with mixed real and complex shifts in Sobolev space settings. More precisely,
for n ∈ N := {1, 2, . . .}, we will consider the initial value problem (IVP) for an
integro-differential equation

ψ(x) +
n∑

j=0

cj
πi

∫ +∞

0

ψ(j)(y)
y − x+ αj

dy = f(x) , x ∈]0,+∞[ ,

ψ(0) = d0 , . . . , ψ
(n−1)(0) = dn−1 ,

(1.1)

where the function f and the constants d0, . . . , dn−1, c0, . . . , cn, α0, . . . , αn, are
given data with cn �= 0. The elements ψ(j) denote the derivatives of order j of the
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unknown ψ, which is sought in Bessel potential or Sobolev–Slobodeckij spaces. We
will reduce the IVP (1.1) to an equivalent Wiener–Hopf equation.

Singular integral operators with multiple complex shifts on the real line R =
(−∞,+∞) are translation invariant and can be written in the form

W 0
aϕ = F−1a · Fϕ , ϕ ∈ L

2(R) , (1.2)

where a(ξ) = Fk(ξ), ξ ∈ R, is the Fourier transform of the integration kernel
k(x−y). The following three conditions for the operatorW 0

a : L
2(R) → L

2(R) are
equivalent: i)W 0

a is Fredholm (i.e., has the Fredholm property); ii)W 0
a is invertible;

iii) the Fourier symbol a is elliptic, i.e., infξ∈R |a(ξ)| > 0. The same holds for the
operator W 0

a : L
p(R) → L

p(R) in other Lebesgue spaces with 1 < p < +∞,
provided the Fourier symbol a belongs to a proper class of multipliers (cf. [9, 10,
12–15]). In the recent paper [23], based on holomorphic functions properties, the
uniqueness of solution to a singular integral equation with multiple complex shifts
on the real line in a Lebesgue space was proved again. It is clear that non-real
shifts yield analytic symbol functions in the upper or lower complex half-planes
with corresponding well-known consequences.

Singular integro-differential equations with continuous coefficients on closed
contours and open arcs were investigated by many authors: I. Vekua, L. Mag-
naradze, G. Manjavidze, J. Krikunow etc. The famous airfoil Prandtl equation in
aerodynamics [16] belongs to the same class. We refer to [15, §117] for a survey on
this topic and cite here only a paper of N. Vekua in [21] (also cf. [15, §117]): using
a representation by potentials I. Vekua reduced the problem to the investigation
of the principal part of the equation. It was proved that elliptic equations have
the Fredholm property and an index formula was found. A case of equation (1.1)
with complex shifts, leading to equations with discontinuous symbols without os-
cillations, was treated in [17].

Let us start with some definitions. We denote by S(R) the Schwartz space of
rapidly decreasing C∞ functions on R and by S′(R) the space of tempered distribu-
tions. The Fourier transform of ψ ∈ S(R) is defined by Fψ(ξ) =

∫
R
ψ(x)eiξxdx, ξ ∈

R. It is a continuous operator in S(R) and is also defined for distributions, F :
S′(R) → S′(R), by duality. For 1 < p < +∞, L

p(R) denotes the well-known Ba-
nach space of complex-valued Lebesgue measurable functions ψ on R, for which
|ψ|p is integrable. The space H

s,p(R) of Bessel potentials, with s ∈ R and p ∈
]1,+∞[, is defined as the space of distributions ψ ∈ S′(R) such that ‖ψ |Hs,p(R)‖ =∥∥F−1〈 · 〉s · Fψ |Lp(R)

∥∥ < +∞, for 〈ξ〉 = (1 + ξ2)1/2, ξ ∈ R.
W

s,p(R) will denote the Sobolev–Slobodeckij spaces (s ∈ R, 1 < p < +∞).
For definitions and basic properties of the spaces W

s,p(R) we refer to [20].
Moreover, we denote by H

s,p
± the closed subspace of H

s,p(R) consisting of
those distributions which are supported in R±. H

s,p(R+) denotes the space of
distributions on R+ which have extensions into R that belong to H

s,p(R). The
space H

s,p(R+) is endowed with the norm of the quotient space H
s,p(R)/Hs,p

− .
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Further let H̃
s,p(R+) be the subspace of H

s,p(R+) functionals that are ex-
tendable by zero to the full axis within H

s,p(R).
Analogous spaces are defined for the Sobolev–Slobodeckij case W

s,p [20]. For
1/p − 1 < s < 1/p, the spaces H̃

s,p(R+) and H
s,p(R+) coincide and H

s,p
+ can be

identified with the previous (by restriction to R+ or zero extension, respectively).
The same holds true for W̃

s,p(R+) and W
s,p(R+) (cf. [20]) and W

s,p
+ , respectively.

For s = 0 these spaces coincide with the Lebesgue spaces and we use L
p(R+)

instead of H
0,p(R+) and Lp

+ for H
s,p
+ .

Remark 1.1. The above notation is used in [8] and [11]. It is also common to denote
the present space H

s,p
+ by H̃

s,p(R+), see [20] and some work of the authors [2]. The
identification of both spaces is immediate (by restriction and zero extension) for
positive s but not valid in general:

r+H
s,p
+ = H̃

s,p(R+) iff s ≥ 1
p
− 1 . (1.3)

For s < 1/p − 1, the space H
s,p
+ contains distributions F supported only at the

origin suppF =
{
0
}

(e.g., the δ-functional and its derivatives), but the operator
r+ (in the distributional sense) annihilates such terms. The δ-functional does not
belong to H̃

s,p(R+) nor to W̃
s,p(R+) for any s and p.

In the next Proposition 1.2 we expose interpolation properties of the spaces
defined in the present section. For the proof and further details we refer to [20,
§2.4.1, §2.4.2, §2.10.1, §2.10.4].

Proposition 1.2. Let

s0, s1 ∈ R , 0 < θ < 1 , 1 ≤ p0, p1, r ≤ ∞ ,

1
p

=
1 − θ

p0
+

θ

p1
, s = (1 − θ)s0 + θs1 .

For the real ( · , · )θ,p and the complex ( · , · )θ interpolation functors the following
holds:

i. (Hs0,p0(R),Hs1,p1(R))θ = H
s,p(R);

ii. (Hs0,r(R),Hs1,r(R))θ,r = W
s,r(R) provided s0 �= s1;

iii. (Ws0,p0(R),Ws1,p1(R))θ = W
s,p(R).

The same interpolation results hold if the spaces H
sj ,pj (R) are replaced by

the spaces H
sj ,pj

+ , H̃
sj ,pj (R+), H

sj ,pj (R+) and the space W
sj ,pj (R) by W

sj ,pj

+ ,
W̃

sj ,pj (R+), W
sj ,pj (R+), respectively.

Corollary 1.3. Let for an operator

A : H
s,p(R) −→ H

s−r,p(R) (1.4)

hold one of the following properties: (i) A is an invertible operator, (ii) A is a
semi-invertible operator (i.e., A is invertible from the left or A is invertible from
the right), (iii) A is a Fredholm operator, (iv) A is a semi-Fredholm operator (i.e.,
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A has a left or has a right regularizer), for some p ∈ (1,+∞) and all s ∈ (s0, s1),
with −∞ < s0 < s1 < +∞.

Then, for the same p ∈ (1,+∞) and all s ∈ (s0, s1), the operator

A : W
s,p(R) −→ W

s−r,p(R) (1.5)

is bounded or is (i) invertible, (ii) semi-invertible, (iii) Fredholm, (iv) semi-Fred-
holm, respectively. Moreover, if A (in (1.4) and (1.5)) is a Fredholm operator then
it has the same kernel and cokernel in all these spaces.

The same invertibility, semi-invertibility, Fredholm and semi-Fredholm prop-
erties hold for arbitrary continuous operator mapping any couple of Bessel poten-
tial H

s,p
+ , H̃

s,p(R+), H
s,p(R+) and Sobolev–Slobodeckij W

s,p
+ , W̃

s,p(R+), W
s,p(R+)

spaces.

Proof. The boundedness property follows due to the interpolation in Proposi-
tion 1.2.ii.

Concerning the invertibility: If A−1 is the inverse to A, it is the same for all s
and, due to Proposition 1.2.ii, the operator A−1 : W

s−r,p(R) → W
s,p(R) is then

bounded for all s ∈ (s0, s1) and, obviously, is the inverse to A in (1.5).
Similarly: if A : H

s,p(R) → H
s−r,p(R) is Fredholm, then it has a regularizer R

fulfilling RA = I + K1 and AR = I + K2, where R : H
s−r,p(R) → H

s,p(R) is
bounded, and K1 : H

s,p(R) → H
s,p(R) and K2 : H

s−r,p(R) → H
s−r,p(R) are

finite rank operators (i.e., have finite dimensional images). Using the stability
results, we can choose a regularizer R so that the finite rank operators K1 and
K2 will be bounded for all s ∈ (s0, s1). Then, obviously, R is a regularizer for all
s ∈ (s0, s1) and, due to Proposition 1.2.ii, R : W

s−r,p(R) → W
s,p(R) is bounded

for all s ∈ (s0, s1) and is a regularizer to A in (1.5).
Moreover, it is known that if A in (1.5) is Fredholm and has the same regu-

larizer for p ∈ (p0, p1) and all s ∈ (s0, s1), then its kernel and cokernel is the same
in these spaces (cf., e.g., [6]).

The remaining cases (when A is semi-invertible or semi-Fredholm, and when
the spaces are different H

s,p
+ , H̃

s,p(R+) etc.) are treated similarly. �

Due to the foregoing Proposition 1.2 and Corollary 1.3, the results of the
present article hold for both scales of spaces (H and W) simultaneously. Therefore,
X

s,p(R), X
s,p
+ , X

s,p(R+) and X̃
s,p(R+) will stand for the corresponding spaces either

in the H or in the W scales. Anyway, some techniques are valid only for the H

scales. In these cases, the W spaces are treated separately.

2. Wiener–Hopf operators associated with the initial value problem

The initial value problem (1.1) will be considered in the following setting

f ∈ X
s−n,p(R+) , ψ ∈ X

s,p(R+) , 1 < p < +∞ , n+
1
p
−1 < s < n+

1
p
. (2.1)
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The conditions on s and p ensure the existence of the values ψ(0), . . . , ψn−1(0),
because, due to Sobolev’s lemma (cf. [20]), the embedding X

s,p(R+) ⊂ Cn−1(R+)
is continuous.

By introducing a new unknown function

ϕ(t) := ψ(t) − e−t
n−1∑

k=0

(−t)k

k!
dk , (2.2)

we find easily that the initial conditions for ψ ∈ X
s,p(R+) in (1.1) are transformed

into
ϕ ∈ X

s,p(R+) , ϕ(0) = · · · = ϕ(n−1)(0) = 0 . (2.3)

Since (2.3) can also be written in a compact form ϕ ∈ X
s,p
+ , we have proved the

following.

Theorem 2.1. The IVP (1.1) is equivalent to the following equation:

ϕ(x) +
n∑

j=0

cj
πi

∫ +∞

0

ϕ(j)(y)
y − x+ αj

dy = g(x) , x ∈ R+ , (2.4)

g ∈ X
s−n,p(R+) , ϕ ∈ X̃

s,p(R+) ,

1 < p < +∞ , n+
1
p
− 1 < s < n+

1
p
,

where the solution ϕ is related to the solution ψ of (1.1) by formulae (2.2).

Equation (2.4) may be viewed as a convolution integral equation with shifts
on the half-line (if interpreting now the above ϕ in the role of its extension by zero
to the full real line):

r+ϕ+ r+

n∑

j=0

cjTαjK ∗ ϕ(j) = r+ (δ ∗ ϕ) + r+

n∑

j=0

cjTαjK ∗ ϕ(j) = g ,

g ∈ X
s−n,p(R+) , ϕ ∈ X

s,p
+ (2.5)

where r+ denotes the restriction from R to R+, and δ is the Dirac delta function.
In addition, (Tαjϕ)(ξ) = ϕ(ξ − αj) is the αj-shift operator, K(ξ) = 1/πiξ is the
singular kernel, and (k ∗ ϕ)(x) =

∫ +∞
−∞ k(x− y)ϕ(y) dy , x ∈ R, denotes, as usual,

the convolution.
The Hilbert transformation

SRϕ(x) = (K ∗ ϕ)(x) =
1
πi

∫

R

ϕ(y)
y − x

dy , (2.6)

is understood in the Cauchy principal value sense (cf., e.g., [15], [14, Chapter II,
Section 1]). In the operators sense SR and Tαj are convolutions

SR = F−1(−sign ξ) · F (2.7)
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(cf. [5]) and

Tαj = F−1 exp(iαjξ)χj(ξ) · F , (2.8)

χj(ξ) =

⎧
⎨

⎩

1 if αj ∈ R ,
χ+(ξ) if 
mαj > 0 ,
χ−(ξ) if 
mαj < 0 ,

(2.9)

where χ±(ξ) denote the characteristic (indicator) functions of the positive or neg-
ative half-line, respectively.

Since Fϕ(j) = (−iξ)jFϕ, (2.4) can be interpreted as a convolution equation
Waϕ = g where

Wa = r+F−1a · F , (2.10)

a(ξ) = 1 −
n∑

j=0

cj(sign ξ)(−iξ)j exp(iαjξ)χj(ξ) .

Therefore, we are interested to study the convolution type operator Wa and the
solvability properties of the corresponding equation

Waϕ = g , (2.11)

Wa : X
s,p
+ → X

s−n,p(R+)

given by (2.10).

Corollary 2.2. The IVP (1.1) and equation (2.4) are equivalent to the equation
(2.11) with the operator Wa in (2.11), provided the symbol a in (2.11) is defined
by (2.10) and the solution ϕ is related to the solution ψ of (1.1) by formulae (2.2).

From the above-mentioned reduction and from the structure of the spaces in
the domain of (2.11) it is clear that the IVP (1.1) is equivalent to the equation
Waϕ = g provided the solutions are related by formula (2.2).

Theorem 2.3 (Lifting of Wiener–Hopf operators in spaces of Bessel potentials).
The operator Wa in (2.10) and (2.11) is well-defined and continuous. In the H scale
it is toplinear (i.e., algebraically and topologically) equivalent to a Wiener–Hopf
operator acting on Lebesgue spaces

Was,n = r+Λs−n
− 
(s−n)WaΛ−s

+ : L
p
+ → L

p(R+) ,

as,n(ξ) = ζs(ξ)
a(ξ)

(ξ − i)n
, ζs(ξ) :=

(
ξ − i

ξ + i

)s

,
(2.12)

where

Λ−s
+ = F−1(ξ + i)−s · F : L

p
+ → H̃

s,p ,

r+Λs−n
− 
(s−n) = W(ξ−i)s−n
(s−n) : H

s−n,p(R+) → L
p(R+)

(2.13)
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are isomorphisms between the corresponding spaces. Here 
(s−n) : H
s−n,p(R+) →

H
s−n,p(R) is a bounded extension operator and can be replaced by any other exten-

sion into the space H
s,p(R), i.e., the particular choice does not change the definition

of the last mentioned operator in (2.13).

Proof. First of all, we realize that due to the particular form of (2.9), and also due
to the remaining factors of a, the function as,n belongs to the algebra Mp(R) of
Fourier multipliers in L

p. In particular, this ensures that Was,n : L
p
+ → L

p(R+)
is a well-defined bounded operator.

Secondly, with the help of the isomorphisms (2.13) (cf. [8, Lemma 4.4 and
Theorem 4.6] or [20, §2.3.4 and §2.10.3] and [5]), the operator Wa in (2.11) is lifted
to the toplinear equivalent operator between the Lebesgue spaces (2.12). Due to the
analytic continuation properties of the symbols λs−n

− (ξ) := (ξ−i)s−n and λ−s
+ (ξ) :=

(ξ + i)−s we get the identity r+Λs−n
− 
(s−n)WaΛ−s

+ = r+F−1λs−n
− a ·λ−s

+ FWas,n ,
which completes the proof. �

Remark 2.4. For W spaces, lifting works in a different way: the spaces W
s,p
+ can

be lifted to L
p-spaces for integer orders s = 1, 2, . . . only (i.e., for the case of

pure Sobolev spaces). But we can apply Corollary 1.3 to extend invertibility, semi-
invertibility, Fredholm and semi-Fredholm properties to these spaces, provided
they are valid for the Bessel potential spaces.

2.1. Case αn = 0
The Fourier symbol as,n of the operator Was,n in (2.12) might have discontinuities
at ξ = 0 and at ξ = ∞:

as,n(0 ± 0) =
(−1)s

(−i)n

[
1 − c0sign(±1)χ0(0 ± 0)

]

= eπi(s+n/2)
[
1 ∓ c0χ0(0 ± 0)

]
(2.14)

χ0(0 ± 0) =

⎧
⎪⎨

⎪⎩

1 if α0 ∈ R ,
1±1
2 if 
mα0 > 0 ,

1∓1
2 if 
mα0 < 0 ,

as,n(−∞) = e−πin/2cn , as,n(+∞) − eπi(2s−n/2)cn . (2.15)

To describe Fredholm properties and to obtain the index of the operator Wa

we introduce a full symbol, filling the gaps between the possible discontinuities in
the image of the piecewise continuous symbol as,n (cf. [5]):

as,n,p(ξ, η) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

as,n(ξ) if ξ ∈ R , ξ �= 0 ,

eπi(s+n/2)

2

[
a1 + a2 cothπ

(
i
p + η
)]

if ξ = 0 , η ∈ R̈ ,

e−πin/2cn

2

[[
1 − e2πis

]
+
[
1 + e2πis

]
cothπ
(

i
p + η
)]

if ξ = ∞ , η ∈ R̈ ,

(2.16)
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a1 =

⎧
⎨

⎩

2 if α0 ∈ R ,
2 − c0 if 
mα0 > 0 ,
2 + c0 if 
mα0 < 0 ,

a2 =
{

2c0 if α0 ∈ R ,
c0 if 
mα0 �= 0 ,

where R̈ := R ∪ {±∞} and Ṙ := R ∪ {∞} (cf. below) are the two point and the
one point compactification of the real axis with the standard topologies.

It is easy to ascertain that the full image of the symbol as,n,p in the complex
plane is a closed curve. If the full symbol is elliptic

inf
ξ,η∈R

|as,n,p(ξ, η)| > 0 , (2.17)

then the winding number ind as,n,p of the oriented image
{
as,n,p(ξ, η) : ξ ∈ Ṙ , η ∈

R̈
}

(the image curve of as,n,p(ξ, η) when the variables ξ and η range through Ṙ

and R̈, respectively) is called the index of as,n,p.

Theorem 2.5. Let αn = 0. The operator Wa in (2.10)–(2.11) is Fredholm (in X

spaces) if and only if the symbol as,n,p in (2.16) is elliptic in the sense of (2.17).
If the operator is Fredholm, then the Fredholm index is given by the formula

IndWa = dim KerWa − codim ImWa = −ind as,n,p . (2.18)

Moreover:

(a) If IndWa = 0, then the operator Wa has trivial kernel and cokernel.
(b) If m = −IndWa > 0, then the operator Wa has trivial kernel and an m-

dimensional cokernel.
(c) If m = IndWa > 0, then the operator Wa has trivial cokernel and an m-

dimensional kernel.

Proof. By virtue of Corollary 1.3 it suffices to prove the theorem for the H scale
only.

Due to the equivalence relation explicitly given in (2.12) between operators
Wa and Was,n , we conclude that they have the same Fredholm characteristics.
Thus, we can proceed by studying the operator Was,n in (2.12).

The Fourier symbol as,n of Was,n (cf. (2.12) and (2.10))

as,n(ξ) =
(
ξ − i

ξ + i

)s 1
(ξ − i)n

(
1 −

n−1∑

j=0

cj(−i)j |ξ|ξj−1 exp(iαjξ)χj(ξ)

− cn(−i)n|ξ|ξn−1

)
(2.19)

is a piecewise continuous function having at most two discontinuities (at zero
and at infinity). Therefore, the well-known criterion for Wiener–Hopf operators
with piecewise continuous Fourier symbols to have the Fredholm property (cf. [5,
Theorem 4.2]) can be applied to Was,n : L

p
+ → L

p(R+). Namely, Was,n is a
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Fredholm operator if and only if infξ , η |as,n,p(ξ, η)| > 0 , where

as,n,p(ξ, η)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

as,n(ξ) if ξ∈R \ {0}
1
2

[
as,n(0 − 0) + as,n(0 + 0)

]

+ 1
2

[
as,n(0 − 0) − as,n(0 + 0)

]
coth π
(

i
p + η
)

if ξ = 0 , η∈R̈

1
2

[
as,n(−∞) + as,n(+∞)

]

+ 1
2

[
as,n(−∞) − as,n(+∞)

]
coth π
(

i
p + η
)

if ξ = ∞ , η∈R̈ .

(2.20)
By inserting here the values (2.14) and (2.15), the full symbol (2.20) acquires the
form (2.16).

The proof is completed by a reference to [5, Theorem 4.2]. �

2.1.1. Case αn = c0 = · · · = cn−1 = 0 and cn �= 0. Let us use the following
standard notation: a real number s ∈ R decomposes into the sum

s = [s] + {s} , [s] = 0,±1,±2, . . . , 0 ≤ {s} < 1 ,

where [s] denotes the integer part and {s} the fractional part of s.

Corollary 2.6. Let αn = 0, and c0 = · · · = cn−1 = 0 with cn �= 0. The operator
Wa : X

s,p
+ → X

s−n,p(R+), defined in (2.10), is Fredholm if and only if
{
cn /∈ R if n is even
cn(−i)n /∈ ]0,+∞[ if n is odd and

∣∣∣∣{s} −
1
p

∣∣∣∣ �=
1
2
. (2.21)

Moreover, when the operator is Fredholm the index is given by

IndWa =

⎧
⎪⎪⎨

⎪⎪⎩

N − [s] if
∣∣∣{s} − 1

p

∣∣∣ < 1
2

N − [s] − 1 if {s} − 1
p >

1
2

N − [s] + 1 if {s} − 1
p < − 1

2

. (2.22)

Proof. Once again, due to the equivalence relation of Theorem 2.3, we only need
to consider the operator Was,n . By noting that the Fourier symbol of Was,n has a
special form

(as,n)0(ξ) = ζs(ξ)λ−n
− (ξ)
(
1 − cn(−i)n|ξ|ξn−1

)
(2.23)

(cf. (2.12) for ζs(ξ)) we only have to consider the simplified full symbol as,n

in (2.23) instead of that one in (2.12) and apply Theorem 2.5. �

Since a (well-defined) scalar Wiener–Hopf operator in Lebesgue spaces with
a non-identically zero Fourier symbol have a trivial kernel or a trivial cokernel (see
the Coburn–Simonenko Theorem [5]), from (2.22) we directly obtain the following.

Corollary 2.7. Let αn = c0 = · · · = cn−1 = 0 and cn /∈ R if n is even or alterna-
tively cn(−i)n /∈ ]0,+∞[ if n is odd.

(i) If ([s] = N and |s−N − 1/p| < 1/2) or ([s] = N − 1 and {s}− 1/p > 1/2)
or ([s] = N + 1 and {s} − 1/p < −1/2) , then Wa is an invertible operator.
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(ii) If ([s] > N and |{s} − 1/p| < 1/2) or ([s] > N − 1 and {s} − 1/p >
1/2) or ([s] > N + 1 and {s} − 1/p < −1/2) , then operator Wa is only left-
invertible.

(iii) If ([s] < N and |{s}− 1/p| < 1/2) or ([s] < N − 1 and {s}− 1/p > 1/2) or
([s] < N+1 and {s}−1/p < −1/2) , then operator Wa is only right-invertible.

2.2. Case 
mαn �= 0
Theorem 2.8. If 
mαn �= 0, then the operator Wa : X

s,p
+ → X

s−n,p(R+), defined
in (2.10)–(2.11), is not a Fredholm operator.

Proof. In the present case, the Fourier symbol of Was,n ,

as,n(ξ) = ζs(ξ)λ−n
− (ξ)

⎛

⎝1 −
n∑

j=0

cj(−iξ)j(sign ξ)χj(ξ) exp(iαjξ)

⎞

⎠ , (2.24)

turns out to be zero at infinity. This occurs essentially because of the combination
of the value of

χn(ξ) =
{
χ+(ξ) if 
mαn > 0 ,
χ−(ξ) if 
mαn < 0 , (2.25)

with the element exp(iαnξ) = exp(i(�e αn)ξ) exp(−(
mαn)ξ), where 
mαn �= 0.
As a consequence, we obtain in this case

inf
ξ,η

∣∣as,n,p(ξ, η)
∣∣ = 0 . (2.26)

Therefore, since the Fredholm criterion used in the proof of Theorem 2.5
also applies to the present case (i.e., Was,n is a Fredholm operator if and only if
infξ,η |as,n,p(ξ, η)| > 0 ), the result is proved. �

2.3. Case �eαn �= 0 and 
mαn = 0
In the present case we shall see that the corresponding Fourier symbol of Wa

oscillates at infinity (is almost periodic). Thus, we will start by defining some
known characteristics of such functions.

First of all, by AP p we will denote the smallest closed subalgebra of Mp(R)
that contains all the functions exp(icξ) (with variable ξ ∈ R and real fixed con-
stants c):

AP p := algMp(R)

{
exp(icξ) : c ∈ R

}
. (2.27)

Every φ ∈ AP p has a finite mean value

M(φ) := lim
ω→∞

1
2ω

∫ ω

−ω

φ(ξ) dξ . (2.28)

We will use the notation GZ for the collection of all invertible elements of an
algebra Z. If φ ∈ GAP p, Bohr proved that φ admits a multiplicative decomposition
in the form

φ(ξ) = exp
(
iκ(φ)ξ
)
exp
(
ψ(ξ)
)

for all ξ ∈ R , (2.29)
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where ψ ∈ AP p, and κ(φ) is a real number uniquely determined by φ and usually
called the mean motion of φ. It is also known that (for φ ∈ GAP p)

κ(φ) = lim
ω→+∞

(argφ)(ω) − (argφ)(−ω)
2ω

. (2.30)

Finally, for φ ∈ GAP p, we will also need the so-called geometric mean
value of φ:

d(φ) := exp
(
M(ψ)
)
, (2.31)

where ψ ∈ AP p is the element that appears in the factorization (2.29).
We will subdivide the present case into two significant situations: When

c0 = 0, and when c0 �= 0.

2.3.1. Subcase c0 = 0.

Theorem 2.9. Let αn �= 0, 
mαn = 0 and c0 = 0. The operator Wa : X
s,p
+ →

X
s−n,p(R+), defined in (2.10), is normally solvable if and only if the symbol is

elliptic:
inf
ξ∈R

∣∣as,n(ξ)
∣∣ > 0 . (2.32)

Under condition (2.32), we have only two possibilities:
(i) If �e αn > 0, then Wa is a left invertible operator and dim cokerWa = ∞.
(ii) If �e αn < 0, then Wa is a right invertible operator and dim kerWa = ∞.

Proof. Similarly as before, it is enough to consider here the H spaces case (then,
by the use of Corollary 1.3, the same conclusions hold for the W spaces case).

Under the present conditions the Fourier symbol as,n takes the form

as,n(ξ) = ζs(ξ)λ−n
− (ξ)
(

1 −
n−1∑

j=1

bj(−i)j |ξ|ξj−1χj exp(iαjξ)

− cn(−i)n|ξ|ξn−1 exp
(
i
(�eαn

)
ξ
))

.

(2.33)

Thus, as,n is a semi-almost periodic function, i.e., it belongs to the smallest closed
subalgebra of Mp(R) that contains the almost periodic functions and the contin-
uous ones on the real line with a possible jump at infinity:

as,n ∈ SAP p := algMp(R)

{
AP p, C(R̈)

}
. (2.34)

In the remaining part of the proof we will work with as,n/(−cn(−i)n) instead
of as,n, for simplicity. Since the corresponding Wiener–Hopf operators are toplinear
equivalent, they posses the same Fredholm characteristics.

By a well-known criterion of Sarason [18], it is possible to present a different
representation of SAP p elements that is useful in our particular case. Namely,

as,n/
(− cn(−i)n) = (1 − u)φl + uφr + φ0 , (2.35)

where u ∈ C(R̈) with u(−∞) = 0 and u(+∞) = 1, and φ0 ∈ C(Ṙ) with φ(∞) = 0
and with φl,r exp(i(�e αn)ξ) ∈ AP p.
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Thus, noticing that κ(φl) = κ(φr) = �e αn and d(φl) = d(φr), theorems of
Duduchava–Saginashvili about Wiener–Hopf operators with semi-almost periodic
Fourier symbols in L

p spaces apply (cf. [7, Theorems 2.1 and 2.2]) and lead to the
above statement. �
2.3.2. Subcase c0 �= 0. For c0 �= 0 the Fourier symbol as,n(ξ) of the operator Was,n

in (2.12) has a jump discontinuity at ξ = 0:

as,n(0 ± 0) = eπi(s+n/2)
[
1 ∓ c0χ0(0 ± 0)

]
, (2.36)

where

χ0(0 ± 0) =

⎧
⎪⎨

⎪⎩

1 if α0 ∈ R ,
1±1
2 if 
mα0 > 0 ,

1∓1
2 if 
mα0 < 0 .

Therefore the symbol as,n belongs to the algebra of piecewise almost periodic
functions, generated by the almost periodic functions and the piecewise continuous
functions. In fact, as,n has the jump discontinuity at zero (see above) and almost
periodic oscillation at infinity (see the foregoing subsection).

Theorem 2.10. Let αn �= 0, 
mαn = 0 and c0 �= 0. The operator Wa : X
s,p
+ →

X
s−n,p(R+), defined in (2.10), is normally solvable if and only if the numbers cj

and αj are such that
inf

ξ∈R\{0}

∣∣as,n(ξ)
∣∣ > 0 (2.37)

and
(a) c0 coth π(i/p+ η) �= −1 for all η ∈ R̈, in the case of α0 ∈ R;
(b) c0 coth π(i/p+ η) �= c0 − 2 for all η ∈ R̈, in the case of 
mα0 > 0;
(c) c0 coth π(i/p+ η) �= −c0 − 2 for all η ∈ R̈, in the case of 
mα0 < 0.

Moreover, when Wa is normally solvable, the following alternative holds:
(i) If �e αn > 0, then Wa is a left invertible operator and dim cokerWa = ∞;
(ii) If �e αn < 0, then Wa is a right invertible operator and dim kerWa = ∞.

Proof. Observing the above identification of the Fourier symbol of the operator
(within the piecewise almost periodic class), the result follows by combining the
techniques of the last subsection with the Fredholm theory for Wiener–Hopf oper-
ators with discontinuous symbols (and acting between Lp spaces; cf. [5]). In this
way, the condition prompted by the discontinuity of the Fourier symbol at zero

as,n,p(0, η) =
1
2
[
as,n(0 − 0) + as,n(0 + 0)

]

+
1
2
[
as,n(0 − 0) − as,n(0 + 0)

]
coth π
(
i

p
+ η

)
�= 0 , for all η ∈ R̈

turns out to be equivalent to (a), (b) or (c) when α0 ∈ R, 
mα0 > 0 or 
mα0 < 0,
respectively.

As about propositions (i) and (ii), they follow exactly by the same reasoning
as in the previous subsection. �



Vol. 2 (2008) Singular Equations with Multiple Shifts 339

As a concretization of the previous result to the particular Hilbert spaces
case (p = 2) and invertible Fourier symbols a (within the present case), we remark
that the operator Wa : X

s,2
+ → X

s−n,2(R+) is normally solvable if and only if:

(a’) 1 + c0 − 2c0μ �= 0 for all μ ∈ [0, 1], in the case of α0 ∈ R;
(b’) 1 − c0μ �= 0 for all μ ∈ [0, 1], in the case of 
mα0 > 0;
(c’) 1 + c0 − c0μ �= 0 for all μ ∈ [0, 1], in the case of 
mα0 < 0.

3. Explicit solution of the initial value problem for αn = 0 and
c0 = · · · = cn−1 = 0

In the present section we suppose that the conditions (2.21) hold and hence that
Wa is a Fredholm operator.

We will apply a generalized factorization of the symbol as,n (see (2.23)) to
describe invertibility properties and the index of the operators Was,n .

Let us start by observing that

as,n = ζ{s}−1/2 ãs,n , (3.1)

where

ãs,n(ξ) = ζ [s]−(n−1)/2(ξ)
1 − cn(−i)n|ξ|ξn−1

(ξ2 + 1)1/2(ξ2 + 1)(n−1)/2
(3.2)

is a non-vanishing continuous function and ãs,n(±∞) = −cn(−i)n.
We will make use of the Cauchy projections:

P±
R

=
1
2
(I ± SR) , (3.3)

where I is denoting the identity operator in L
p(R).

Definition 3.1 ([5,14]). A function Φ ∈ GL
∞(R) admits a generalized factorization

relative to L
p(R), 1 < p < +∞, if Φ has a representation

Φ(ξ) = Φ−(ξ) ζκ(ξ)Φ+(ξ) , for almost all ξ ∈ R , (3.4)

where κ ∈ Z, λ−1
+ Φ+ ∈ P+

R
L

q(R), λ−1
+ Φ−1

+ ∈ P+
R

L
p(R), λ−1

− Φ− ∈ P−
R

L
p(R),

λ−1
− Φ−1

− ∈ P−
R

L
q(R), for q = p/(p−1), and Φ−SRΦ−1

− I is an operator defined on a
dense subset of L

p(R) possessing a bounded extension to L
p(R).

Due to (3.1)–(3.2), and bearing in mind the last definition, we derive the
following.

Theorem 3.2. The function as,n in (3.1) admits a generalized factorization with
respect to L

p(R)

as,n = as,n− ζ
κ as,n+ (3.5)
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where

κ =

⎧
⎪⎪⎨

⎪⎪⎩

[s] −N , if
∣∣∣{s} − 1

p

∣∣∣ < 1
2

[s] −N + 1 , if {s} − 1
p >

1
2

[s] −N − 1 , if {s} − 1
p < − 1

2

(3.6)

as,n± =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ψ±
(

−2i
λ∓

)∓({s}−1/2)

if
∣∣∣{s} − 1

p

∣∣∣ < 1
2

Ψ±
(

−2i
λ∓

)∓({s}−3/2)

if {s} − 1
p >

1
2

Ψ±
(

−2i
λ∓

)∓({s}+1/2)

if {s} − 1
p < − 1

2

(3.7)

and Ψ± = expP±
R

ln
(
ζN−[s] ãs,n

)
, with ãs,n defined in (3.2).

Theorem 3.3. (a) For a given g ∈ X
s−n,p(R+), and under the conditions of

proposition (i) in Corollary 2.7, the IVP (2.4) admits a unique solution
ϕ ∈ X̃

s,p(R+) in the form

ϕ = r+F−1λ−s
+ (as,n+)−1P+

R
λs−n
− (as,n−)−1 · F
(s−n)g (3.8)

where as,n± are given by (3.7), with κ = 0.
(b) Under the conditions of proposition (ii) (or, respectively, (iii)) in Corollary 2.7

and corresponding situation in Theorem 3.2, the operator Wa is left-invertible
(respectively, right-invertible) by

W−
a = F−1λ−s

+ (as,n+)−1
P+

R
ζ−κP+

R
λs−n
− (as,n−)−1 · F
(s−n) . (3.9)

Proof. In all considered situations in (a) and (b), the result is a consequence
of the construction of the inverse or lateral inverse of Wa, from the generalized
factorization of as,n (presented in Theorem 3.2), and from the explicit equivalence
relation between Wa and Was,n (cf. Theorem 2.3) in the case of H spaces and from
Corollary 1.3 in the case of W spaces.

In detail, for the H spaces case (with Λs−n
− and Λ−s

+ in (2.13)), and κ = 0,
or κ > 0, or κ < 0, a direct computation shows that

W−
a = Λ−s

+ W−
as,n


0r+Λs−n
− 
(s−n)

= Λ−s
+ 
0r+F−1(as,n+)−1· F
0r+F−1ζ−κ· F
0r+F−1(as,n−)−1· FΛs−n

− 
(s−n)

= F−1λ−s
+ (as,n+)−1· F
0r+F−1ζ−κ· F
0r+F−1λs−n

− (as,n−)−1· F
(s−n)

is the inverse, left-inverse, or right-inverse of Wa, respectively and 
0 : L
p(R+) →

L
p
+ denoting the extension by zero. �

We end up by reminding that for piecewise almost periodic Fourier symbols
the Factorization Theory [1] is not well developed in contrast to the continuous
and even piecewise continuous cases. Therefore, we can not proceed further and
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obtain explicit lateral inverses to Wa for the Fredholm operators considered in the
Subsection 2.3.

4. Concluding remarks

There are various possible generalizations which can be treated straightforwardly
by a similar approach. For instance, multiple shifts within the same derivative are
admissible, however leading to more complicated formulas.

In Case 3.2 one can find a criterion for the semi-Fredholm property, which
then is equivalent to one-sided regularizability and generalized invertibility. More-
over, the operator can be factorized, in that case, into a shift and a Fredholm
operator.

The reduction of the IVP (1.1) by substitution to an equivalent problem with
homogeneous initial data can be interpreted in terms of a so-called (toplinear)
equivalence after extension relation (see [3]) between the corresponding operators.
This relation is characteristic for the operators having isomorphic kernels and
co-kernels and, therefore, shows the (logical) equivalence of invertibility, of the
Fredholm property, etc.

References
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