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Abstract. We investigate partial differential equations on hypersurfaces writ-
ten in the Cartesian coordinates of the ambient space. In particular, we gen-
eralize essentially Lions’ Lemma, prove Korn’s inequality and establish the
unique continuation property from the boundary for Killing’s vector fields,
which are analogues of rigid motions in the Euclidean space. The obtained
results, the Lax-Milgram lemma and some other results are applied to the
investigation of the basic Dirichlet and Neumann boundary value problems
for the Lamé equation on a hypersurface.
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Introduction

Partial differential equations (PDEs) on hypersurfaces and corresponding bound-
ary value problems (BVPs) appear rather often in applications: see [Ha1, §72]
for the heat conduction by surfaces, [Ar1, §10] for the equations of surface flow,
[Ci1], [Ci3],[Ci4], [Ko2], [Go1] for thin flexural shell problems in elasticity, [AC1]
for the vacuum Einstein equations describing gravitational fields, [TZ1, TW1] for
the Navier-Stokes equations on spherical domains and spheres, [MM1] for minimal
surfaces, [AMM1] for diffusion by surfaces, as well as the references therein. Fur-
thermore, such equations arise naturally while studying the asymptotic behavior of
solutions to elliptic boundary value problems in a neighborhood of conical points
(see the classical reference [Ko1]).

The investigation was supported by the grant of the Georgian National Science Foundation
GNSF/ST07/3-175.
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By a classical approach differential equations on surfaces are written with the
help of covariant and contravariant frames, metric tensors and Christoffel symbols.
To demonstrate a difference between a classical and the present approaches, let us
consider an example. A surface S can be given by a local immersion

Θ : ω → S , ω ⊂ R
n−1 , (0.1)

which means that the derivatives
{
gk := ∂kΘ

}n−1

k=1
, constituting the covariant

frame in the space of tangent vector fields to the surface V (S ), are linearly in-
dependent. In equivalent formulation that means the Gram matrix GS (X ) =
[gjk(X )]n−1×n−1, gjk := 〈gj , gk〉 has the inverse G−1

S (X ) = [gjk(X )]n−1×n−1,
gjk := 〈gj , gk〉. Hereafter

〈U ,V 〉 :=
n∑

j=1

U0
j V

0
j , U = (U0

1 , . . . , U
0
n)� ∈ R

n, V = (V 0
1 , . . . , V

0
n )� ∈ R

n

denotes the scalar product. The Gram matrix GS (X ) is also called covariant
metric tensor and is responsible for the Riemannian metric on S . Remarkably, the
generating system of vectors

{
gk}n−1

k=1 called the contravariant frame in the space of
tangent vector fields V (S ), is biorthogonal to the covariant frame 〈gj , g

k〉 = δjk,
j, k = 1, . . . , n− 1.

The surface divergence and gradients in classical differential geometry (in
intrinsic parameters of the surface S ) read as follows:

divS U :=
[
detGS

]−1/2 n∑

j=1

∂j

{[
detGS

]1/2
U j
}
,

∇S f =
n−1∑

j,k=1

(gjk∂jf) ∂k, U =
n−1∑

j=1

U jgj

(0.2)

(see [Ta2, Ch. 2, § 3]). The intrinsic parameters enable generalization to arbitrary
manifolds, not necessarily immersed in the Euclidean space R

n.
A derivative ∂S

U : C1(S ) → C1(S ) along some tangential vector field
U ∈ V (S ) is called covariant if it is a linear automorphism of the space of
tangential vector fields

∂S
U : V (S ) −→ V (S ). (0.3)

The covariant derivative of a tangential vector field V =
∑n−1

j=1 V
jgj ∈ V (S )

along a tangential vector field U =
∑n−1

j=1 U
jgj ∈ V (S ) is defined by the formula

∂S
U V := πS ∂UV :=

n−1∑

j,k,m=1

[
U jV kΓm

jk + δjkU
j∂jV

m
]
gm, (0.4)
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Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 45

where Γm
jk(x) are the Christoffel symbols

Γm
jk(x) := 〈∂kgj(x), g

m(x)〉 =
n−1∑

q=1

gmq

2
[
∂kgjq(x) + ∂jgkq(x) − ∂qgjk(x)

]

:= Γm
kj(x) . (0.5)

The calculus of differential operators on hypersurfaces presented here is based
on Günter’s derivatives. The definition applies the natural basis

e1 = (1, 0, . . . , 0)� , . . . , en = (0, . . . , 0, 1)� (0.6)

in the ambient Euclidean space R
n and the field of unit normal vectors to the

surface S

ν(X ) := −+
g1(Θ−1(X )) ∧ · · · ∧ gn−1(Θ−1(X ))
∣∣g1(Θ−1(X )) ∧ · · · ∧ gn−1(Θ−1(X ))

∣∣ , X ∈ S , (0.7)

where U (1) ∧· · ·∧U (n−1) (or also U (1) ×· · ·×U (n−1)) denotes the vector product
of vectors U (1), . . . ,U (n−1) ∈ R

n. If a hypersurface S in R
n is defined implicitly

S =
{

X ∈ ω : ΨS (X ) = 0
}
, (0.8)

where ΨS : ω → R is a Ck-mapping (or is a Lipschitz mapping) which is regular
∇Ψ(X ) �= 0, then the normalized gradient

ν(X ) := −+
∇ΨS (X )∣
∣∇ΨS (X )

∣
∣ , X ∈ S (0.9)

coincides with the outer unit normal vector provided the sign −+ is chosen appro-
priately.

The collection of the tangential Günter’s derivatives are defined as follows
(cf. [Gu1], [KGBB1], [Du1]);

Dj := ∂j − νj(X )∂ν = ∂dj . (0.10)

Here ∂ν :=
∑n

j=1 νj∂j denotes the normal derivative. For each 1 ≤ j ≤ n, the
first-order differential operator Dj = ∂dj is the directional derivative along the
tangential vector dj := πS ej , the projection of ej on the space of tangent vector
fields to S . Here

πS : R
n → V (S ), πS (t) = I − ν(t)ν�(t) =

[
δjk − νj(t)νk(t)

]
n×n

, t ∈ S

(0.11)
defines the canonical orthogonal projection π2

S = πS onto the space of tangent
vector fields V (S ) and (ν, πS v) = 0 for all v ∈ R

n.
For tangential vector fields V ∈ V (S ) and U ∈ V (S ) we have representa-

tions

V =
n∑

j=1

V 0
j ej =

n∑

j=1

V 0
j dj , U =

n∑

j=1

U0
j ej =

n∑

j=1

U0
j dj . (0.12)
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The surface gradient ∇S U and the surface divergence divS U are defined as fol-
lows

∇S U := (D1U
0, . . . ,DnU

0)� , divS U ; =
n∑

j=1

DjU
0
j (0.13)

(cf. (0.2)) while for the derivative of a vector field V along U and the corresponding
covariant derivative we have the formulae

∂UV =
n∑

j=1

U0
j DjV , ∂S

U V =
n∑

j=1

U0
j DS

j V (0.14)

(cf. (0.4)). Here DS
j : V (S ) → V (S ) is the covariant Günter’s derivative

DS
j V := πS DjV = DjV − 〈ν,DjV 〉ν, j = 1, . . . , n. (0.15)

The Lamé operator LS on S is the natural operator associated with the
Euler-Lagrange equations for a variational integral. The starting point is the total
free (elastic) energy

E [U ] :=
∫

S

E(y,DS U(y)) dS, DS U :=
[
(DS

j U)0k
]
n×n

, U ∈ V (S ),

(0.16)
ignoring at the moment the displacement boundary conditions (Koiter’s model).
Equilibria states correspond to minimizers of the above variational integral (see
[NH1, § 5.2]). The kernel E = (SS ,DefS ) depends bi-linearly on the stress SS =[
Sjk
]
n×n

and the deformation DS tensors. The following form of the important
deformation (strain) tensor was identified in [DMM1]

DefS (U) =
[
Djk(U)

]
n×n

, U =
n∑

j=1

U0
j dj ∈ V (S ), j, k = 1, . . . , n, (0.17)

Djk(U) :=
1
2
[
(DS

j U)0k + (DS
k U)0j

]
=

1
2

[
DkU

0
j + DjU

0
k +

n∑

m=1

U0
mDm

(
νjνk

)]
,

where (DS
j U)0k := 〈DS

j U , ek〉. Hooke’s law states that SS = T DefS for some
linear fourth-order tensor T :=

[
cjk�m

]
n×n×n×n

, which is positive definite:

〈Tζ, ζ〉 :=
n∑

i,j,k,�=1

cijk�ζijζk� ≥ C0

n∑

i,j=1

|ζi,j |2 := C0|ζ|2 (0.18)

for all symmetric tensors ζij = ζji ∈ C, ζ :=
[
ζij
]
n×n

. Moreover, T has the
following symmetry properties:

cijk� = cij�k = ck�ij ∀ i, j, k, � . (0.19)
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Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 47

The following form of the Lamé operator for a linear anisotropic elastic medium
was identified in [DMM1]:

LS = Def∗S T DefS =
[ n∑

�m=1

cjk�mDS
j DS

�

]

n×n
, U ∈ V (S ) , (0.20)

The adjoint operator to the deformation tensor

Def∗S U :=
1
2

n∑

j=1

{
(DS

j )∗
[
Ujk + Ukj

]}n

k=1
for U = ‖Ujk‖n×n (0.21)

maps tensor functions to vector functions.
For an isotropic medium

cjklm = λδjkδlm + µ
[
δjlδkm + δjmδkl

]
(0.22)

and the Lamé operator acquires a simpler form

LS U =−λ∇S divS U + 2µDef∗S DefS U

=−µπS ∆S U − (λ+ µ)∇S divS U − µH 0
S WS U , U ∈ V (S ) (0.23)

(cf. (0.11) for the projection πS ). λ, µ ∈ R are the Lamé moduli, whereas

H 0
S = −divS ν := −

n∑

j=1

Djνj = TrWS , WS = −[Djνk

]
n×n

. (0.24)

Note, that HS := (n − 1)−1H 0
S represents the mean curvature of the surface

S ; WS is the Weingarten curvature tensor of S ; Eigenvalues of WS , except one
which is 0, represent all principal curvatures of the surface S .

Note, that Günter’s derivatives were already applied in [MM1] to minimal
surfaces and in [Gu1], [KGBB1] to the problems of 3D elasticity.

We believe that our results should be useful in numerical and engineering
applications (cf. [AN1], [Be1], [Ce1], [Co1], [DaL1], [BGS1], [Sm1]). Having in mind
applications, equations in Cartesian coordinates are simpler for approximation and
numerical treatment.

The paper is organized as follows. § 1 is auxiliary. In § 2 we prove generalized
Lions’ Lemma for the Bessel potential spaces H

s
p(S ) on closed and on open hy-

persurfaces. The result is applied to the proof of important Korn’s inequality for
Killing’s vector fields.

In § 3 we investigate Killing’s vector fields, which constitute the kernel of
the Lamé operator and represent analogues of rigid motions in R

n. The most
important result there states that the class of Killing’s vector fields has the unique
continuation property from the boundary: if such a field vanishes on a set of
positive measure on the boundary of an open hypersurface, it vanishes on this
hypersurface identically. The result is applied to prove further Korn’s inequality
“without boundary condition” and to the investigation of basic BVPs for the Lamé
equation.
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In § 4 we prove the ellipticity of the Lamé operator, which follows also from
the G̊arding’s inequality

(LS U ,U)S ≥ C1‖U |H1(S )‖2 − C0‖U |L2(S )‖2.

For a closed hypersurface S the kernel KerLS coincides with the space of Killing’s
vector fields. Moreover, the operator LS +BI : H

s
p(S ) → H

s−2
p (S ) is invertible

if S is closed and smooth, 1 < p <∞, s ∈ R and B �= 0 is a non-negative function.
In §§ 5–7 we investigate the Dirichlet and the Neumann boundary value prob-

lems for the Lamé operator on an open hypersurface C under a minimal require-
ments on the surface. Namely, we require that the immersion Θ in (0.1) (or the
implicit function ΨS in (0.8)), representing the surface C , has the bounded second
derivative Θ ∈ (H2∞)n (ΨS ∈ H

2∞, respectively). The Dirichlet problem
{

LS U = F in C ,

U
∣
∣
Γ

= G on Γ := ∂S ,
F ∈ H̃

−1(C ), G ∈ H
1/2(Γ), (0.25)

where U =
∑n

j=1 U
0
j dj ∈ V (C ) ∩ H

1(C )n is the (tangential) generalized dis-
placement vector field of the elastic hypersurface S , is reduced to an equivalent
Dirichlet BVP with vanishing boundary data G = 0, which, in its turn, is equiva-
lent to the invertibility of the operator

LC : H̃
−1(C ) → H

−1(C ).

The invertibility derived from G̊arding’s inequality proved there. For the investi-
gation of the Neumann BVP we apply the Lax-Milgramm Lemma, based on the
coerciveness of the corresponding sesquilinear form.

1. Sobolev spaces and Bessel potential operators

Proposition 1.1. (cf. [DMM1]). The surface divergence divS and the surface gradi-
ent ∇S (cf. (0.13)) are dual operators (∇S ϕ,U)S := (ϕ, divS U)S with respect
to the usual scalar product of (square integrable) vector functions on the surface S

(U ,V )S =
∫

S

〈U(t),V (t)〉 dS ∀U ,V ∈ V (S ). (1.1)

The Laplace-Beltrami operator ∆S := divS ∇S on S writes

∆S ψ = −divS ∇Sψ =
n∑

j=1

D2
j ψ ∀ψ ∈ C2(S ) . (1.2)

We remind that the surface gradient ∇S maps scalar functions to the tan-
gential vector fields

∇S : C1(S ) → V (S ) ⊂ C(S ,Cn) (1.3)

and the scalar product with the normal vector vanishes 〈ν(X ),∇Sϕ(X )〉 ≡ 0 for
all ϕ ∈ C1(S ) and all X ∈ S .
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Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 49

Tangential derivatives can be applied to a definition of Sobolev spaces
H

m
p (S ), m ∈ N

0, 1 ≤ p <∞ on an �-smooth surface S if m ≤ �:

H
m
p (S ) := {ϕ ∈ D′(S ) : Dα

Sϕ ∈ Lp(S ) , ∀α ∈ N
n
0 , |α| ≤ m} , (1.4)

Dα
S := Dα1

1 · · ·Dαn
n .

The derivative of ϕ ∈ D′(S ) in (1.4) is understood, as usual, in the distributional
sense

(Djϕ, ψ)S := (ϕ,D∗
j ψ)S ,

where D∗
j is the formal dual operator to Dj (cf. [DMM1]):

D∗
j ϕ = −Djϕ− νjH

0
Sϕ , ϕ ∈ C1(S ) . (1.5)

The space H
1
p(S ) is well defined if S is a Lipschitz hypersurface.

Equivalently, H
m
p (S ) is the closure of the space C�(S ) (or of C∞(S ) if S

is infinitely smooth � = ∞) with respect to the norm

‖ϕ ∣∣Hm
p (S ) ‖ :=




∑

|α|≤m

‖Dα
Sϕ
∣∣Lp(S )‖p





1/p

. (1.6)

Moreover, H
m
2 (S ) is a Hilbert space with the scalar product

(ϕ, ψ)
(m)
S :=

∑

|α|≤m

∮

S

Dα
Sϕ)(X )Dα

Sψ(X )dS . (1.7)

As usual, H
−m
2 (S ) with an integer m ∈ N denotes the space of distributions

of the negative order −m which is dual to the Sobolev space H
m
2 (S ).

We write, as customary, H
m(S ) instead of H

m
2 (S ).

To accomplish the definition of the Banach spaces H
m
p (S ) we need to prove

the following.

Lemma 1.2. For ϕ ∈ C1(S ) the surface gradient vanishes ∇Sϕ ≡ 0 if and only
if ϕ(X ) ≡ const.

Proof. We only have to show that ∇S ϕ ≡ 0 implies ϕ(X ) ≡ const. The inverse
implication is trivial. Let

Ωε
S := S × [−ε, ε] := {X + tν : X ∈ S , −ε < t < ε}

be the tubular neighborhood of the surface of the thickness 2ε, with the middle
surface S . Taking ε sufficiently small, we can assume that the domain Ωε

S has
no self-intersections. Any function ϕ ∈ C1(S ) is extended as a constant along
the normal vector: ϕ̃(x, t) := ϕ(x), x, t ∈ Ωε

S . Then the normal derivatives are
applicable and vanish: ∂ν ϕ̃ = 0. Therefore the coordinate derivatives also are
applicable and ∂jϕ̃(X , t) = Djϕ(X ) ≡ 0 for all j = 1, . . . , n and all (X , t) ∈ Ωε

S .
But this implies ϕ̃(X ) ≡ const and, restricted to the surface, ϕ(X ) = γS ϕ̃(X ) =
const. �
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To the equivalence of the norm in (1.6) with the usual one defined by a parti-
tion of unity we only remark that among the “pull back” operators of n covariant
derivatives there always can be selected locally n − 1 linearly independent linear
differential operators of order 1 of the variable x ∈ R

n−1, which can equivalently
be replaced by the coordinate derivatives ∂1, . . . , ∂n−1.

Lemma 1.3. Let ϕ ∈ H
2(Ωε

S ) ∩ C1(S ) and γS∇ϕ, γS ∂ν ϕ denote the traces on
S of the spatial gradient and of the normal derivative, while ∇S ϕ denote the
surface gradient. Then

‖γS∇ϕ
∣
∣L2(S )‖2

2 = ‖∇S ϕ
∣
∣L2(S )‖2

2 + ‖γS ∂ν ϕ
∣
∣L2(S )‖2

2 . (1.8)

Proof. Indeed,

‖∇S ϕ
∣∣L2(S )‖2 =

n∑

j=1

∮

S

Djϕ(X )Djϕ(X ) dS

=
n∑

j=1

∮

S

(∂jϕ(X ) − νj(X )∂ν(x)ϕ(X ))(∂jϕ(X ) − νj(X )∂ν(x)ϕ(X )) dS

=
n∑

j=1

[∮

S

(∂jϕ(X )∂jϕ(X ) dS −
∮

S

νj(X )∂jϕ(X )∂ν(x)ϕ(X ) dS

−
∮

S

∂ν(x)ϕ(X )νj(X )∂jϕ(X ) dS + ν2
j (X )

∮

S

∂ν(x)ϕ(X )∂ν(x)ϕ(X ) dS
]

= ‖γS∇ϕ
∣
∣L2(S )‖2 − ‖γS ∂νϕ

∣
∣L2(S )‖2

and (1.8) follows. �

Lemma 1.4. The operator

∆S ,µ := µI − ∆S : H
1(S ) → H

−1(S ) , µ = const > 0 (1.9)

is positive definite, elliptic and invertible. For arbitrary s ∈ R the power ∆s
S ,µ

is a self-adjoint positive definite pseudodifferential operator with a trivial kernel
Ker∆r

S ,µ = {0} in the Sobolev space W
m
p (S ) = H

m
p (S ) for all m = 1, . . . ,m and

all 1 < p <∞.

Proof. The positive definiteness (also implying self-adjointness, ellipticity and in-
vertibility) of ∆S ,µ follows from Proposition 1.1

((µI − ∆S )ϕ,ϕ)S = µ‖ϕ∣∣L2(S )‖2 + ‖∇Sϕ
∣
∣L2(S )‖ ≥ C‖ϕ∣∣H1(S )‖2

with C := min{1, µ} > 0. Then the powers ∆s
S ,µ, s ∈ R exist and are pseudo-

differential operators (cf., e.g., [Sh1]). We quote [DNS1] (also see [Ag1, Du2, Ka1]
and [DNS2] for a most general result) that an elliptic pseudodifferential operators
on a closed manifold has the same kernel and cokernel in the spaces H

m
p (S ) for

all m = 1, . . . , � and all 1 < p <∞. �
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Now we are able to define the Bessel potential space H
s
p(S ) for arbitrary

s ∈ R and 1 < p <∞:

H
s
p(S ) :=

{
ϕ : ‖ϕ ∣∣Hs

p(S ) ‖ := ‖∆s/2
S ,1ϕ

∣
∣Lp(S ) ‖ <∞

}
. (1.10)

The Sobolev spaces with negative indices H
−s
p (S ), s < 0, 1 < p <∞ are dual

to H
s
p′(S ), p′ :=

p

p− 1
, with respect to the sesquilinear form (ϕ, ψ)S (cf. (1.1))

extended by continuity to duality between pairs ϕ ∈ H
s
p′(S ) and ψ ∈ H

−s
p (S ).

The embeddings H
s
p(S ) ⊂ Lp(S ) ⊂ H

−s
p (S ), for s > 0, are continuous,

even compact, and for integer-valued parameter s = m the space H
−m
p (S ) is the

convex linear hull of distributional derivatives of Lp(S )-functions:

H
−m
p (S ) := L {Dαϕ : ϕ ∈ Lp(S ) for all Dα = Dα1

1 · · ·Dαn
n , |α| ≤ m} .

If C is an open subsurface with the Lipschitz boundary Γ = ∂C �= ∅, H̃
s
p(C )

denotes the space of functions obtained by closing the space C∞
0 (C ) of smooth

functions with compact support in the norm of H
s
p(S ), where S is a smooth

closed surface which extends the surface C . Let C + := C and C − := C c = S \C
denote the complemented open surface S = C +∪C −; the notation H

s
p(C ) is used

for the factor space H
s
p(S )/H̃s

p(C
−); the space H

s
p(C ) can also be viewed as the

space of restrictions rCϕ := ϕ
∣∣
C

of all functions ϕ ∈ H
s
p(S ) to the subsurface

C = C +.
We refer to [Tr1] and [DS1] for details about similar spaces.

2. Lions’ Lemma and Korn’s inequalities

The following generalizes essentially J.L. Lions’ Lemma (cf. [DaL1, p.111], [Ta1],
[AG1, Proposition 2.10], [Ci3, § 1.7], [Mc1]).

Lemma 2.1. Let S be a 2-smooth closed hypersurface in R
n. Then the inclusions

ϕ ∈ H
−1
p (S ), Djϕ ∈ H

−1
p (S ), for all j = 1, . . . , n imply ϕ ∈ Lp(S ).

Moreover, the assertion remains valid for a hypersurface C with the Lipschitz
boundary Γ := ∂C and the spaces H

−1
p (C ) and H̃

−1
p (C ).

Proof. First we assume that S is a closed surface. The proof is based on the
following facts (cf. [Hr1, Sh1, Ta2, Tr1]):

A. The “lifting operators” (the Bessel potential operator) Λ−+1

S (X , D) := ∆−+1/2

S ,1

(cf. Lemma 1.4 and (1.10)), are invertible Λ−+1

S (X , D)Λ
−+1
S (X , D) = I, map-

ping isometrically the spaces

Λ−1
S (X , D) : H

m−1
p (S ) → H

m
p (S ),

ΛS (X , D) : H
m
p (S ) → H

m−1
p (S )

(2.1)

for arbitrarym = 0, −+1, . . . and are pseudodifferential operators of order −+1,
respectively.

Roland Duduchava
Cross-Out
$\vf\in\bH^s_p(\cS)$, supported in 
$\overline\cC$, $\cC\subset\cS$, 

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
surface without the boundary

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
hypersurface without the boundary

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
hypersurface without boundary

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
subsurface with the boundary

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
subsurface with the boundary



52 R. Duduchava

B. The commutant

[Dj ,Λ−1
S (X , D)] := DjΛ−1

S (X , D) − Λ−1
S (X , D)Dj (2.2)

with the pseudodifferential operator Dj has order −1 and maps continuously
the spaces

[Dj ,Λ−1
S (X , D)] : H

−1
p (S ) → Lp(S ).

The assertion (B) is a well-known property of pseudodifferential operators
and can be retrieved from many sources [Hr1, Sh1, Ta1, Tr1].

Let ϕ ∈ H
−1
p (S ), Djϕ ∈ H

−1
p (S ), for all j = 1, . . . , n. Then, due to

(2.1), ψ := Λ−1
S (X , D)ϕ ∈ Lp(S ) and, due to (2.2), Djψ = [Dj ,Λ−1

S (X , D)]ϕ +
Λ−1

S (X , D)Djϕ ∈ Lp(S ) for all j = 1, . . . , n. By the definition of the space
H

1
p(S ) = H

1
p(S ) in (1.6) we conclude that ψ ∈ H

1
p(S ). Due to (2.1) we get

finally ϕ = ΛS (X , D)ψ ∈ Lp(S ).
If C has non-empty Lipschitz boundary Γ �= ∅, there exist pseudodifferential

operators
Λ−1
− (X , D) : H

−1
p (C ) → Lp(C ) ,

Λ−1
+ (X , D) : H̃

−1
p (C ) → L̃p(C ) ,

(2.3)

of order −1, arranging isomorphisms between the indicated spaces, and their in-
verses are Λ−+ (X , D), respectively (cf. [DS1]).

Moreover, the commutants [Dj ,Λ−1

−+
(X , D)] := DjΛ−1

−+
(X , D)−Λ−1

−+
(X , D)Dj

have order −1, i.e., mapping continuously the spaces [Dj ,Λ−1
− (X , D)] : H

−1
p (C ) →

Lp(C ) and [Dj ,Λ−1
+ (X , D)] : H̃

−1
p (C ) → Lp(C ).

By using the formulated assertions the proof is completed as in the case of a
closed surface S . �

The foregoing Lemma 2.1 has the following generalization for the Bessel po-
tential spaces H̃

s
p(S ).

Lemma 2.2. If S is closed, sufficiently smooth, 1 < p < ∞, s ∈ R, m = 1, 2, . . .
and

ϕ ∈ H
s−m
p (S ) , Dαϕ = Dα1

1 · · ·Dαn
n ϕ ∈ H

s−m
p (S ) for all |α| ≤ m,

then ϕ ∈ H
s
p(S ).

Moreover, the assertion remains valid for a hypersurface C with the Lipschitz
boundary Γ := ∂C and the spaces H

s
p(C ) and H̃

s
p(C ).

Proof. Assume first S has no boundary. The proof is based on similar facts as in
the foregoing case:

A. The “lifting operator” (the Bessel potential operator) Λr
S (X , D) := ∆r/2

S ,1

(cf. Lemma 1.4 and (1.10)) maps isometrically the spaces

Λr
S (X , D) : H

s
p(S ) → H

s−r
p (S ) , r ∈ R (2.4)

has the inverse Λ−r
S (X , D) and is a pseudodifferential operator of order r.
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B. The commutant

[Dα,Λr
S (X , D)] := DαΛr

S (X , D) − Λr
S (X , D)Dα (2.5)

is a pseudodifferential operator of order |α| + r − 1 and maps continuously
the spaces

[Dα,Λr
S (X , D)] : H

γ
p(S ) → H

γ−|α|−r+1
p (S ), ∀ γ ∈ R.

Assume that m = 1. Then ϕ ∈ H
s−1
p (S ) and, due to (2.4), (2.5), it follows

that ψ := Λs−1
S (X , D)ϕ ∈ Lp(S ), Djψ = [Dj ,Λs−1

S (X , D)]ϕ + Λs−1
S (X , D)Djϕ ∈

Lp(S ) for all j = 1, . . . , n. By the definition of the space H
1
p(S ) = H

1
p(S ) in (1.6)

the inclusion ψ ∈ H
1
p(S ) follows. Due to (2.4) we get finally ϕ = Λ1−s

S (X , D)ψ ∈
H

s
p(S ).

Now assume: m = 2, 3, . . . and the assertion is valid for m − 1. Then, due
to the hypothesis, ψj := Djϕ ∈ H

s−m
p (S ) for j = 1, . . . , n. Moreover, due to the

same hypothesis,

Dαψj := DαDjϕ ∈ H
s−m
p (S ) for all |α| ≤ m− 1 and all j = 1, . . . , n.

Hence the induction hypothesis implies that ψj := Djϕ ∈ H
s−1
p (S ) for j =

1, . . . , n. Now it follows from the already considered case m = 1 that ϕ ∈ H
s
p(S ).

If C has the non-empty Lipschitz boundary Γ �= ∅, there exist pseudodiffer-
ential operators

Λr
−(X , D) : H

s
p(C ) → H

s−r
p (C ) , Λr

+(X , D) : H̃
s
p(C ) → H̃

s−r
p (C ) , (2.6)

arranging isomorphisms between the indicated spaces, and their inverses are
Λ−r
− (X , D), Λ−r

+ (X , D) (cf. [DS1]).
Moreover, the pseudodifferential operators Λ−r

−+
(X , D) have order −r and

the commutants [Dα,Λ−r

−+
(X , D)] := DαΛ−1

−+
(X , D) − Λ−r

−+
(X , D)Dα have order

|α| − r − 1, i.e., mapping continuously the spaces [Dα,Λ−r
− (X , D)] : H

γ
p(C ) →

H
γ+r+1−|α|
p (C ) and [Dα,Λ−r

+ (X , D)] : H̃
γ
p(C ) → H̃

γ+r+1−|α|
p (C ).

By using the formulated assertions the proof is completed as in the foregoing
cases. �

Theorem 2.3. (Korn’s I inequality “without boundary condition”). Let S ⊂ R
n

be a Lipshitz hypersurface without boundary, DefS (U) := [Djk(U )]n×n be the
deformation tensor (cf. (0.17)) and

∥
∥DefS (U )

∣
∣Lp(S )

∥
∥ :=




n∑

j,k=1

∥
∥DjkU

∣
∣Lp(S )

∥
∥p





1/p

, U ∈ H
1
p(S ) (2.7)

for 1 < p <∞. Then
∥
∥U
∣
∣H1

p(S )
∥
∥ ≤M

[∥∥U
∣
∣Lp(S )

∥
∥p

+
∥
∥DefS (U )

∣
∣Lp(S )

∥
∥p]1/p

(2.8)
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54 R. Duduchava

for some constant M > 0 or, equivalently, the mapping

U �→ [∥∥U ∣∣Lp(S )
∥
∥p +

∥
∥DefS (U )

∣
∣Lp(S )

∥
∥p]1/p

is an equivalent norm on the space H
1
p(S ).

Proof. Consider the space

Ĥ
1
p(S ) :=

{
U =

(
U1, . . . , Un

)� : Uj , Djk(U) ∈ Lp(S ) for all j, k = 1, . . . , n
}

(2.9)
endowed with the norm (cf. (2.8)):

∥
∥U
∣
∣Ĥ1

p(S )
∥
∥ :=

[∥∥U
∣
∣Lp(S )

∥
∥p +

∥
∥DefS (U)

∣
∣Lp(S )

∥
∥p]1/p

. (2.10)

The derivatives here are understood in the distributional sense

(Djk(U), ψ)S :=
1
2
(Uk,D

∗
j ψ)S +

1
2
(Uj ,D

∗
kψ)S ∀ψ ∈ C1(S )

(cf. (1.5) for the formal dual operator D∗
j ).

It is sufficient to prove that the spaces H
1
p(S ) and Ĥ

1
p(S ) are identical.

The inclusion H
1
p(S ) ⊂ Ĥ

1
p(S ) is trivial and we only check the inverse inclusion

Ĥ
1
p(S ) ⊂ H

1
p(S ).

To this end take U ∈ Ĥ
1
p(S ) and note that the inclusions U ∈ Lp(S ),

DefS (U) ∈ Lp(S ) (i.e., DjkU ∈ Lp(S ) for all j, k = 1, . . . , n) imply

D̃jk(U ) =
1
2

[
DkUj + DjUk

]
= Djk(U) − 1

2

n∑

r=1

∂r

(
νjνk

)
Ur ∈ Lp(S ) (2.11)

for all j, k = 1, . . . , n. Then (cf. [DMM1, Proposition 4.4.iv] for the commutator
[Dj ,Dk]):

DjUk ∈ H
−1
p (S ),

[
Dj ,Dk

]
Um =

n∑

r=1

[
νjDkνr − νkDjνr

]
DrUm ∈ H

−1
p (S ),

DkDjUm = DjD̃km(U) + DkD̃jm(U) − DmD̃jk(U) − 1
2
[
Dj ,Dk

]
Um

−1
2
[
Dj ,Dm

]
Uk − 1

2
[
Dk,Dm

]
Uj ∈ H

−1
p (S ) for j, k,m = 1, . . . , n ,

Due to Lemma 2.1 of J.L. Lions this implies DjUm ∈ Lp(S ) for all j,m = 1, . . . , n
and the claimed result U ∈ H

1
p(S ) follows. �

Remark 2.4. The foregoing Theorem 2.3 is proved by P. Ciarlet in [Ci3] for the
case p = 2, m = 1, closed manifold (without boundary), for curvilinear coordinates
and covariant derivatives.

A remarkable consequence of Korn’s inequality (2.8) is that the space

H
1
p(S ) :=

{
U =

(
U1, . . . , Un

)� : Uj , DkUj ∈ Lp(S ) for all j, k = 1, . . . , n
}
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(cf. (1.6)) and the space Ĥ
1
p(S ) (cf. (2.9)) are isomorphic (i.e., can be identified),

although only
n(n+ 1)

2
< n2 linear combinations of the n2 derivatives DjUk,

j, k = 1, . . . , n participate in the definition of the space Ĥ
1
p(S ).

3. Killing’s vector fields and the unique continuation
from the boundary

Definition 3.1. Let S be a hypersurface in the Euclidean space R
n. The space

R(S ) of solutions to the deformation equations

Djk(U) :=
1
2
[
(DS

j U)0k + (DS
k U)0j

]

=
1
2

[
DkU

0
j + DjU

0
k +

n∑

m=1

U0
mDm

(
νjνk

)]
= 0 , (3.1)

U =
n∑

j=1

U0
j dj ∈ V (S ), j, k = 1, . . . , n

(cf. (0.17)) is called the space of Killing’s vector fields.

Killing’s vector fields on a domain in the Euclidean space Ω ⊂ R
n are known

as the rigid motions and we start with this simplest class.
The space of rigid motions R(Ω) extends naturally to the entire R

n and
consists of linear vector functions

V (x) = a+ Bx , B =
[
bjk

]
n×n

, a ∈ R
n , x ∈ R

n , (3.2)

where the matrix B is skew symmetric

B :=








0 b12 b13 · · · b1(n−2) b1(n−1)

−b12 0 b21 · · · b1(n−3) b2(n−2)

· · · · · · · · · · · · · · · · · ·
−b1(n−2) −b2(n−3) −b3(n−4) · · · 0 b(n−1)1

−b1(n−1) −b2(n−2) −b3(n−3) · · · −b(n−1)1 0








= −B� (3.3)

with real-valued entries bjk ∈ R. For n = 3, 4, . . . the space R(Rn) is finite-

dimensional and dimR(Rn) = n+
n(n− 1)

2
=
n(n+ 1)

2
.

Note that for n = 3 the vector field V ∈ R(Ω), Ω ⊂ R
3, is the classical rigid

displacement

V (x) = a+ Bx = a+ b ∧ x ,

b := (b1, b2, b3)� ∈ R
3 , x ∈ Ω ,

B :=




0 −b3 b2
b3 0 −b1
−b2 b1 0



 . (3.4)

Definition 3.2. We call a subset M ⊂ R
n essentially m-dimensional and write

ess dim M = m, if there exist m + 1 points X
0,X 1, · · · ,X m ∈ M such that the

vectors
{

X
j − X

0
}m

j=1
are linearly independent.
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Note, that any m-dimensional subset M ⊂ R
m is essentially m-dimensional,

because contains m linearly independent vectors. Moreover, any collection of m+1
points in R

m (a 0-dimensional subset!) is essentially m-dimensional, provided these
points does not belong to any m− 1-dimensional hyperplane.

Proposition 3.3. Let

Def(U) :=
[
D0

jk(U)
]

n×n
, (3.5)

D0
jk(U) =

1
2

[
∂kU

0
j + ∂jU

0
k

]
, U =

n∑

j=1

U0
j ej

be the deformation tensor in Cartesian coordinates.
The linear space R(Rn) of rigid motions (of Killing’s vector fields) in R

n

consists of vector fields K = (K0
1 , . . . ,K

0
n)� which are solutions to the system

2D0
jk(K)(x) = ∂kK

0
j (x) + ∂jK

0
k(x) = 0 x ∈ S for all j, k = 1, . . . , n. (3.6)

If a rigid motion vanishes on an essentially (n − 1)-dimensional subset
K(X ) = 0 for all X ∈ M , ess dim M = n − 1, or at infinity K(x) = O(1)
as |x| → ∞, then K vanishes identically K(x) ≡ 0 on R

n.

Proof. The proof can be retrieved from many sources. We quote only two of them
[Ci2, KGBB1]. �
Remark 3.4. For the deformation tensor in Cartesian coordinates Def(U) (cf. (3.5))
in a domain Ω ⊂ R

n Korn’s inequality
∥∥U
∣∣H1

p(Ω)
∥∥ ≤M

[∥∥U
∣∣Lp(Ω)

∥∥P +
∥∥Def(U )

∣∣Lp(Ω)
∥∥p
]1/p

, 1 < p <∞ (3.7)

with some constant M > 0 is well known and is proved, e.g., in [Ci2] (cf. (2.7) for
a similar norm).

In contrast to the rigid motions in R
n nobody can describe Killing’s vector

fields on hypersurfaces explicitly so far. The next Theorem 3.5 underlines impor-
tance of Killing’s vector fields for the Lamé equation on hypersurfaces. Later we
investigate properties of Killing’s vector fields to prepare tools for investigations
of boundary value problems for the Lamé equation.

Theorem 3.5. Let S be an �-smooth closed hypersurface in R
n and � ≥ 2. The

Lamé operator LS for an isotropic media (cf. (0.23))

LS : H
s+1
p (S ) → H

s−1
p (S ) (3.8)

is self-adjoint L ∗
S = LS , elliptic, Fredholm and Ind LS = 0 for all 1 < p < ∞

and all s ∈ R, provided that |s| ≤ �.
The kernel of the operator KerLS ⊂ H

s
p(S ) is independent of the parameters

p and s, coincides with the space of Killing’s vector fields

KerLS = {U ∈ V (S ) : LS U = 0} = R(S ), (3.9)

is finite-dimensional and dimR(S ) = dim KerLS <∞.
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If S is C∞ smooth, then the Killing’s vector fields are smooth as well
R(S ) ⊂ C∞(S ).

LS is non-negative on the space H
1(S ) and positive definite on the orthog-

onal complement H
1
R(S ) to the kernel

(LS U ,U)S ≥ 0 for all U ∈ H
1(S ) , (3.10)

(LS U ,U)S ≥ C
∥
∥U
∣
∣H1(S )

∥
∥2 for all U ∈ H

1
R(S ) , C > 0 , (3.11)

where H
1
R(S ) is the orthogonally complemented subspace to R(S ) in H

1(S ).
Moreover, the following G̊arding’s inequality

(LS U ,U)S ≥ C1‖U |H1(S )‖2 − C0‖U |H−r(S )‖2 (3.12)

holds for all U ∈ H
1(S ), with arbitrary 0 < r ≤ � and some positive constants

C0 > 0, C1 > 0.

The proof will be given later, in § 4. Here we draw the following consequence.

Corollary 3.6. Let S ⊂ R
n be a Lipschitz hypersurface without boundary,

DefS (U) := [Djk(U)]n×n

be the deformation tensor (cf. (0.17)) and the norm
∥∥DefS (U )

∣∣L2(S )
∥∥

be defined by (2.7).
Then the following Korn’s inequality

∥
∥DefS (U)

∣
∣L2(S )

∥
∥ ≥ c

∥
∥U
∣
∣H1(S )

∥
∥ ∀U ∈ H

1
R(S ) (3.13)

holds for some constant c > 0 or, equivalently, the mapping

U �→ ∥∥DefS (U)
∣
∣L2(S )

∥
∥

is an equivalent norm on the orthogonal complement H
1
R(S ) to the space of

Killing’s vector fields.

Proof. Due to Korn’s inequality (2.8) for p = 2
∥
∥U
∣
∣L2(S )

∥
∥2 ≥M1

[∥
∥U
∣
∣H1(S )

∥
∥2 − ∥∥U ∣∣H1(S )

∥
∥
∥
∥DefS (U)

∣
∣L2(S )

∥
∥2
]

the mapping DefS : H
1
R(S ) → L2(S ) is Fredholm and has index 0. The inequal-

ity (3.13) follows since the mapping is injective (has an empty kernel). �

Let us recall some results related to the uniqueness of solutions to arbitrary
elliptic equation.

Definition 3.7. Let Ω be an open subset with the Lipschitz boundary ∂Ω �= ∅ either
on a Lipschitz hypersurface S ⊂ R

n or in the Euclidean space R
n−1.

A class of functions U (Ω) defined in a domain Ω in R
n, is said to have the

strong unique continuation property, if every u ∈ U (Ω) in this class which vanishes
to infinite order at one point must vanish identically.
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58 R. Duduchava

If a surface S is C∞-smooth, any elliptic operator on S has the strong
unique continuation property due to Holmgren’s theorem. But we can have more.

Lemma 3.8. Let S be a C2-smooth hypersurface in R
n. The class of solutions to a

second-order elliptic equation A(X ,D)u = 0, with Lipschitz continuous top-order
coefficients on a surface S has the strong unique continuation property.

In particular, if the solution u(X ) = 0 vanishes in any open subset of S it
vanishes identically on entire S .

Proof. The result was proved in [AKS1] for a domain Ω ⊂ R
n by the method of

“Carleman estimates” (also see [Hr1, Volume 3, Theorem 17.2.6]). Another proof,
involving monotonicity of the frequency function was discovered by N. Garofalo
and F. Lin (see [GL1, GL2]). A differential equation A(X ,D)u(X ) = 0 with Lips-
chitz continuous top-order coefficients on a C2-smooth surface S is locally equiva-
lent to a differential equation with Lipschitz continuous top-order coefficients on a
domain Ω ⊂ R

n−1. Therefore a solution u(X ) has the strong unique continuation
property locally (on each coordinate chart) on S .

Since S is covered by a finite number of local coordinate charts which inter-
sect on open neighborhoods, a solution u(X ) has the strong unique continuation
property globally on S . �

Remark 3.9. If the top-order coefficients of a second-order elliptic equation
A(X ,D)u = 0 in open subsets Ω ⊂ R

n, n ≥ 3, are merely Hölder continuous,
with exponent less than 1, examples due to A. Plis [Pl1] and K. Miller [Mi1] show
that a solution u(x) does not have the strong unique continuation property.

Lemma 3.10. Let C be a C2-smooth hypersurface in R
n with the Lipschitz boundary

Γ := ∂C and γ ⊂ Γ be an open part of the boundary Γ. Let A(X ,D) be a second-
order elliptic system with Lipschitz continuous top-order matrix coefficients on a
surface S .

The Cauchy problem





A(X ,D)u = 0 on C , u ∈ H
1(Ω),

u(s) = 0 for all s ∈ γ,

(∂V u)(s) = 0 for all s ∈ γ,

(3.14)

where V is a non-tangent vector to Γ, but tangent to S , has only a trivial solution
u(X ) = 0 on entire S .

Proof. With a local diffeomorphism the Cauchy problem (3.14) is transformed into
a similar problem on a domain Ω ⊂ R

n−1 with the Cauchy data vanishing on some
open subset of the boundary γ ⊂ Γ := ∂Ω.

Let us, for simplicity, use the same notation γ ⊂ Γ = ∂Ω, the non-tangent
vector V to γ, the function u and the differential operator A(x,D) for the trans-
formed Cauchy problem in the transformed domain Ω. Moreover, we will suppose
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that γ is a part of the hypersurface x1 = 0 (otherwise we can transform the do-
main Ω again). We also use new variables t = x1 and x := (x2, . . . , xn−1). Then
(0, x) ∈ γ while (t, x) ∈ Ω for all small 0 < t < ε and some x ∈ Ω′.

Thus, the natural basis element e1 (cf. (0.6)) is orthogonal to γ and, therefore,
e1 = c1(x)V (0, x) + c2(x)gj(x) for some unit tangential vector gj(x) to γ for all
x ∈ Ω′ and some scalar functions c1(x), c2(x). Then, due to the third line in (3.14),

(∂tu)(0, x) = ∂eju(0, x) = c1(x)∂V u(0, x) + c2(x)∂gju(0, x) = 0

because any derivative along tangential vector to γ vanishes ∂gju(0, x) = 0 due to
the second line in (3.14).

The second-order equation A(t, x; D) can be written in the form

A(t, x,D)u = A(t, x; e1)∂2
t u+ A1(t, x;D)∂tu+ A2(t, x;D), D := −i∂x,

where A1(t, x; e1) is the (invertible) matrix function, A1(t, x;D) and A2(t, x;D)
are differential operators of orders 1 and 2 respectively, compiled of derivatives ∂x,
x ∈ Ω′. Therefore, if A

0
j (t, x;D) := A

−1(t, x; e1)Aj(t, x;D), j = 1, 2, the Cauchy
problem (3.14) transforms into





∂2
t u(t, x) + A

0
1(t, x;D)∂tu(t, x) + A

0
2(t, x;D)u(t, x) = 0 on (t, x) ∈ Ωε,

u(0, x) = 0 for all x ∈ Ω′,

(∂tu)(0, x) = 0 for all x ∈ Ω′,

(3.15)

where Ωε := (0, ε) × Ω′ ⊂ Ω, u ∈ H
1(Ωε) and γ :=

{
(0, x) : x ∈ Ω′}.

Now let us recall the inequality (see [Miz1, § 4.3, Theorem 4.3, § 6.14], [Sch1,
§ 4-7, Lemma 4-21]): There is a constant C which depends on ε and A(t, x;D) only
and such that the inequality

∫

Ωε

e−λt|v(t, x)|2dt dx ≤ C

∫

Ωε

e−λt|(A(t, x;D)v)(t, x)|2dt dx, (3.16)

holds for A(t, x;D)v ∈ L2(Ωε), v ∈ C∞(Ωε); moreover, v(t, x) should vanish near
t = ε and should have vanishing Cauchy data v(0, x) = (∂tv)(0, x) = 0 for all
x ∈ Ω′.

Let ρ ∈ C2(0, ε) be a cut-off function: ρ(t) = 1 for 0 ≤ t < ε/2 and ρ(t) = 0
for 3ε/4 ≤ t < ε. Then v := ρu ∈ H

1(Ωε) and since A(t, x;D)u = 0 on Ωε, we get

A(t, x;D)(ρu)=ρA(t, x;D)u + (∂2
t ρ)u + (∂tρ)∂tu+ (∂tρ)A0

1(t, x;D)u

=(∂2
t ρ)u+ (∂tρ)∂tu+ (∂tρ)A0

1(t, x;D)u.

We have asserted u ∈ H
1(Ωε), ρ ∈ C2 and this implies (∂2

t ρ)u ∈ H
1(Ωε) ⊂

L2(Ωε), (∂tρ)∂tu ∈ L2(Ωε). Note, that (∂tρ(t) vanishes for 0 < t < ε/2. Therefore
(∂tρ)A0

1(t, x;D)u vanishes in a neighborhood of the boundary γ ⊂ Γ. Due to a
priori regularity result (cf. [LM1, Ch. 2, § 3.2, § 3.3]), a solution to an elliptic
equation in (3.15) has additional regularity u ∈ H

2(Ω0
ε) for arbitrary Ω0

ε properly
imbedded into Ωε. This implies (∂tρ)A0

1(t, x;D)u ∈ L2(Ωε) and we conclude

A(t, x;D)(ρu) ∈ L2(Ωε). (3.17)
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Introducing v = ρu into the inequality (3.16) we get
∫

Ω′

∫ ε/4

0

e−λt|ρ(t)u(t, x)|2dt dx ≤
∫

Ωε

e−λt|ρ(t)u(t, x)|2dt dx

≤ C

∫

Ω′

∫ 3ε/4

ε/2

e−λt|(A(t, x;D))ρ(t)u(t, x)|2dt dx.

This implies for λ > 0
∫

Ω′

∫ ε/4

0

|ρ(t)u(t, x)|2dt dx ≤ e−λε/4

∫

Ωε

|(A(t, x;D))ρ(t)u(t, x)|2 dt dx ≤ C1e
−λε/4.

where, due to (3.14), C1 > 0 is a finite constant. By sending λ → ∞ we get the
desired result u(t, x) = 0 for all 0 ≤ t ≤ ε/4 and all x ∈ Ω′. Since u(x) vanishes
in a subset of the domain Ω, bordering γ, due to Lemma 3.8 the solution vanishes
on entire Ω (on entire C ). �

Due to our specific interest (see the next Lemma 3.12) and many applications,
for example to control theory, the following boundary unique continuation property
is of special interest.

Definition 3.11. Let S be a Lipschitz hypersurface in R
n and C ⊂ S be an open

subsurface with the Lipschitz boundary Γ = ∂C .
We say that a class of functions U (Ω) has the strong unique continuation

property from the boundary if a vector function U ∈ U (Ω) which vanishes U(s) =
0, ∀ s ∈ γ on an open subset of the boundary γ ⊂ Γ, vanishes on the entire C .

Lemma 3.12. Let S be a C2-smooth hypersurface in R
n and C ⊂ S be an open

C2-smooth subsurface.
The set of Killing’s vector fields R(S ) on the open surface C has the strong

unique continuation property from the boundary.

Proof. Let γ ⊂ Γ := ∂C , mes γ > 0 and U(s) = 0 for all s ∈ γ ⊂ Γ := ∂C . Then
(cf. (3.1))





(DjU

0
k )(s) + (DkU

0
j )(s) = −

n∑

m=1
U0

m(s)Dm

(
νj(s)νk(s)

)
= 0,

U0
k (s) = 0 ∀ s ∈ γ, j, k = 1, . . . , n.

(3.18)

Among tangent vector fields generating the Günter’s derivatives
{
dj(s)

}n−1

j=1

only n − 1 are linearly independent. One of vectors might collapse at a point
dj(s) = 0 if the corresponding basis vector ej is orthogonal to the surface at
s ∈ S , while others might be tangential to the subsurface Γ, except at least one,
say dn(s), which is non-tangential to γ. Then from (3.18) follows

2(DnU
0
n)(s) = 0 and implies (DjU

0
n)(s) = 0 (3.19)

for all s ∈ γ and all j = 1, . . . , n.
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Indeed, the vector dj , 1 ≤ j = 1 ≤ n − 1 is a linear combination dj(s) =
c1(s)dn(s) + c2(s)τ j(s) of the non-tangential vector dn(s) and of the projection
τ j(s) := πγdj(s) of dj(s) to the subsurface γ at the point s ∈ γ. Since Un vanishes
identically on γ, the derivative (∂τ jU0

n)(s) = 0 vanishes as well and (3.19) follows:

(DjU
0
n)(s) = c1(s)(∂dnU0

n)(s) + c2(s)(∂τ jU0
n)(s) = c1(s)(DnU

0
n)(s) = 0 ∀ s ∈ γ.

Equalities (3.18) and (3.19) imply

(DnU
0
j (s) = −(DjU

0
n)(s) = 0 ∀ s ∈ γ and all j = 1, . . . , n. (3.20)

Thus, we have the following Cauchy problem





LC (X ,D)U(X ) = 0 on C ,

U(s) = 0 for all s ∈ γ,

(DnU)(s) = (∂dnU)(s) = 0 for all s ∈ γ,

(3.21)

where dn is a vector filed non-tangential to Γ. Due to Lemma 3.10, U(X ) = 0 for
all X ∈ C . �

Corollary 3.13. (Korn’s I inequality “with boundary condition”). Let C ⊂ R
n be

a C�-smooth hypersurface with the Lipschitz boundary Γ := ∂C �= ∅ and � ≥ 2,
|s| ≤ �. Then

∥
∥U
∣
∣Hs

p(C )
∥
∥ ≤M

∥
∥DefC (U)

∣
∣Hs−1

p (C )
∥
∥ ∀U ∈ H̃

s
p(C )

for some constant M > 0. In other words: the mapping

U �→ ∥∥DefC (U)
∣
∣Hs−1

p (C )
∥
∥ (3.22)

is an equivalent norm on the space H̃
s
p(C ).

Proof. If the claimed inequality (3.22) is false, there exists a sequence U j ∈ H̃
s
p(C ),

j = 1, 2, . . . such that
∥
∥U j
∣
∣Hs

p(C )
∥
∥ = 1 ∀j = 1, 2, . . . lim

j→∞
∥
∥DefC (U j)

∣
∣Hs−1

p (C )
∥
∥ = 0.

Due to the compact embedding H̃
s
p(C ) ⊂ H

s
p(C ) ⊂ H

s−1
p (C ), a convergent subse-

quence U j1 ,U j2 , . . . in H
s−1
p (C ) can be selected. Let U0 = limk→∞ U jk . Then

∥∥DefC (U0)
∣∣Hs−1

p (C )
∥∥ = lim

k→∞
∥∥DefC (U jk)

∣∣Hs−1
p (C )

∥∥ = 0

and U0 is a Killing’s vector field. Since U(x) = 0 on Γ, due to Lemma 3.12 U0(x) =
0 for all x ∈ C which contradicts to

∥
∥U0
∣
∣Hs

p(C )
∥
∥=limk→∞

∥
∥U jk

∣
∣Hs

p(C )
∥
∥=1. �
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4. A local fundamental solution to the Lamé equation

Proof of Theorem 3.5. Let us check the ellipticity of LS . The operator LS maps
the tangential spaces and the principal symbol is defined on the cotangent space.
The cotangent space is orthogonal to the normal vector and, therefore,

LS (X , ξ)η = µ|ξ|2(1−νν�)η+(λ+µ)ξξ�η = µ|ξ|2η+(λ+µ)ξξ�η , ∀ ξ, η ⊥ ν.

Thus, while considering the principal symbol LS (X , ξ) we can ignore the projec-
tion πS . With this assumption, the principal symbol of LS reads

LS (X , ξ) = µ|ξ|2 + (λ + µ)ξξ� for (X , ξ) ∈ T
∗(S ) . (4.1)

The matrix LS (X , ξ) has eigenvalue (λ+ 2µ)|ξ|2 (the corresponding eigenvector
is ξ) and µ|ξ|2 which has multiplicity n− 1 (the corresponding eigenvectors θj are
orthogonal to ξ: ξ�θj = 〈ξ, θj〉 = 0, j = 1, . . . , n− 1). Then

detLS (X , ξ) = (λ+ 2µ)|ξ|2[µ|ξ|2]n−1 = µn−1(λ+ 2µ) > 0

for (X , ξ) ∈ T
∗(S ) , |ξ| = 1

and the ellipticity is proved.
The ellipticity of the differential operator LS = LS (X ,D) in (3.8) on a

closed manifold S , proved above, implies Fredholm property for all 1 < p <
∞ and all s ∈ R. Indeed, LS (X ,D) has a parametrix RS (X ,D), which is a
pseudodifferential operator (ΨDO) with the symbol RS (X , ξ) := χ(ξ)L −1

S (X , ξ),
where L −1

S (X , ξ) is the inverse symbol and χ ∈ C∞(Rn) is a smooth function,
χ(ξ) = 1 for |ξ| > 2 and χ(ξ) = 0 for |ξ| < 1. ΨDO RS (X ,D) is a bounded
operator between the spaces

RS (X ,D) : H
s−2
p (S ) → H

s
p(S ), for all 1 < p <∞, s ∈ R,

because the symbol RS (X , ξ) = L −1
S (X , ξ) belongs to the Hörmander class

S−2(S ,Rn) ∣
∣
∣Dα∂β

ξ RS (X , ξ)
∣
∣
∣ ≤ Cα,β |ξ|−2−|β|

for all multi-indices α, β ∈ Z
n
+ (cf. [Hr1, Sh1, Ta2] for details).

The Fredholm property for the case p = 2 and s = 1 follows from G̊arding’s
inequality (3.12) as well (cf. [HW1, Thorem 5.3.10] and [Mc1, Thorem 2.33]).

The Fredholm property implies the finite-dimensional kernel

dim KerLS (X ,D) <∞.

To prove that the index is trivial IndLS (X ,D) = 0 for all 1 < p < ∞,
s ∈ R we apply G̊arding’s inequality (3.12) and homotopy. For this purpose first
note that the symbol LS (X , ξ) is positive definite (cf. (4.1))

〈LS (X , ξ)η, η〉 = µ|ξ|2|η|2 + (λ+ µ)〈ξξ�η, η〉 = µ|ξ|2|η|2 + (λ+ µ)
∑

j=1n

(ξjηj)2

≥ µ|ξ|2|η|2 ∀X ∈ S , ∀ ξ, η ∈ R
n. (4.2)
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Further recall that the Bessel potential operator Λ2
S (X , D) : H

s
p(S ) →

H
s−2
p (S ) (cf. (2.4)) lifting the Bessel potential spaces, has positive definite symbol

〈Λ2
S (X , ξ)η, η〉 ≥ C|ξ|2|η|2 ∀X ∈ S , ∀ ξ, η ∈ R

n (4.3)

(cf. [DS1]). Now consider the symbols Bτ (X , ξ) = (1 − τ)LS (X , ξ) + τΛ2
S (X , ξ)

and the corresponding ΨDO

Bτ (X ,D) = (1 − τ)LS (X ,D) + τΛ2
S (X ,D) : H

s
p(S ) → H

s−2
p (S ). (4.4)

Obviously, Bτ (X ,D) is a continuous (with respect to 0 ≤ τ ≤ 1) homotopy
connecting the operator B0(X ,D) = LS (X ,D) with B1(X ,D) = Λ2

S (X ,D).
Since the symbol Bτ (X , ξ) is positive definite

〈Bτ (X , ξ)η, η〉 ≥ [(1 − τ)µ+ τC]|ξ|2|η|2 ∀ ξ, η ∈ R
n

(cf. (4.2) and (4.3)), it is elliptic and the operator Bτ (X ,D) is then Fredholm
for all 0 ≤ τ ≤ 1. Then IndLS (X ,D) = IndB0(X ,D) = IndB1(X ,D) =
Ind Λ2

S (X ,D) = 0, since the operator Λ2
S (X ,D) is invertible.

From the representation (0.23) follows that the bilinear form (LS U ,U)S is
non-negative

(LS U ,U)S =λ(div∗
S divS U ,U)S + 2µ(Def∗S DefS U ,U)S

=λ
∥
∥divS U

∣
∣L2(S )

∥
∥2 + 2µ

∥
∥DefS U

∣
∣L2(S )

∥
∥2 ≥ 0 (4.5)

(cf. (3.10)) and only vanishes if U is a Killing’s vector field DefS U = 0. Indeed,
DjjU = (DS

j U)0j = 0, j = 1, . . . , n, if DefS U = 0 and, due to (0.13),

divS U =
n∑

j=1

DjU
0
j =

n∑

j=1

DjU
0
j +

1
2

n∑

j=1

∂U (νj)2 =
n∑

j=1

(DS
j U)0j = 0 (4.6)

∀U ∈ R(S )

since |ν(X )| ≡ 1. Thence, due to (4.5), R(S ) ⊂ KerLS . The inverse inclusion
follows also from (4.5) because DefS (U ) = 0 if LS (X ,D)U = 0. This accom-
plishes the proof of (3.9).

The estimate (3.11) is a direct consequence of (3.10) and of (3.9): Since
the operator LS is Fredholm, self-adjoint and KerLS = R(S ), then also
CokerLS = R(S ) and, therefore, the mapping

LS : H
1
R(S ) −→ H

−1
R (S )

is one-to-one, i.e., is invertible. The established invertibility implies the claimed
inequality (3.11).

A priori regularity property of solutions to partial differential equations (cf.
[Ta2, Hr1]) states that the ellipticity of LS (X ,D) provides C�(S )-smoothness of
any solution K to the homogeneous equation LS (X ,D)K = 0 (the hypersurface
S is C�-smooth). Due to the embeddings H

r
q(S ) ⊂ H

s
p(S ), s ≤ r, p ≤ q, then

the kernel KerLS (X ,D) is independent of the space H
s
p(S ) provided that the
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spaces are well defined, which is the case if |s| ≤ � (cf. [Ag1, Du2, DNS2, Ka1] for
similar assertions).

In particular, the Killing’s vector fields R(S ) = KerLS (X ,D) are smooth
R(S ) ⊂ C∞(S ) provided that the hypersurface S is C∞-smooth.

Let
{
Kj

}m

j=1
be an orthogonal basis (Kj ,Kk)S = δjk in the finite-dimen-

sional space of Killing’s vector fields R(S ). Let

TU(X ) :=
m∑

j=1

(Kj ,U)S Kj(X ), X ∈ S . (4.7)

Due to the proved part
{
Kj

}m

j=1
⊂ C�(S ) and the operator T is smoothing

T : H
−r(S ) → H

r(S ) (is infinitely smoothing if � = ∞). Then, the operator

LS + T : H
1(S ) → H

−1(S )

is invertible and non-negative

(LS + T )U ,U)S = (LS U ,U)S +
m∑

j=1

(Kj ,U)
2
S ≥ 0

(cf. (4.5)). This implies that LS + T is positive definite

(LS U ,U)S + T )U ,U)Γ ≥ C1

∥
∥U
∣
∣H1(S )

∥
∥2

and we write

(LS U ,U)S := ((LS + T )U ,U)S + (T U ,U)S

≥ C1

∥
∥U
∣
∣H1(S )

∥
∥2 + (TU ,U)S

≥ C1

∥
∥U
∣
∣H1(S )

∥
∥2 − C2‖U

∣
∣H−r(S )

∥
∥2,

which proves (3.12). �
Remark 4.1. G̊arding’s inequality (3.12), but in a weaker form r = 0, is a direct
consequence of the inequality (4.5) and Korn’s inequality (2.8) for p = 2.

Theorem 4.2. Let S be a �-smooth closed hypersurface, � ≥ 2 and B ∈ C�(Rn)
be a real-valued and non-negative B ≥ 0 function with non-trivial support
mes supp B �= 0.

The perturbed operator

LS (X ,D) + BI : H
θ+1
p (S ) → H

θ−1
p (S ) (4.8)

is invertible for all |θ| ≤ �− 1 and all 1 < p <∞.

Proof. The principal symbol of the operator LS (X ,D) + BI in (4.8) ignores
lower-order terms and coincides with LS (X , ξ) and is elliptic (cf. Theorem 3.5).
Therefore on the closed hypersurface S the operator LS (X ,D) + BI in (4.8) is
Fredholm for all θ = 0, 1, . . . (cf. Theorem 3.5). On the other hand, if (LS (X ,D)+
BI)U = 0, then

0 = ((LS (X ,D) + B)U ,U)S = (LS (X ,D)U ,U)S + (BU ,U)S

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
hypersurface without the boundary

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
hypersurface without the boundary



Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 65

and (3.10) implies that (BU ,U)S = 0. Since B ≥ 0, the obtained equality implies
U = 0 for all X ∈ supp B and, due to the strong unique continuation property
U = 0 (cf. Lemma 3.8).

Thus, the operator

LS (X ,D) + BI : H
1(S ) → H

−1(S ) (4.9)

has the trivial kernel Ker (LS (X ,D) + BI) = {0}. Since LS (X ,D) + BI is
formally self-adjoint (cf. Theorem 3.5), the same is true for the dual operator
and Coker (LS (X ,D) + BI) = {0}. The invertibility of the Fredholm operator
LS (X ,D) + BI in (4.9) for p = 2 and θ = 0 follows.

The invertibility of LS (X ,D)+BI in (4.9) for arbitrary p and θ is a conse-
quence of the ellipticity of LS (X ,D) + BI (cf. a similar arguments in the proof
of Theorem 3.5). �
Corollary 4.3. Let S be a C∞-smooth hypersurface in R

n and C ⊂ S be a proper
subsurface S \ C �= ∅. Then LS (X ,D) has a fundamental solution on S , which
we call a local fundamental solution on C , viewed as the Schwartz kernel of the
inverse operator to LS (X ,D) + BI, where supp B ⊂ S \ C .

Proof. The Schwartz kernel KS (X , τ) of the inverse operator to LS (X ,D)+BI,
satisfies the equality

LS (X ,D)KS = δ(X )I, X ∈ C

since B(X ) = 0 for X ∈ C , and can be viewed as a local fundamental solution of
LS (X ,D) on C . �
Remark 4.4. The operator LS (X ,D) itself has a fundamental solution on the
entire hypersurface S if and only if the space of Killing’s vector fields on S is
trivial R(S ) =

{
0
}
. The situation is essentially different from the case of the

Euclidean space R
n, where the condition at infinity

U(X ) = O(1) as |X | → ∞
eliminates the kernel of any linear partial differential operator with constant coef-
ficients and the fundamental solution (the inverse operator) exists.

A compact hypersurface with certain symmetry might possess non-trivial
Killing’s vector fields. For example, vector fields a+ b× X with arbitrary vectors
a, b ∈ R

3 and the variable X are tangential Killing’s vector fields on the unit
sphere S

2 ⊂ R
3.

5. BVPs for the Lamé equation and Green’s formulae

Throughout the present section, if not stated otherwise, S is a C2-smooth surface,
C ⊂ S denotes a C2-smooth subsurface with the Lipschitz boundary ∂C = Γ �= ∅
and rC is the restriction to the surface C . Under the operation rC LC (X ,D)U
on a function (distribution) U ∈ H

s
p(C ) is meant that the operator rC LC (X ,D)

acts on a vector function U extended to a function Ũ ∈ H
s
p(S ) on the entire
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surface, rC Ũ = U . Since LC (X ,D) is a local (differential) operator, the result
is, after restriction, independent of the extension. Moreover, LC (X ,D) does not
extends supports of vector functions: if suppU ⊂ C then suppLC (X ,D)U ⊂ C .
Therefore we will drop the restriction operator rC and write (LC (X ,D)U)(X )
for all X ∈ C .

We can not relax the constraint on a surface C (we remind that the underlying
surface is C2-smooth), because in the definition of equation

LC (X ,D)U = F , U ∈ H
1(C ), F ∈ H̃

−1(C ), (5.1)

is participating the gradient ∇S ν = [Djνk]n×n of the unit normal vector field ν

(see (0.20)–(0.24)). ν(X ) is defined almost everywhere on C is just C1-smooth.
We can actually require that S is H

2
∞ (i.e., corresponding parameterizations of

the surface have, instead of continuous, bounded second derivatives).
Equation (5.1) is actually understood in a weak sense:

(LC (X ,D)U ,V )C := (T DefC U ,DefC V )C = (F ,V )C , (5.2)

∀U ∈ H
1(C ),V ∈ H̃

1(C ) .

In particular, for the Lamé operator in isotropic media we have

(LC (X ,D)U ,V )C := λ(∇C U ,∇C V )C + µ(DefC U ,DefC V )C = (F ,V )C , (5.3)

∀V ∈ H̃
1
2(S )

(cf. (0.23)).
Let νΓ =

(
ν1
Γ, . . . , ν

n
Γ

)� be the tangential to C and outer unit normal vector
field to Γ.

If a tangential vector field U ∈ H
1
p(C )∩V (C ) denotes the displacement, the

natural boundary value problems for LC are the following:
I. The Dirichlet problem when the displacement is prescribed on the boundary

{
(LC (X ,D)U)(X ) = F (X ), X ∈ C ,

U+(τ) = G(τ), τ ∈ Γ,
(5.4)

F ∈ H̃
−1(C ) , G ∈ H

1/2(Γ) , U ∈ H
1(C );

the first (basic) equation in the domain is understood in a weak sense (see
(5.2), (5.3)) and

γ+
DU := U+ (5.5)

is the Dirichlet trace operator on the boundary.
II. The Neumann problem when the traction is prescribed on the boundary:

{
(LC (X ,D)U)(X ) = F (X ), X ∈ C ,

(TC (νΓ,D) U)+(τ) = H(τ), τ ∈ Γ ,
(5.6)

F ∈ H̃
−1(C ) , H ∈ H

−1/2(Γ), U ∈ H
1(C );
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here

γ+
NU := (TC (νΓ,D) U)+, (5.7)

TC (νΓ,D)U :=−λ(divC U)νΓ − 2µ
n∑

j=1

{
(νj

Γ + H 0
C νj)Djk(U)

}n

k=1
(5.8)

= −µDνΓU − (λ+ µ)(divC U)νΓ (5.9)

is the Neumann trace operator on the boundary (the traction) with

DνΓϕ :=
n∑

j=1

νj
ΓDjϕ. ϕ ∈ H

1(C ). (5.10)

In Lemma 7.3 below it will be shown that the trace γ+
NU exists provided

that U is a solution to the basic (first) equation in (5.6).
A crucial role in the investigation of BVPs (5.4)–(5.10) belongs to the Green

formula.

Theorem 5.1. Let B ∈ C1(S ) and C + := C , C − := C c = S \ C denote the
complemented open surfaces, S = C + ∪ C−

For a solution to the equation

LC U + BU = F , F ∈ H̃
−1(C −+ ), U ∈ H

1(C −+ ) (5.11)

(for B = 0 cf. (5.1) and the basic equations in (5.4)–(5.10)) the following Green
formula are valid

((LC + BI)U ,V )
C −+ =
∫

C −+
〈(LC + BI)U (X ),V (X )〉 dS

= −+
∮

Γ

〈γ−+
N U(τ), γ−+

D V (τ)〉 ds + E−+ (U ,V ) ,
(5.12)

E−+ (U ,V )

:=
∫

C −+

[
λ〈divC U , divC V 〉 + 2µ 〈DefC U ,DefC V 〉 + B〈U ,V 〉

]
dS ,

DνΓ :=
n∑

m=1

νj
ΓDj , U =

n∑

j=1

U0
j dj , V =

n∑

j=1

V 0
j dj ∈ H

1(C ) ∩ V (C ) ,

(5.13)

Here the index −+ denotes the traces on Γ from the surfaces C −+ and the scalar
product of matrices is defined as follows:

〈M,N〉 := Tr
[
MN�], M = [Mjk]n×n, N = [Njk]n×n. (5.14)

Proof. We apply the integration by parts formula
∫

C −+
〈(DjU),V 〉 dS = −+

∮

Γ

νj
Γ〈U −+ ,V −+ 〉 ds +

∫

C −+
〈U ,
(
D∗

j V
)〉 dS , (5.15)

U , V ∈ H
1(C −+ ) j = 1, . . . , n,
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proved in [DMM1] (cf. (1.5) for the formal adjoint D∗
j ), and proceed as follows

((LC +BI)U ,V )
C −+ =

∫

C −+
〈λ∇C divC U + 2µDef∗C DefC U + BU ,V 〉 dS

=
∫

C −+
〈λ∇C divC U + 2µ

n∑

j=1

{
D∗

j Djk(U)
}n

k=1
+ BU ,V 〉 dS

=
∫

C −+
〈λ∇C divC U − 2µ

n∑

j=1

{
(Dj + νj

ΓH 0
C )Djk(U )

}n

k=1
+ BU ,V 〉 dS

= −+
∮

Γ

〈γ−+
N U(τ), γ−+

D V (τ)〉 ds + E−+ (U ,V ) ,

where TC (νΓ,D) is gives by formula (5.8). We have applied formulae (1.5), (0.21),
(0.15) and the equalities

〈πS U ,V 〉 = 〈U ,V 〉, 〈(DC
j )∗U ,V 〉 = 〈πS D∗

j U ,V 〉 = 〈D∗
j U ,V 〉 ∀V ∈ V .

To obtain another representation (5.9) of TC (νΓ,D) we start by second rep-
resentation of LC in (0.23) and proceed similarly. �

6. The Dirichlet BVP for the Lamé equation

Throughout this section C is a C2-smooth hypersurface with the Lipschitz bound-
ary Γ = ∂C .

Theorem 6.1. The Dirichlet problem (5.4) has a unique solution U ∈ H
1(C ) for

arbitrary data F ∈ H̃
−1(C ) and G ∈ H

1/2(Γ).

The proof will be exposed at the end of the section after we prove some
auxiliary results.

Lemma 6.2. (G̊arding’s inequality “with boundary condition”). The Lamé opera-
tor

LC (X ,D) : H̃
1(C ) → H

−1(C ) (6.1)

is positive definite: there exists some constant C > 0 such that

(LC (X ,D)U ,U)C ≥ C
∥
∥U
∣
∣H1(C )

∥
∥2 ∀U ∈ H̃

1(C ). (6.2)

Proof. Due to (3.11) inequality (6.1) holds for all U ∈ H
1
R(S ), i.e., for U ∈ H

1(S )
and U �∈ R(S ). Since U ∈ H̃

1(C ) due to the strong unique continuation from the
boundary (cf. Lemma 3.12), all Killing’s vector fields K ∈ H̃

1(C ) are identically
0. Therefore, (3.11) holds for all U ∈ H̃

1(C ). �

Corollary 6.3. The Lamé operator LC (X ,D) in (6.1) is invertible.
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Proof. From the inequality (6.2) follows that LC (X ,D) is normally solvable (has
the closed range) and the trivial kernel KerLC (X ,D) = {0}. Since LC (X ,D)
is self-adjoint, the co-kernel (the kernel of the adjoint operator) is trivial as well
KerL ∗

C (X ,D) = KerLC (X ,D) = {0}. Therefore LC (X ,D) is invertible. �

Definition 6.4. (see [LM1, Ch.2, § 1.4]). A partial differential operator

A(x,D) :=
∑

|α|≤m

aα(x)∇α
C , ∇α

Cu = Dα1
1 · · ·Dαn

n , aα ∈ C(C , CN×N ) (6.3)

is called normal on Γ if

inf |detA0(X ,ν(X ))| �= 0, X ∈ Γ , |ξ| = 1 , (6.4)

where A0(x, ξ) is the homogeneous principal symbol of A

A0(x, ξ) :=
∑

|α|=m

aα(x)(−iξ)α, x ∈ C , ξ ∈ R
n. (6.5)

Definition 6.5. A system {Bj(X , D)}k−1
j=0 of differential operators with matrix N×

N coefficients is called a Dirichlet system of order k if all participating operators
are normal on Γ (see Definition 6.4) and ordBj = j, j = 0, 1, . . . , k − 1.

Let us assume C is k-smooth and m ≤ k (m, k = 1, 2, . . .) and define the
trace operator (cf. (5.10)):

Rmu := {γΓB1u, . . . , γΓBmu}� , u ∈ C
k
0(C ) . (6.6)

Proposition 6.6. Let C be k-smooth, 1 ≤ p ≤ ∞, m = 1, 2, . . ., m ≤ k and
m < s− 1/p �∈ N0. The trace operator

Rm : H
s
p(C ) → m⊗

j=0
W

s−1/p−j
p (Γ) , (6.7)

where W
r
p(C ) = B

r
p,p(C ) is the Sobolev-Slobodecki-Besov space (cf. [Tr1] for details)

is a retraction, i.e., is continuous and has a continuous right inverse, called a core-
traction

(Rm)−1 :
m⊗

j=0
W

s−1/p−j
p (S ) → H

s
p(Ω)

Rm(Rm)−1Φ = Φ , ∀Φ ∈ m⊗
j=0

W
s−1/p−j
p (S ) .

(6.8)

Proof. The result was proved in [Tr1, Theorem 2.7.2, Theorem 3.3.3] for a domain
Ω ⊂ R

n−1 and the classical Dirichlet trace operator Rmu := {γΓ∂νu, . . . , γΓ∂
m
ν u}�.

In [Du3] the theorem was proved for a domain Ω ⊂ R
n−1 and for arbitrary trace

operator Rmu.
A surface C = ∪N

j=1Cj is covered by a finite number of local coordinate charts
κj : Ωj → Cj , Ωj ⊂ R

n−1. After transformation, the Dirichlet trace operator
Rmu on a portion Cj of the surface transform into another Dirichlet trace operator
on the coordinate domains Ωj . Therefore, we prove the assertion locally on each
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coordinate chart Cj ⊂ C and, by applying a partition of unity, extend it to the
entire surface C . �
Proof of Theorem 6.1. Let G̃ = (R0)−1G ∈ H

1(C ) be the continuation of the
Dirichlet boundary data G ∈ H

1/2(Γ) from BVP (5.4) into the surface C from the
boundary Γ, found with the help of a coretraction from Proposition 6.6. Then the
Dirichlet BVP





(LC (X ,D)Ũ)(X ) = F 0(X ), X ∈ C ,

Ũ
+
(τ) = 0, τ ∈ Γ,

(6.9)

F 0 := F − LC (X ,D)G̃ ∈ H̃
−1(C ) ,

is an equivalent reformulation of BVP (5.4) and the solutions are related by the
equality Ũ := U − G̃. On the other hand, since

H̃
−1(C ) :=

{
U ∈ H

−1(C ) : U+ = 0
}
,

the solvability of BVP (6.9) is equivalent to the invertibility of the operator
LC (X ,D) in (6.1). Now the unique solvability of BVP (6.9) (and of the equivalent
BVP (5.4)) follows from Corollary 6.3. �

7. The Neumann BVP for the Lamé equation

Throughout this section C is a C2-smooth hypersurface with the Lipschitz bound-
ary Γ = ∂C .

Theorem 7.1. The Neumann problem (5.6) has a solution U ∈ H
1(C ) only for

those right-hand sides F ∈ H̃
−1(Γ) and H ∈ H

−1/2(Γ) which satisfy the equality
∫

C

F (X )K(X )dS =
∮

Γ

H(τ)γ+
DK(τ)ds ∀K ∈ R(C ). (7.1)

If the condition (7.1) holds, the Neumann problem has a general solution U =
U0 + K ∈ H

1(C ), where U0 ∈ H
1(C ) is a particular solution and K ∈ R(C ) is

a Killing’s vector field.

The proof will be exposed at the end of the section after we prove some
auxiliary results. The proof is based on the celebrated Lax-Milgram lemma.

Lemma 7.2. (Lax-Milgram). Let B be a Banach space and A(ϕ, ψ) be a bilinear
A(·, ·) : B × B → R, positive definite form: the inequality

A(ϕ,ϕ) ≥ C‖ϕ∣∣B‖2 (7.2)

holds for some constant C > 0 and all ϕ ∈ B. Further let L(·) : B → R be a
continuous linear form (a functional).

A linear equation
A(ϕ, ψ) = L(ψ) (7.3)

has a unique solution ϕ ∈ B for arbitrary ψ ∈ B.
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Proof. The proof can be retrieved from many sources (cf., e.g., [Ci3, § 6.3]), mostly
for symmetric forms (we have dropped this requirement). For a non-symmetric
form the proof can be found in the original paper [LaM1]. �

Lemma 7.3. If U ∈ H
1
p(C ), 1 < p <∞, is a solution to the first equations in (5.6),

then the Neumann trace on the boundary exists and γ+
NU = (TC (νΓ,D) U)+ ∈

H
−1/p
p (Γ).

Proof. For B = 0, C + = C the Green’s formulae (5.12), (5.13) become:

(LC U ,V )C = (γ+
NU , γ+

DV )Γ + E (U ,V ) , (7.4)

E (U ,V )=λ(divC U , divC V )C + 2µ (DefC U ,DefC V )C (7.5)

Introducing the value LC (X ,D) U = F into the Green formula (7.4) we
rewrite it

(γ+
NU , γ+

DV )Γ = (F ,V )C − E (U ,V ),

where V ∈ H
1
p(C ) is arbitrary. The bilinear forms (F ,V )C and E (U ,V ) are

continuous for F ∈ H̃
−1
p (C ) and U ∈ H

1
p(C ), V ∈ H

1
p′(C ), p′ := p/(p − 1); the

bilinear form (
(
TC (νΓ,D)U

)+
,V +)Γ is well defined and, by a duality argument,

(
TC (νΓ,D)U

)+ ∈ H
−1/p
p (Γ) since V + ∈ H

1−1/p′

p′ (C ) = H
1/p
p′ (C ) is arbitrary. �

Lemma 7.4. The condition (7.1) is necessary for the Neumann problem (5.6) to
have a solution U ∈ H

1(C ).

Proof. First note that for a Killing’s vector field K ∈ R(C ),

LC (X ,D)K = 0 and γ+
NK =

(
TC (νΓ,D)K

)+ = 0. (7.6)

Indeed, if K ∈ R(C ) is naturally extended to K̃ ∈ R(S ), then LC (X ,D)K(X ) =
LC (X ,D)K̃(X ) = 0 for X ∈ C (cf. (3.9)) and the first equality follows.

The second equality in (7.6) follows from (5.8) if we recall that DefC (U) = 0
(cf. Definition 3.1) and this also implies divC U = 0 (cf. (4.6)).

From (4.6) and the second equality in (7.6) follows

E (K,U) = E (U ,K) (7.7)

=
∫

C

[
λ〈divC U , divC K〉 + 2µ 〈DefC U ,DefC K〉

]
dS = 0

for all U ∈ H
1(C ) and all K ∈ R(C ).

Introducing into the Green formula (5.12) B = 0, F = LC (X ,D)U , V = K ∈
R(C ) and the obtained equality, we get the claimed orthogonality condition (7.1).

�

Lemma 7.5. The bilinear form (cf. (7.4) and (7.5))

AN (U ,V ) := (LC (X ,D)U ,V )C − (γ+
NU , γ+

DV )Γ = E (U ,V ) (7.8)
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is well defined, symmetric AN (U ,V ) = AN (V ,U) for all U , V ∈ H
1(C ) and

non-negative AN(U ,U) ≥ 0 for U ∈ H
1(S ) (cf. (5.13)). Moreover, the form is

positive definite

AN (U ,U) ≥M3

∥
∥U
∣
∣H1(S )

∥
∥2 ∀U ∈ H

1
R(S ) (7.9)

on the orthogonal complement H
1
R(S ) to the finite-dimensional subspace of

Killing’s vector fields R(C ) in the Hilbert-Sobolev space H
1(C ).

Proof. The estimate
∣
∣AN (U ,V )

∣
∣ =
∣
∣E (U ,V )

∣
∣ ≤ ∥∥U ∣∣H1(S )

∥
∥
∥
∥V
∣
∣H1(S )

∥
∥

follows from the definition of the form E (U ,V ) in (5.13) and proves that AN (U ,V )
is well defined. Moreover, the equality proves that the form is symmetric and non-
negative

AN (U ,V ) = E (U ,V ) = E (V ,U) = AN (V ,U),

AN (U ,U) = E (U ,U) ≥ 0.

From (5.12) and (5.13) follows

AN (U ,U)=E (U ,U) = λ
∥∥divC U

∣∣L2(S )
∥∥2 + 2µ

∥∥DefC U
∣∣L2(S )

∥∥2

≥2µ
∥
∥DefC U

∣
∣L2(S )

∥
∥2 ≥ 2µ c2

∥
∥U
∣
∣H1(S )

∥
∥2 ∀U ∈ H

1
R(S ) (7.10)

and accomplishes the proof. �

Proof of Theorem 7.1. The space of Killing’s vector fields R(S ) is finite-dimen-
sional and consists of continuous vector-fields with bounded second derivatives
(these fields are actually as smooth as the surface C , i.e., are infinitely smooth if S
is infinitely smooth; see Theorem 3.5). Let K1, . . . ,Km be the finite-dimensional
orthonormal basis in R(C ), (Kj ,Kr)C = δjr , j, r = 1, . . . ,m. Consider the finite
rank smoothing operator TU introduced in (4.7). As we already know the operator
T is symmetric and non-negative:

(TU ,V )C = (T V ,U)C . (TU ,U)C =
m∑

j=1

(U ,Kj)
2
C ≥ 0 (7.11)

∀U , V ∈ H
1(C ).

Consider the modified bilinear form

A
#
N(U ,V ) := ((LC (t,D) + T )U ,V )C − (γ+

NU , γ+
DV )Γ

= E (U ,V ) + (TU ,V )C U , V ∈ H
1(C ) (7.12)

(cf. (7.4)). The form is symmetric because both summands are

A
#
N (U ,V ) = E (U ,V ) + (TU ,V )C = E (V ,U) + (T V ,U)C = A

#
N (V ,U)

(cf. Lemma 7.5 and the first equality in (7.11)).
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Moreover, the corresponding quadratic form is strongly positive

A
#
N (U ,U) = E (U ,U) + (TU ,U)C ≥ C

∥
∥U
∣
∣H1(C )

∣
∣‖ (7.13)

for some C > 0. Indeed, A
#
N (U ,U) = 0 due to the positivity of the summands

implies: E (U ,U) = 0, and further U ∈ R(C ) (cf. Lemma 7.5), (T U ,U)C = 0
and further (U ,Kj) = 0 for all j = 1, . . . ,m. Then U =

∑m
j=1 (U ,Kj)Kj = 0.

A non-negative symmetric form with the property A
#
N (U ,U) = 0 if and only if

U = 0 is positive definite.
According to Lax-Milgram’s Lemma 7.2 the equation

A
#
N (U ,V ) = (F ,V )C − (H,V +)Γ (7.14)

has a unique solution U ∈ H
1(C ) for all V ∈ H

1(C ). This solves the problem
{

(LC (t,D)U)(t) + T U(t) = F (t), t ∈ C ,

(TC (νΓ,D) U)+(τ) = H(τ), τ ∈ Γ ,
(7.15)

which is a modified Neumann’s problem (5.6).
Now assume that the vector functions F ∈ H̃

−1(C ) and H ∈ H
−1/2(Γ)

satisfy the orthogonality condition (7.1) from Theorem 7.1 and U0 ∈ H
1(C ) be a

solution of (7.15). Since

(T U0,Kk)C = (U0,Kk)C , AN (U0,Kk) = E (U0,Kk) = 0 k = 1, 2, . . . ,m

(cf. (7.5)) from (7.14) we get

0 = (F ,Kk)C − (H ,Kk)Γ = A
#
N (U0,Kk) = AN (U0,Kk) + (TU0,Kk)C

= (U0,Kk)C k = 1, 2, . . . ,m.

Therefore, T U0 =
∑m

k=1 (U0,Kk)C Kk = 0 and BVP (7.15), which is uniquely
solvable, coincides with BVP (5.6) provided that the right-hand sides satisfy the
orthogonality condition (7.1). Since the kernel of BVP (5.6) coincides with the
space of Killing’s vector fields R(C ), a general solution of BVP (5.6) has the form
U = U0 + K with arbitrary K ∈ R(C ). �

Remark 7.6. If the surface is smooth, by invoking a local fundamental solution to
the Lamé equation (cf. Corollary 4.3) and the potential method, it is possible to
prove that BVPs (5.4), (5.6) and (7.17) have the same solvability properties if the
constraints (5.4) and (5.6) are replaced by the following non-classical constraints

F ∈ H̃
s−2
p (C ) , G ∈ H

s−1/p
p (Γ) , H ∈ H

s−1/p−1
p (Γ) , (7.16)

1 < p <∞, s ≥ 1

and U ∈ H
s
p(C ) is unknown.

Moreover, by the potential method we can investigate the mixed problem: find
the tangential displacement vector field U ∈ H

s
p(C ), prescribed on the part ΓD of
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the boundary, while on the remainder part ΓN := Γ\ΓD is prescribed the traction:





(LC (X ,D) U)(X ) = F (X ), X ∈ C ,

U+(τ) = G0(τ), τ ∈ ΓD,

(TC (νΓ,D) U)+(τ) = H0(τ), τ ∈ ΓN .

(7.17)

The unique solvability of the mixed problem follows under the following conditions

F ∈ H̃
s−2
p (C ) , G0 ∈ H

s−1/p
p (ΓD) , H0 ∈ H

s−1/p−1
p (ΓN ), (7.18)

1 < p <∞, s ≥ 1,
1
p
− 1

2
< s <

1
p

+
1
2
.
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