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Abstract. We investigate partial differential equations on hypersurfaces writ-
ten in the Cartesian coordinates of the ambient space. In particular, we gen-
eralize essentially Lions’ Lemma, prove Korn’s inequality and establish the
unique continuation property from the boundary for Killing’s vector fields,
which are analogues of rigid motions in the Euclidean space. The obtained
results, the Lax-Milgram lemma and some other results are applied to the
investigation of the basic Dirichlet and Neumann boundary value problems
for the Lamé equation on a hypersurface.
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Introduction

Partial differential equations (PDEs) on hypersurfaces and corresponding bound-
ary value problems (BVPs) appear rather often in applications: see [Hal, §72]
for the heat conduction by surfaces, [Arl, §10] for the equations of surface flow,
[Cil], [Ci3],[Ci4], [Ko2], [Gol] for thin flexural shell problems in elasticity, [AC1]
for the vacuum Einstein equations describing gravitational fields, [TZ1, TW1] for
the Navier-Stokes equations on spherical domains and spheres, [MM1] for minimal
surfaces, [AMM1] for diffusion by surfaces, as well as the references therein. Fur-
thermore, such equations arise naturally while studying the asymptotic behavior of
solutions to elliptic boundary value problems in a neighborhood of conical points
(see the classical reference [Kol]).

The investigation was supported by the grant of the Georgian National Science Foundation
GNSF/ST07/3-175.
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By a classical approach differential equations on surfaces are written with the
help of covariant and contravariant frames, metric tensors and Christoffel symbols.
To demonstrate a difference between a classical and the present approaches, let us
consider an example. A surface . can be given by a local immersion

0:w—, wcCR" (0.1)

which means that the derivatives {gk = (’“)kG} 71, constituting the covariant
frame in the space of tangent vector fields to the surface ¥ (), are linearly in-
dependent. In equivalent formulation that means the Gram matrix G (2) =
[958 (2)]n—1xn-1, gjk = (g;,9x) has the inverse G (2) = [¢"%(2)]n-1xn—1,
gk = (gj,gk),\. Hereafter

=y Uy, U=(U),... . U) eR", V= .. V) eR"
j=1

denotes the scalar product. The Gram matrix G.»(2) is also called covariant
metric tensor and is responsible for the Riemannian metric on .. Remerkablythe
gefmfart—rﬁg—systeem—ef—veet-efs{- kbg_L eﬁrHed—&he—eOﬁtﬁwwrﬁémmﬁﬂ—t-he-s-p&ee-ef
h=h——n_—*

The surface divergence and gradients in classical differential geometry (in
intrinsic parameters of the surface .#) read as follows:

divy U = [det G»] ™ 1/223{[detc; ]ui},

n—1 ) n—1 (02)
Vo f= 2 (¢%0;f)or, U= Ulg,
J,k=1 j=1

(see [Ta2, Ch. 2, §3]). The intrinsic parameters enable generalization to arbitrary
manifolds, not necessarily immersed in the Euclidean space R™.

A derivative 07 : C1() — C'() along some tangential vector field
U € 7() is called covariant if it is a linear automorphism of the space of
tangential vector fields

oF = V() — YV (L). (0.3)

The covariant derivative of a tangential vector field V' = Z?;ll Vig, € V()
along a tangential vector field U = Z;:ll Ulg; € V() is defined by the formula

n—1
oGV =mr0uVi= Y [UVT) + 06,070,V g,,, (0.4)

J,k,m=1
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where $\{\g^k\}_{k=1}^{n-1} is the contravariant frame and is biorthogonal to the covariant frame $\langle\g_j,\g^k\rangle =\delta_{jk}$, $j, k = 1,\ldots,n-1$.
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where '} (z) are the Christoffel symbols

n

L ma
(@) = (0hg;(2). 9™ (@) = D Lo [0g1a(@) + D00 (2) = Dy (o)

=T (z). (0.5)

The calculus of differential operators on hypersurfaces presented here is based
on Gilnter’s derivatives. The definition applies the natural basis

el =(1,0,...,007,...,e"=(0,...,0,1)" (0.6)

Q
Il

in the ambient Euclidean space R™ and the field of unit normal vectors to the
surface .%

9107 (2) A Agna(07H(2))
v(z):=1 — — ,
19107 (2) A+ Ag,_1 (071 (2))]
where UM A AUTY (or also UD x - . x UM™Y denotes the vector product
of vectors UMV, ..., U™ Y e R". If a hypersurface . in R™ is defined implicitly

x e, (0.7)

yZ{%EW:‘I’y(%)ZO}, (0.8)

where U : w — R is a C*-mapping (or is a Lipschitz mapping) which is regular
V U () # 0, then the normalized gradient

() = + S az ()

_W, x es (09)

coincides with the outer unit normal vector provided the sign T is chosen appro-
priately.

The collection of the tangential Ginter’s derivatives are defined as follows
(cf. [Gul], [KGBB1], [Dul]);

.@j = 8j — uj(,%)a,, = 8dj . (010)

Here 0, := Z?:l v;0; denotes the normal derivative. For each 1 < j < n, the
first-order differential operator %; = 0y; is the directional derivative along the
tangential vector d’ := 7. e/, the projection of e/ on the space of tangent vector

fields to .. Here

Ty R = ¥V (F), met)=1—-vtWw'(t)= (05 — vi(t)vi(t)] tes
(0.11)
defines the canonical orthogonal projection 7%,; = 7 onto the space of tangent
vector fields ¥ (.) and (v, mv) = 0 for all v € R™.
For tangential vector fields V' € ¥ () and U € ¥ (%) we have representa-

tions

nxn’

V= zn: Vel = zn: Vid, U= zn: Ude = zn: Udd’. (0.12)
j=1 =1 j=1 j=1
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The surface gradient V ng\ and the surface divergence div»U are defined as fol-
lows

Vol = (D8 .., 2.0% ], diveUs;=>»_ 907 (0.13)

Jj=1

(cf. (0.2)) while for the derivative of a vector field V' along U and the corresponding
covariant derivative we have the formulae

oV =Y U7V, oGV => U'2/V (0.14)

j=1 j=1
(cf. (0.4)). Here 27 : V() — ¥ () is the covariant Giinter’s derivative
DIV =15V =9V — (v, 2;V)v, j=1,...n (0.15)

The Lamé operator £« on . is the natural operator associated with the
Euler-Lagrange equations for a variational integral. The starting point is the total
free (elastic) energy

Uev (),

(0.16)
ignoring at the moment the displacement boundary conditions (Koiter’s model).
Equilibria states correspond to minimizers of the above variational integral (see
[NH1, §5.2]). The kernel E = (&, Def ) depends bi-linearly on the stress 6. =
[ij]an and the deformation 2 tensors. The following form of the important

nxn’

&U] ::/yE(y,.@‘yU(y))dS, 27U = [(27U)]]

deformation (strain) tensor was identified in [DMM1]

Defy (U) = [Dx(U)] U= zn:UJde cv(¥), jk=1,...,n, (0.17)

Jj=1

nxn’

1 n
9,(U) == [(Z7U) + (27 U)Y] = 5 [%Uf + U0+ UD D (yjyk)] ,

m=1

N[ =

where (27U, := (27U, eF). Hooke’s law states that &5 = T Defy for some

linear fourth-order tensor T := [Cjkgm] which is positive definite:

nxnxnxn’

n

(T¢,¢) = Z cijkeGijCre > Co Z i, = Col¢/? (0.18)

4,7,k =1 1,j=1

for all symmetric tensors (;; = (;; € C, ¢ := [Cij]an. Moreover, T has the
following symmetry properties:

Cijkt = Cijek = Cheij Vi, gk, L. (0.19)
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Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 47

The following form of the Lamé operator for a linear anisotropic elastic medium
was identified in [DMM1]:

%y = Def’, T Defy = [ 3 cjum@f”@;”] L Uer(), (020
Ifm=1 nxn

The adjoint operator to the deformation tensor
Def’, 4l := EZ {(27) [wh+ub]}0_ for U= ||WFuen  (0.21)
j=1

maps tensor functions to vector functions.
For an isotropic medium

Cikim = NOjkOtm + 1[0j10km + 8jmOki] (0.22)
and the Lamé operator acquires a simpler form
LyU =—-AV » diveU + 2u Defly, Def U
=—ung Ay U~ AN+ p)VodiveU — u WU, U€V(S) (0.23)
(cf. (0.11) for the projection 7). A, u € R are the Lamé moduli, whereas

HY = —divgv = — Z.@jyj =Ty, W = f[quk]an. (0.24)
j=1
Note, that % = (n — 1)~ 'Y represents the mean curvature of the surface

s W is the Weingarten curvature tensor of .%; Eigenvalues of #.s, except one
which is 0, represent all principal curvatures of the surface ..

Note, that Giinter’s derivatives were already applied in [MM1] to minimal
surfaces and in [Gul], [KGBB1] to the problems of 3D elasticity.

We believe that our results should be useful in numerical and engineering
applications (cf. [AN1], [Bel], [Cel], [Col], jDaL1], [BGS1], [Sm1]). Having in mind
applications, equations in Cartesian coordinates are simpler for approximation and
numerical treatment.

The paper is organized as follows. § 1 is auxiliary. In § 2 we prove generalized
Lions’ Lemma for the Bessel potential spaces HZ(&” ) on-elesed—and-en—epentir
persurfaees; The result is applied to the proof of important Korn’s inequality for
Killing’s vector fields.

In §3 we investigate Killing’s vector fields, which constitute the kernel of
the Lamé operator and represent analogues of rigid motions in R™. The most
important result there states that the class of Killing’s vector fields has the unique
continuation property from the boundary: if such a field vanishes on a set of
positive measure on the boundary of an epen—hypersurfaeey it vanishes on this
hypersurface identically. The result is applied to prove further Korn’s inequality
“without boundary condition” and to the investigation of basic BVPs for the Lamé
equation.
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48 R. Duduchava

In §4 we prove the ellipticity of the Lamé operator, which follows also from
the Garding’s inequality

(Z2U,U),, > C||UHNS)|]” — Col|U[Lo()]|.

For a elesed-hypersurfaee s the kernel Ker 5 coincides with the space of Killing’s
vector fields. Moreover, the operator Ly + %1 : H3(.7) — H5?() is invertible
if 7 is-elesedyand smooth, 1 < p < 0o, s € R and # # 0 is a non-negative function.
In §§ 5-7 we investigate the Dirichlet and the Neumann boundary value prob-
lems for the Lamé operator on an epenhypersurfaeg ¢ under a minimal require-
ments on the surface. Namely, we require that the immersion © in (0.1) (or the
implicit function ¥ & in (0.8)), representing the surface ¢, has the bounded second
derivative © € (H2,)" (Vs € H2 , respectively). The Dirichlet problem

{gyUF in ¢,

FeH (%), GeHY*T), (0.25)
Ul.,=G on TI':=98,

where U = 377 UJde € V(€) NHYE)" is the (tangential) generalized dis-
placement vector field of the elastic hypersurface ., is reduced to an equivalent
Dirichlet BVP with vanishing boundary data G = 0, which, in its turn, is equiva-
lent to the invertibility of the operator

Ly - HY(E) > HY(F).

The invertibility derived from Garding’s inequality proved there. For the investi-
gation of the Neumann BVP we apply the Lax-Milgramm Lemma, based on the
coerciveness of the corresponding sesquilinear form.

1. Sobolev spaces and Bessel potential operators

Proposition 1.1. (¢f. [DMM1)). The surface divergence div.y» and the surface gradi-
ent V.o (cf. (0.13)) are dual operators (V. p,U) o := (@, dive U) 5, with respect
to the usual scalar product of (square integrable) vector functions on the surface ¥

U.v), :/ U, VE)S VU,V e 7(P). (1.1)
4
The Laplace-Beltrami operator Ay := diveV e on & writes
Ayp=—divy Vop=> F}  VyeC*S). (1.2)
j=1

We remind that the surface gradient V & maps scalar functions to the tan-
gential vector fields

Vo : CHF) — ¥ () C C(F,C) (1.3)

and the scalar product with the normal vector vanishes (v(2), V.o p(2)) =0 for
all p € C1(F) and all 2 € 7.


Roland Duduchava
Inserted Text
is

Roland Duduchava
Highlight

Roland Duduchava
Highlight

Roland Duduchava
Inserted Text
insert  -

Roland Duduchava
Highlight

Roland Duduchava
Cross-Out
delete -

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
hypersurface without the boundary

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
has no boudary

Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
hypersurface with the boundary


Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 49

Tangential derivatives can be applied to a definition of Sobolev spaces
H™ (%), m € N° 1 < p < oo on an f-smooth surface .7 if m < £:

P
H' () :={p e D'(&) : 2%¢ € Lp(/), Va e Ny, |a| <m}, (1.4)

DY = P - I

The derivative of ¢ € D'(.%) in (1.4) is understood, as usual, in the distributional
sense

(@J%’aw)y = ((pv @]*1/])5/7
where &7 is the formal dual operator to Z; (cf. [DMM1]):

Dio=—-Djp—viHyp, ©eC(F). (1.5)

The space ]I-]Izl7 () is well defined if . is a Lipschitz hypersurface.
Equivalently, HJ* (") is the closure of the space C*(#) (or of C=(.7) if &~
is infinitely smooth ¢ = oo) with respect to the norm

1/p

leo [H() = | Y 1250 | Lo(A)llp| - (1.6)

la|<m

Moreover, H3"(.) is a Hilbert space with the scalar product

(2. 0)%) = Y ¢ 229)(2)2%0(2)dS . (1.7)

|al<m o

As usual, H; ™ (.¥) with an integer m € N denotes the space of distributions
of the negative order —m which is dual to the Sobolev space H5"(.%).

We write, as customary, H™ (%) instead of H5*(.7).

To accomplish the definition of the Banach spaces H}'(-#") we need to prove
the following.

Lemma 1.2. For p € C'(.) the surface gradient vanishes V.o = 0 if and only
if o(2) = const.

Proof. We only have to show that V& ¢ = 0 implies p(2) = const. The inverse
implication is trivial. Let

Y= X[l ={ar+tv: ey, —e<t<e}

be the tubular neighborhood of the surface of the thickness 2¢, with the middle
surface .. Taking ¢ sufficiently small, we can assume that the domain Q%, has
no self-intersections. Any function ¢ € C1(#) is extended as a constant along
the normal vector: ¢(z,t) == ¢(z), z,t € Q. Then the normal derivatives are
applicable and vanish: d,p = 0. Therefore the coordinate derivatives also are
applicable and 0;p(2,t) = Zjp(2) =0forall j =1,...,n and all (2,t) € Q%,.
But this implies ¢(2) = const and, restricted to the surface, p(2) = vop(2) =
const.
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To the equivalence of the norm in (1.6) with the usual one defined by a parti-
tion of unity we only remark that among the “pull back” operators of n covariant
derivatives there always can be selected locally n — 1 linearly independent linear
differential operators of order 1 of the variable © € R”~!, which can equivalently
be replaced by the coordinate derivatives 01, ..., 0h_1.

Lemma 1.3. Let ¢ € H*(Q%,) NCH() and vV ¢, 750, ¢ denote the traces on
< of the spatial gradient and of the normal derivative, while V & ¢ denote the
surface gradient. Then

IV | La(L)I3 = [V @ | La( )3 + 17580 ¢ | L2()3 - (1.8)
Proof. Indeed,

2 _ - (2D 0(2)
19 6| Lo =32 §, (B3 05

?{31/(1)@ i (2)0;0(2) dS + v3( %31/(1)%0 )0y p(2) dS

= eV |La())? — [rs0up | L)
and (1.8) follows. O
Lemma 1.4. The operator

Ay, =pl-Ay : H(Z) - H (), i = const >0 (1.9)

is positive definite, elliptic and invertible. For arbitrary s € R the power A},u
is a self-adjoint positive definite pseudodifferential operator with a trivial kernel
Ker A", , = {0} in the Sobolev space W;'(.) = H () for allm =1,...,m and
all 1 < p < oo.

Proof. The positive definiteness (also implying self-adjointness, ellipticity and in-
vertibility) of A » ,, follows from Proposition 1.1

(I — A)p, ) 5 = plle|La(L)|? + [VroLa (L) = Cllo[H' ()]

with C' := min{l,u} > 0. Then the powers A%, , s € R exist and are pseudo-
differential operators (cf., e.g., [Sh1]). We quote [DNS1] (also see [Agl, Du2, Kal]
and [DNS2] for a most general result) that an elliptic pseudodifferential operators
on a i has the same kernel and cokernel in the spaces H}'(-7) for
allm=1,...,fand all 1 < p < cc.
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Now we are able to define the Bessel potential space Hj () for arbitrary
seRand 1< p<oo:

s s s/2
() = {¢ : le| By || = AL 50 [Lp(#) || < oo} . (1.10)
The Sobolev spaces with negative indices H*(.#’), s < 0,1 < p < oo are dual
to Ho, (), p' = p%l’ with respect to the sesquilinear form (p, %), (cf. (1.1))

extended by continuity to duality between pairs ¢ € Hy, (%) and ¢ € H,,*(%).

The embeddings H7 () C L,() C H,*(¥), for s > 0, are continuous,
even compact, and for integer-valued parameter s = m the space H,™ () is the
convex linear hull of distributional derivatives of L, (.#)-functions:

H ™ () :=ZL{2% : p € Lp(&) for all 2% = 2" --- D, |a| <m} .

P
If ¢ is an epen-subsurfaeg with the Lipschitz boundary I' = 9% # 0, HS( )

denotes the space of functions ebtained-by—elosing—the—space Gg—é‘g—)—ef—smeet-h
funetions—with-eompact—suppert—in—thenorm—of H3(#); where .7 is a smooth
elosed-surfaeq which extends the surface €. Let €1 := ¢ and ¢~ :=¢° = .7\ %
denote the complemented epen-surfaece.” = € U% ~; the notation H5 (%) is used
for the factor space H;(Y)/HTH;(%’); the space H (%) can also be viewed as the
space of restrictions r¢ ¢ = g0|<g of all functions ¢ € H () to the subsurface
C=%".
We refer to [Trl] and [DS1] for details about similar spaces.

2. Lions’ Lemma and Korn’s inequalities

The following generalizes essentially J.L. Lions’ Lemma (cf. [DaLl, p.111], [Tal],
[AG1, Proposition 2.10], [Ci3, §1.7], [Mcl]).
Lemma 2.1. Let . be a 2-smooth etosed-hypersurfacq in R"™. Then the inclusions
o e HyY(S), Djp e Hy (), for all j =1,...,n imply ¢ € Ly(7).

Moreover, the assertion remains valid for a hypersurface € with the Lipschitz
boundary T := € and the spaces H,'(€) and }ﬁlgl((f)

Proof. First we assume that % is a closed surfacey The proof is based on the
following facts (cf. [Hrl, Shl, Ta2, Trl]):

A. The “lifting operators” (the Bessel potential operator) A;l(%, D)= A{;{Q
(cf. Lemma 1.4 and (1.10)), are invertible A;l(%,D)A;}(%,D) = I, map-
ping isometrically the spaces

AG (2, D) : H~H(S) — H(S), 1)
Ax(#.D) : () - Hp~'(S) |

for arbitrary m = 0, T 1,... and are pseudodifferential operators of order 1,
respectively.
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B. The commutant
(75,05} (. D)] := 23050 (#. D) — A3} (#. D), (2.2)

with the pseudodifferential operator 2; has order —1 and maps continuously
the spaces
[@j’A;’l(%vD)] : H;l(Y) - Lp(y)-

The assertion (B) is a well-known property of pseudodifferential operators
and can be retrievedfrom many sources [Hrl, Shl, Tal, Trl].

Let ¢ € Hp (), Zjp € H;'(¥), for all j = 1,...,n. Then, due to
(2. ) Y= A (2,D)p € Ly() and due to (2.2), 29 = [2;,A, (2, D)]p +
A (2,D)Zjp € LP(Y) for all j = 1,...,n. By the definition of the space
]H[Zl)(Y) = H)(.) in (1.6) we conclude that ¢ € H(S). Due to (2.1) we get
finally ¢ = Ay(%,D)l/} eL,(¥).

If ¢ has non-empty Lipschitz boundary I" # (), there exist pseudodifferential
operators

AZY (2, D) : H;Y(E) — Ly(%),

P

AL (7. D)« Hy Y (%) — Ly(%),

P
of order —1, arranging isomorphisms between the indicated spaces, and their in-
verses are A+ (2, D), respectively (cf. [DS1]).

Moreover, the commutants [.@j,Azl(%,D)] = .@jAzl(%,D)fA;l(%, D)9;
have order —1, i.e., mapping continuously the spaces [Z;, A~' (2, D)] : H,*(¢) —
L,(¢) and [2;, A7 (2, D)] : H; (%) — L,(%).

By using the formulated assertions the proof is completed as in the case of a

elomed sulace, /. O

The foregoing Lemma 2.1 has the following generalization for the Bessel po-
tential spaces H ().

Lemma 2.2. If . ¢s-elosedy sufficiently smooth, 1 <p < oo, s € R, m=1,2,...
and

pe""™(), P%%=2{" - Dyrp e Hym ™ () forall |a] <m,
then ¢ € H> (7).

Moreover, the assertion remains valid for a hypersurface € with the Lipschitz

boundary I' := 0% and the spaces H(€') and fﬁ;(‘g)

(2.3)

Proof. Assume first . has no boundary. The proof is based on similar facts as in
the foregoing case:

A. The “lifting operator” (the Bessel potential operator) A", (2, D) = A?;i
(cf. Lemma 1.4 and (1.10)) maps isometrically the spaces

A (2,D) : Hi(S) — HS7(#), reR (2.4)

has the inverse A/ (27, D) and is a pseudodifferential operator of order r.
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B. The commutant
9%, A%y (#,D)] i= 9Ny (#, D) — Ny(, D)7° (2.5)

is a pseudodifferential operator of order |a| + r — 1 and maps continuously
the spaces

(2%, A%y (2,D)] : HY(#) — H)7lel=r (), vyeR

Assume that m = 1. Then ¢ € H3~ () and, due to (2.4), (2.5), it follows
that 1 := A%, ' (2, D)p € Ly(S), 259 = [2;, A5, (2, D)o + AL (2,D) P €
L,(-7) forall j = 1,...,n. By the definition of the space H}.(.?’) = H}(.#) in (1.6)
the inclusion ¢ € H)(.”') follows. Due to (2.4) we get finally ¢ = AS(2,D)y €

H ().
Now assume: m = 2,3,... and the assertion is valid for m — 1. Then, due
to the hypothesis, 1; 1= Z;p € H)~™(7) for j = 1,...,n. Moreover, due to the

same hypothesis,
DYy =D Yo e Hy "(S) foral |a]<m—1 andall j=1,...,n

Henceg, the induction hypothesis implies that ¢; := Z;¢ € Hg’l(y ) for j =
1,...,n. Now it follows from the already considered case m = 1 that ¢ € H; ().

If € has the non-empty Lipschitz boundary I # ), there exist pseudodiffer-
ential operators

A (2,D) : HY(€) - H,"(¢), A (2.D): H)€)—H"(%), (26)
arranging isomorphisms between the indicated spaces, and their inverses are
AZ"(2,D), A" (2, D) (cf. [DS1]).

Moreover, the pseudodifferential operators AT"(2, D) have order —r and
the commutants [7%, A" (2, D)] := @O‘Agl(%,D) — A (2, D)2 have order
la| — 7 — 1, i.e., mapping continuously the spaces [2*,A"" (2, D)] : H)(¥¢) —
Hy @) and (22, A7 (2, D)) - HY(%) — HyT (@),

By using the formulated assertions the proof is completed as in the foregoing
cases. O

Theorem 2.3. (Korn’s I inequality “without boundary condition”). Let ¥ C R™
be a Lipshitz hypersurface without boundary, Defo(U) = [Dx(U)], ., be the
deformation tensor (cf. (0.17)) and

1/p
n

Def o (U)[Lp ()] := | Y 94U Lo(A)|"| » UeHy(s) (27)
j,k=1

for 1 <p < oo. Then

[UHL)|| < M [||[U[Ly ()| + [Deto (U)|Ly ()] (2.8)
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for some constant M > 0 or, equivalently, the mapping
U= [[UILI + [Det @)]Lp()|]”
is an equivalent norm on the space Hy(.7).
Proof. Consider the space
(%) = {U = (U1,...,Un) "+ U;, D(U) € Ly(.#) forall jk=1,... n}

endowed with the norm (cf. (2.8)):
[U[EL)| = (UL ()| + [Defor (U)[Ly ()P (2.10)

The derivatives here are understood in the distributional sense
1 . 1 .
@k U):¥)s = 5(Uk, Z59) 5 + 5Us, Zi) sy VY E CH(.7)

(cf. (1.5) for the formal dual operator 7).

It is sufficient to prove that the spaces H}(”) and H?]I;(Y ) are identical.
The inclusion H,(.*) C ]I?I[;,(Y ) is trivial and we only check the inverse inclusion
HL(.7) € HL(S).

To this end take U € H?H;)(Y) and note that the inclusions U € L,(.%),
Defo(U) € L,(7) (ie., @;xU € L, () for all j,k=1,...,n) imply

D1(U) = [@kUj + @jUk:| =9;,(U) — %ZBT(Vij)UT eL,(v) (2.11)

1
2
for all j,k = 1,...,n. Then (cf. [DMM1, Proposition 4.4.iv] for the commutator
(2, Zk)):

DUk €HNS), (25, Dk)Unm = [0 Duve — D) DoUn € HH (),

r=1

~ ~ ~ 1
-@k-@ij = -@jgkm(U) + @ki)jm(U) — .@mgjk(U) — 5 [.@j, .@k]U

1 1
—5[@j,@m]Uk— 5[9k,@m]Uj E]H[;l(y) for jk,m=1,...,n,

Due to Lemma 2.1 of J.L. Lions this implies 2,;U,,, € L, (%) forall jm=1,...,n
and the claimed result U € H} (%) follows. O

Remark 2.4. The foregoing Theorem 2.3 is proved by P. Ciarlet in [Ci3] for the
case p = 2, m = 1, elesed-manifeld{without-beundary), for curvilinear coordinates

and covariant derivatives.
A remarkable consequence of Korn’s inequality (2.8) is that the space

HL(.%) = {U: (U1,...,U,) " : Uy, DU; € Ly () for allj,k:l,...,n}


Roland Duduchava
Cross-Out

Roland Duduchava
Replacement Text
manifold without boundary


Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 55

(cf. (1.6)) and the space I?I[;(Y) (cf. (2.9)) are isomorphic (i.e., can be identified),
(n+1)
2

n
although only < n? linear combinations of the n? derivatives 2,Uk,

j,k =1,... n participate in the definition of the space HT]I;(Y)

3. Killing’s vector fields and the unique continuation
from the boundary

Definition 3.1. Let . be a hypersurface in the Euclidean space R™. The space
() of solutions to the deformation equations

D,,(U) := = [(27U) + (77 V)]

N = N =

[.@kU;J + UL+ > UL D, (yjyk)] —0, (3.1)

m=1

U=> Uld c¥(¥), jk=1,...,n
j=1

(cf. (0.17)) is called the space of Killing’s vector fields.

Killing’s vector fields on a domain in the Euclidean space 2 C R™ are known
as the rigid motions and we start with this simplest class.

The space of rigid motions Z(Q2) extends naturally to the entire R” and
consists of linear vector functions

V(z)=a+ Pz, B =[], .. acR", zeR", (3.2)
where the matrix & is skew symmetric
0 b12 b13 o b2y bie—1)
—bia 0 ba1 o bines) ban-2)
B = = A" (3.3)
—bi(n—2) —ban-3) —bzm-a) - 0 bin—1)1
—bi(n-1) —batn—2) —b3m-3) - —bmn-1)1 0

with real-valued entries bj, € R. For n = 3,4,... the space Z(R") is finite-

1 1
dimensional and dim Z(R™) = n + n(n2 ) _ n(n + )

2
Note that for n = 3 the vector field V € 2(2), Q C R3, is the classical rigid
displacement

Viz)=a+PBr=a+bAz, 0 —bs by
B .= b3 0 —bl . (34)

b:.= (bl,bg,b3)T ERS, €N, —bs b1 0
Definition 3.2. We call a subset .# C R™ essentially m-dimensional and write
essdim .# = m, if there exist m + 1 points 20, 21,---, 2™ € .# such that the

vectors {27 — 5&”0};11 are linearly independent.
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Note, that any m-dimensional subset .#Z C R™ is essentially m-dimensional,
because contains m linearly independent vectors. Moreover, any collection of m+1
points in R™ (a 0-dimensional subset!) is essentially m-dimensional, provided these
points does not belong to any m — 1-dimensional hyperplane.

Proposition 3.3. Let
Def(U) := [ng(U)} : (3.5)

nxn
1 n )
o0,(U) = 5[0 +9,UL], U= Ul
j=1

be the deformation tensor in Cartesian coordinates.

The linear space Z(R™) of rigid motions (of Killing’s vector fields) in R"
consists of vector fields K = (K9,..., K?)T which are solutions to the system
2@%([()(;5) = (9kKJ(-J(,’E) + 0, K (z) =0 xe foral jk=1,...,n.(3.6)

If a rigid motion vanishes on an essentially (n — 1)-dimensional subset
K(z) =0 for all # € M, essdim.# = n — 1, or at infinity K(z) = o(1)
as |x| — oo, then K wvanishes identically K(x) =0 on R™.

Proof. The proof can be retrieved from many sources. We quote only two of them
[Ci2, KGBBI]. O

Remark 3.4. For the deformation tensor in Cartesian coordinates Def(U) (cf. (3.5))
in a domain 2 C R™ Korn’s inequality

1/p
} , l<p<oo (3.7)

|U @) < M [[UL @) + |Def@) L, ()]
with some constant M > 0 is well known and is proved, e.g., in [Ci2] (cf. (2.7) for
a similar norm).

In contrast to the rigid motions in R™ nobody can describe Killing’s vector
fields on hypersurfaces explicitly so far. The next Theorem 3.5 underlines impor-
tance of Killing’s vector fields for the Lamé equation on hypersurfaces. Later we
investigate properties of Killing’s vector fields to prepare tools for investigations
of boundary value problems for the Lamé equation.

Theorem 3.5. Let % be an (-smooth etosed-hypersurfaeq in R" and £ > 2. The
Lamé operator Lo for an isotropic media (cf. (0.23))
Ly - ]H[;H(Y) — ]H[;_l(Y) (3.8)
is self-adjoint L3, = L, elliptic, Fredholm and Ind Zs = 0 for all 1 < p < oo
and all s € R, provided that |s| < £.
The kernel of the operator Ker.Ly C Hy () is independent of the parameters
p and s, coincides with the space of Killing’s vector fields
Ker 9 ={U € V() : L»U =0} = Z(S); (3.9)
Ais finite-dimensional end dim () = dim Ker 5 < oo.
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If . is C* smooth, then the Killing’s vector fields are smooth as well
X(S) C C™®(Y).

L is non-negative on the space H'(.#) and positive definite on the orthog-
onal complement Hy,(”) to the kernej,

(Z9U,U), >0 foral UeH'(¥), (3.10)

(LU, U), > C|UEND)|| forall UeHY(#), C>04  (3.11)

where H, ; 9 O e i

Moreover, the following Garding’s inequality

(Z5U,U)y > U (S)|I* = Col|UH ()] (3.12)

holds for all U € HY(”), with arbitrary 0 < r < £ and some positive constants
Cy>0,C1 >0.

The proof will be given later, in §4. Here we draw the following consequence.
Corollary 3.6. Let . C R™ be a Lipschitz hypersurface without boundary,
Def,/ (U) = [0,4(U)
be the deformation tensor (cf. (0.17)) and the norm
| Def o (U) Lo (2)]|

nxn

be defined by (2.7).
Then the following Korn’s inequality

|Def s (U)|Lo(-2)|| = c|[UH' ()| VU € Hy() (3.13)
holds for some constant ¢ > 0 or, equivalently, the mapping
U — ||Defs (U)|Ly ()|

is an equivalent norm on the orthogonal complement Hlﬂ(Y) to the space of
Killing’s vector fields.

Proof. Due to Korn’s inequality (2.8) for p = 2
|UL()[* = b [|[U ()| — [U[H () ][|Det (U) [La(2)] ]

the mapping Def s : HL,(.) — La(.¥) is Fredholm and has index 0. The inequal-
ity (3.13) follows since the mapping is injective (has an empty kernel). O

Let us recall some results related to the uniqueness of solutions to arbitrary
elliptic equation.

Definition 3.7. Let Q2 be an open subset with the Lipschitz boundary 99 # ) either
on a Lipschitz hypersurface . C R™ or in the Euclidean space R" 1.

A class of functions % () defined in a domain € in R, is said to have the
strong unique continuation property, if every u € 7/ (Q2) in this class which vanishes
to infinite order at one point must vanish identically.
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58 R. Duduchava

If a surface ¥ is C'°°-smooth, any elliptic operator on % has the strong
unique continuation property due to Holmgren’s theorem. But we can have more.

Lemma 3.8. Let .7 be a C?-smooth hypersurface in R™. The class of solutions to a
second-order elliptic equation A(2, P)u = 0, with Lipschitz continuous top-order
coefficients on a surface . has the strong unique continuation property.

In particular, if the solution u(2) = 0 vanishes in any open subset of & it
vanishes identically on entire ..

Proof. The result was proved in [AKS1] for a domain  C R™ by the method of
“Carleman estimates” (also see [Hrl, Volume 3, Theorem 17.2.6]). Another proof,
involving monotonicity of the frequency function was discovered by N. Garofalo
and F. Lin (see [GL1, GL2]). A differential equation A(2, Z)u(2) = 0 with Lips-
chitz continuous top-order coefficients on a C%-smooth surface .7 is locally equiva-
lent to a differential equation with Lipschitz continuous top-order coefficients on a
domain © C R"~L. Therefore a solution u(2') has the strong unique continuation
property locally (on each coordinate chart) on ..

Since . is covered by a finite number of local coordinate charts which inter-
sect on open neighborhoods, a solution u(2°) has the strong unique continuation
property globally on .&. O

Remark 3.9. If the top-order coefficients of a second-order elliptic equation
A(2,2)u = 0 in open subsets Q@ C R™, n > 3, are merely Holder continuous,
with exponent less than 1, examples due to A. Plis [P11] and K. Miller [Mil] show
that a solution u(x) does not have the strong unique continuation property.

Lemma 3.10. Let € be a C?-smooth hypersurface in R™ with the Lipschitz boundary
T:=0% and v CT be an open part of the boundary T'. Let A(2,2) be a second-
order elliptic system with Lipschitz continuous top-order matrix coefficients on a

surface & .
The Cauchy problem

Az, 2u=0 on €, u € HY(Q),
u(s) =0 for all s €7, (3.14)
(Ovu)(s) =0 for all 5 €7,

where V' is a non-tangent vector to I', but tangent to 7, has only a trivial solution
u(2) =0 on entire ..

Proof. With a local diffeomorphism the Cauchy problem (3.14) is transformed into
a similar problem on a domain Q C R"~! with the Cauchy data vanishing on some
open subset of the boundary v C T" := 90Q2.

Let us, for simplicity, use the same notation v C I' = 012, the non-tangent
vector V' to «, the function u and the differential operator A(z, &) for the trans-
formed Cauchy problem in the transformed domain 2. Moreover, we will suppose
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that + is a part of the hypersurface 1 = 0 (otherwise we can transform the do-
main  again). We also use new variables t = z1 and = := (z2,...,2,—1). Then
(0,z) € v while (¢,z) € Q for all small 0 < ¢ < ¢ and some z € (V.

Thus, the natural basis element e® (cf. (0.6)) is orthogonal to v and, therefore,
el = c1(z)V(0,2) + c2(z)g? (z) for some unit tangential vector g?(z) to « for all
x € Q' and some scalar functions ¢ (), ca(z). Then, due to the third line in (3.14),

(0:u)(0, ) = Ogsu(0,2) = c1(2)Oyvu(0,2) + ca(x)0g u(0, ) = 0

because any derivative along tangential vector to  vanishes dg7u(0, z) = 0 due to
the second line in (3.14).
The second-order equation A(t,z; Z) can be written in the form

A(t,z, D)u = A(t, z;€")0%u + Ay (t, 2; D)Osu + Ay(t, ; D), D = —i0,,

where Aj(t,x;e!) is the (invertible) matrix function, A;(¢, z; D) and Ag(t,x; D)
are differential operators of orders 1 and 2 respectively, compiled of derivatives 0.,
x € . Therefore, if AJ(t,2; D) := A~ (t,z;e")A;(t,z; D), j = 1,2, the Cauchy
problem (3.14) transforms into

OFu(t, x) + A (t, x; D)owu(t, ) + AS(t, z; D)u(t,z) =0 on (t,x) € e,
u(0, ) =0 foralzeQ, (3.15)
(Ou) (0, z) =0 forallze,

where Q. 1= (0,¢) x @' C Q, u € H'(Q:) and v := {(0,2) : z € V'}.

Now let us recall the inequality (see [Miz1, § 4.3, Theorem 4.3, §6.14], [Sch1,
§4-7, Lemma 4-21]): There is a constant C' which depends on e and A(¢, x; D) only
and such that the inequality

).

holds for A(t,z; D)v € La(Qe), v € C*°(2.); moreover, v(t, x) should vanish near
t = ¢ and should have vanishing Cauchy data v(0,z) = (0;v)(0,z) = 0 for all
zeQ.

Let p € C?(0,¢) be a cut-off function: p(t) =1 for 0 <t < &/2 and p(t) =0
for 3¢/4 <t < e. Then v := pu € H'(£2.) and since A(¢,z; D)u = 0 on €2, we get

A(t, ;3 D)(pu) = pA(t, x; D)u + (87 p)u + (9pp)dyu + (8pp) AL (¢, x5 D)u

e o(t, 2)[2dt dx < C / e M|(A(t 2 DY) (6, 2) Pdt dw,  (3.16)
Qe

= (97 p)u + (9pp)Byu + (Dep) AL (¢, 5 D)u.
We have asserted u € H*(Q.), p € C? and this implies (0?p)u € H'(Q.) C
L2(Qe), (Orp)0ru € La(£2). Note, that (9:p(t) vanishes for 0 < ¢ < £/2. Therefore
(0¢p)AY(t, x; D)u vanishes in a neighborhood of the boundary v C T. Due to a
priori regularity result (cf. [LM1, Ch. 2, §3.2, §3.3]), a solution to an elliptic
equation in (3.15) has additional regularity u € H?(QY) for arbitrary QY properly
imbedded into 2. This implies (9;p)A{(t, z; D)u € L2(£2) and we conclude

A(t,z; D)(pu) € La(Qe). (3.17)
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Introducing v = pu into the inequality (3.16) we get

// e M p(t) (t,a:)|2dtd:17§/ e Mp(t)u(t, z)|*dt de
! Q

3e/4
<C/ / (At 23 D))p(t)ult, o)|2dt de.
Q/

This implies for A > 0

/ / u(t, 2)2dt da <e_>‘6/4/ (At D))p(t)ult, 2)[2 dt de < Cre— </,

where, due to (3.14), C1 > 0 is a finite constant. By sending A — oo we get the
desired result u(t,z) = 0 for all 0 < ¢ < /4 and all € €. Since u(z) vanishes
in a subset of the domain 2, bordering «y, due to Lemma 3.8 the solution vanishes
on entire ) (on entire ¥). O

Due to our specific interest (see the next Lemma 3.12) and many applications,
for example to control theory, the following boundary unique continuation property
is of special interest.

Definition 3.11. Let . be a Lipschitz hypersurface in R"™ and ¢ C .% be anepen
subsurfaeg with the Lipschitz boundary I' = 9%

We say that a class of functions % (2) has the strong unique continuation
property from the boundary if a vector function U € % () which vanishes U (s) =
0, Vs € v on an open subset of the boundary v C I', vanishes on the entire €.

Lemma 3.12. Let . be a C?-smooth hypersurface in R™ and € C .7 be ar—open
2

The set of Killing’s vector fields () on the open surface € has the strong
unique continuation property from the boundary.

Proof. Let v C T := 0%, mesy > 0and U(s) =0 for alls € y C T := 9%. Then
(cf. (3.1))
(Z;U)(s) + (ZkU7)(s) = = 32 Up.(8)Zm (vi(s)vi(s)) = 0,
Up(s) =0 Vsey, 4k

(3.18)

Among tangent vector fields generating the Giinter’s derivatives {dj (5)}?:11
only n — 1 are linearly independent. One of vectors might collapse at a point
d’ (s) = 0 if the corresponding basis vector e/ is orthogonal to the surface at
s € ., while others might be tangential to the subsurface I', except at least one,

say d"(s), which is non-tangential to . Then from (3.18) follows
2(2,U0)(s) =0 and implies (2;U°)(s) =0 (3.19)
forall se~ andall j=1,...,n
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Indeed, the vector d’, 1 < j = 1 < n — 1 is a linear combination d’(s) =
c1(s)d" (s) + ca(s)77(s) of the non-tangential vector d"(s) and of the projection
TI(s) := m,d’ (5) of d’ (5) to the subsurface 7 at the point s € . Since & vanishes
identically on v, the derivative (9,;UC)(s) = 0 vanishes as well and (3.19) follows:

(2;Un)(s) = c1(s)(0an Up)(s) + c2(5) (07 Up) () = c1(s)(ZnlUp)(s) =0 Vs €.
Equalities (3.18) and (3.19) imply
(ZnU)(s) = —(2;UN)(s) =0  Vse€y andal j=1,...,n (3.20)
Thus, we have the following Cauchy problem
L2, 2)U(2) =0 on ¥,
U(i)=0 for all se€7, (3.21)
(2,U)(s) = (0anU)(s) =0 forall se-r,

where d" is a vector filedy non-tangential to I'. Due to Lemma 3.10, U(2) = 0 for
all 2 € F. O

Corollary 3.13. (Korn’s I inequality “with boundary condition”). Let € C R™ be
a C*-smooth hypersurface with the Lipschitz boundary T := 0€ # 0 and £ > 2,
|s| < €. Then

|U[H(%)|| < M||Defe (U)|H;1(%)|| VU € H3(%)
for some constant M > 0. In other words: the mapping
U — ||Defe (U)|[H; 1 (6)| (3.22)
is an equivalent norm on the space H (7).

Proof. If the claimed inequality (3.22) is false, there exists a sequence U’ € }ﬁlg (%),
j=1,2,...such that

U/ (6)|| =1 Vi=1,2,... Jim | Defe (U7)|HE (%) = 0.

Due to the compact embedding ]ﬁ[;(%) C Hi(%) C Hy (%), a convergent subse-
quence U7* U’ ... in Hzfl(%) can be selected. Let U = limy_,oo U?*. Then
| Defe (U°)[HE(%)|| = Jim | Defe (U7*)[HE(%)|| =0

and U" is a Killing’s vector field. Since U () = 0 on T, due to Lemma 3.12 U’(z) =
0 for all # € € which contradicts to |[U°[H3(%)|| =lim—oo [|[U7* [H5(%)||=1. O
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4. A local fundamental solution to the Lamé equation

Proof of Theorem 3.5. Let us check the ellipticity of £ . The operator .Zs maps
the tangential spaces and the principal symbol is defined on the cotangent space.
The cotangent space is orthogonal to the normal vector and, therefore,

Lo(2,8n = pléPQ—vv " n+A+p)E n = pléPn+N+p)é€n, V& n L.

Thus, while considering the principal symbol £« (2, £) we can ignore the projec-
tion 7. With this assumption, the principal symbol of £« reads

Lo (2,6) = plel + A+ peg’  for (2,6 e T(). (4.1)

The matrix Ly (2, €) has eigenvalue (A + 2u)|€|? (the corresponding eigenvector
is &) and pu|€|? which has multiplicity n — 1 (the corresponding eigenvectors 67 are
orthogonal to &: €769 = (£,67) =0,j=1,...,n—1). Then

det Lo (2,€) = (A +2p)|€]* [1l¢]? =p"" P A +2u) >0
for (2,§) eT (), [€l=1

]n—l

and the ellipticity is proved.
The ellipticity of the differential operator Ly = Ly (2,7) in (3.8) on a
i ., proved above, implies Fredholm property for all 1 < p <
oo and all s € R. Indeed, Lo (2,P) has a parametrix R (2,9), which is a
pseudodifferential operator (¥DO) with the symbol R (2, €) := x(£)ZL,' (#,€),
where £, (#,€) is the inverse symbol and xy € C*°(R") is a smooth function,
x(&) =1 for |¢] > 2 and x(§) = 0 for || < 1. YDO Ry (2,2) is a bounded
operator between the spaces

Ry(2,92) : Hy () — H3 (), forall 1<p<oo, seR,
because the symbol Ry (2,£) = £, (2,€) belongs to the Hérmander class
S72(S,R")

a B —2—8]
2 85 Ry(%,f) < Ca,5|€|
for all multi-indices a, 3 € ZT} (cf. [Hrl, Shl, Ta2] for details).
The Fredholm property for the case p = 2 and s = 1 follows from Garding’s

inequality (3.12) as well (cf. [HW1, Thorem 5.3.10] and [Mc1, Thorem 2.33]).
The Fredholm property implies the finite-dimensional kernel

dimKer Ly (2,7) < .

To prove that the index is trivial Ind L» (2, %) = 0 for all 1 < p < oo,
s € R we apply Garding’s inequality (3.12) and homotopy. For this purpose first
note that the symbol Lo (2, €) is positive definite (cf. (4.1))

(L (2,6m,m) = plePInl + A+ ) EE n,m) = wléPnl® + A+ ) Y (Emy)?

j=1n

> plEPl> VYo es, VEneR™ (4.2)
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Further recall that the Bessel potential operator A% (27, D) : H3() —
H?~2(.”) (cf. (2.4)) lifting the Bessel potential spaces, has positive definite symbol

(AL (2,9n,n) > ClEP > Vaeds, VEneR” (4.3)

(cf. [DS1]). Now consider the symbols B, (2,€) = (1 — 1)Ly (2, &) + TAL (2,€)
and the corresponding DO

B (2,2)=(1-1%s(2,2)+ T\ (2,2) : Hi(S) - H73(S).  (44)

Obviously, B,(2,2) is a continuous (with respect to 0 < 7 < 1) homotopy
connecting the operator Bo(2, %) = Ly (2,92) with Bi(2,2) = A% (2, 9).
Since the symbol B, (2,&) is positive definite

(Br(2,&)n,m) > [(1 = T)p+ 7Ol > VE neR”

(cf. (4.2) and (4.3)), it is elliptic and the operator B (2, %) is then Fredholm
for all 0 < 7 < 1. Then Ind Z»(2,2) = IndBy(2,2) = IndB1(2,2) =
Ind A% (2, 2) = 0, since the operator A% (2, 2) is invertible.

From the representation (0.23) follows that the bilinear form (Z»U,U) ,, is
non-negative

(Z+U,U), =Ndivey, diveU,U) , + 2u(Defy, Def U, U)

—\||divoU|Lo(2)||* + 2p||Def s U[Lo(2)||* > 0 (4.5)

cf. (3.10)) and only vanishes if U is a Killing’s vector field Def»U = 0. Indeed,
;U = (.@fU)? =0,j=1,...,n,if DefoU = 0 and, due to (0.13),

n

n n 1 n
diveU =) U} =) 70} + 5 u)’ =) (77U); =0 (46)
j=1 j=1 j=1 j=1

VU € %(S)

since |v(2)| = 1. Thence, due to (4.5), Z(7) C Ker Z%. The inverse inclusion
follows also from (4.5) because Def»(U) = 0 if Lo (2,2)U = 0. This accom-
plishes the proof of (3.9).

The estimate (3.11) is a direct consequence of (3.10) and of (3.9): Since
the operator s is Fredholm, self-adjoint and Ker Z» = Z(.¥), then also
Coker L = Z(.7) and, therefore, the mapping

Ly HYy(#) — H(S)

is one-to-one, i.e., is invertible. The established invertibility implies the claimed
inequality (3.11).

A priori regularity property of solutions to partial differential equations (cf.
[Ta2, Hrl]) states that the ellipticity of (2, 2) provides C*(.#)-smoothness of
any solution K to the homogeneous equation Lo (2, 2)K = 0 (the hypersurface
& is C*-smooth). Due to the embeddings HJ (%) C H5(5), s < 7, p < g, then
the kernel Ker Z» (2, Z) is independent of the space H;(-#") provided that the
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spaces are well defined, which is the case if |s| < £ (cf. [Agl, Du2, DNS2, Kal] for
similar assertions).

In particular, the Killing’s vector fields Z () = Ker L (2, Z) are smooth
() C C(#) provided that the hypersurface . is C'*°-smooth.

Let {Kj};.nzl be an orthogonal basis (K, K), = 6 in the finite-dimen-
sional space of Killing’s vector fields 2(.7). Let

TU(2):=)Y (K;U), K;(z), 2z¢c. (4.7)
j=1
Due to the proved part {Kj};.nzl C CY) and the operator T is smoothing
T : H" (&) — H () (is infinitely smoothing if £ = c0). Then, the operator
Lo+ T : H(Y) - H (¥)

is invertible and non-negative

(Zy +T)UU), = (LU, U), + Y (K;,U)% >0
j=1
(cf. (4.5)). This implies that Z» + T is positive definite

(Z5U,U), + T)U,U), > C|U|H ()|
and we write
(Z5U,U), = (ZL» +T)U,U), +(TU,U),
> | U ()| + (TU,U)
> Cl||[UfE ()] - callujET ()]
which proves (3.12). O

Remark 4.1. Garding’s inequality (3.12), but in a weaker form r = 0, is a direct
consequence of the inequality (4.5) and Korn’s inequality (2.8) for p = 2.

Theorem 4.2. Let . be a {-smooth etosed—hypersurface; £ > 2 and X € C*(R™)
be a real-valued and non-negative % > 0 function with non-trivial support
mes supp Z # 0.

The perturbed operator

Ly(2,2)+ BI : HYP(S) - H () (4.8)
is invertible for all 6] < £ —1 and all 1 < p < 0.
Proof. The principal symbol of the operator Ly (2, 2) + %I in (4.8) ignores
lower-order terms and coincides with .Z» (2, &) and is elliptic (cf. Theorem 3.5).
Therefore on the elesed-hypersurfaee . the operator L (27, 7) + #I in (4.8) is

Fredholm for all # = 0,1, ... (cf. Theorem 3.5). On the other hand, if (Z» (2, 2)+
PBIHU = 0, then

0=((ZLr(2,2)+B)U,U), =(Ly(2,2)U,U), +(BU,U),
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and (3.10) implies that (BU,U) , = 0. Since & > 0, the obtained equality implies
U = 0 for all 2 € supp % and, due to the strong unique continuation property
U =0 (cf. Lemma 3.8).

Thus, the operator

Lo(2,2)+BI : H'(Y) - H () (4.9)

has the trivial kernel Ker (Lo (2,92) + #I) = {0}. Since Ly (2,2) + ABI is
formally self-adjoint (cf. Theorem 3.5), the same is true for the dual operator
and Coker (Lo (2, 2) + $I) = {0}. The invertibility of the Fredholm operator
Lo(2,2)+ BI in (4.9) for p =2 and 0 = 0 follows.

The invertibility of Lo (2, 2) + I in (4.9) for arbitrary p and 6 is a conse-
quence of the ellipticity of Lo (2, Z) + BI (cf. a similar arguments in the proof
of Theorem 3.5). O

Corollary 4.3. Let .7 be a C*°-smooth hypersurface in R™ and € C . be a proper
subsurface S\ € # 0. Then Lv(2,P) has a fundamental solution on .7, which
we call a local fundamental solution on €, viewed as the Schwartz kernel of the
inverse operator to Ly (2, D) + BI, where supp B C L\ €.

Proof. The Schwartz kernel £ (2, 7) of the inverse operator to s (2, 2)+ BI,
satisfies the equality

Lo, D) Hr =0(2)1, Zx€C

since B(2) =0 for 2 € €, and can be viewed as a local fundamental solution of

fy(%,.@) on %. O

Remark 4.4. The operator Ly (2, 2) itself has a fundamental solution on the
entire hypersurface . if and only if the space of Killing’s vector fields on . is
trivial Z(.#) = {0}. The situation is essentially different from the case of the
Euclidean space R™, where the condition at infinity

U(x)=06(1) as || — oo
eliminates the kernel of any linear partial differential operator with constant coef-

ficients and the fundamental solution (the inverse operator) exists.
A compact hypersurface with certain symmetry might possess non-trivial

Killing’s vector fields. Fer-example;veetor-fields @ + b X 2 with-arbitrary-veetors
&b € R3 ﬁrﬂd—t—he“b‘&ﬂ'&b}e 2 are—tangentialIcilling’s—veetor—fields—en—the—unit
s-p-hefeSzg

5. BVPs for the Lamé equation and Green’s formulae

Throughout the present section, if not stated otherwise, .7 is a C2-smooth surface,
¢ C . denotes a C%-smooth subsurface with the Lipschitz boundary 0¢ =T # 0
and r¢ is the restriction to the surface . Under the operation r¢ Z¢ (2, 2)U
on a function (distribution) U € H; (%) is meant that the operator r¢ %% (2, 2)

acts on a vector function U extended to a function U € H7 () on the entire
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surface, U = U. Since Ly (2, 9) is a local (differential) operator, the result
is, after restriction, independent of the extension. Moreover, Z¢ (2, 2) does not
extends supports of vector functions: if supp U C € then supp L (2, 2)U C €.
Therefore we will drop the restriction operator r¢ and write (Zg (2, 2)U)(%)
for all 2 € €.

We can not relax the constraint on a surface € (we remind that the underlying
surface is C?-smooth), because in the definition of equation

Le(2, 90U =F, UecH(¥), FecH (%), (5.1)

is participating the gradient V ov = [Z;14], ., of the unit normal vector field v
(see (0.20)-(0.24)). v(2) is defined almost everywhere on % is just C'-smooth.
We can actually require that . is H2_ (i.e., corresponding parameterizations of
the surface have, instead of continuous, bounded second derivatives).

Equation (5.1) is actually understood in a weak sense:

(L (2, 2)U, V), = (T DefeU, Defe V), = (F, V)., (5.2)

YU € HY(%),V e H'(%).
In particular, for the Lamé operator in isotropic media we have

(L2, DVU, V). = NVeU,VesV)y + 1(DefgU, Defig V)., = (F, V), (5.3)

VYV € HY(.)
(cf. (0.23)).
Let vr = (v}, ..., u{i)T be the tangential to ¢’ and outer unit normal vector
field to I'.

If a tangential vector field U € H),(¢') N ¥ (%) denotes the displacement, the
natural boundary value problems for %% are the following:

I. The Dirichlet problem when the displacement is prescribed on the boundary
(Le(#,2)U)(2) = F(2),  #¢c%,
{ Ut (r)=G(), Tel,
FeH (%), GeHYYI), UecH (%)

the first (basic) equation in the domain is understood in a weak sense (see
(5.2), (5.3)) and

(5.4)

VU =U" (5.5)

is the Dirichlet trace operator on the boundary.
II. The Neumann problem when the traction is prescribed on the boundary:

{ (Lg(2,2)U)(2) = F(2), X €E,
(Ze(vr,2) U) (1) = H(1), Tel,
FeH (%), HeH Y*I), UecH(?¥);

(5.6)
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here
'y;\L]U:: (To(vr,2) U)T, (5.7)

T (vr, 2)U :=—A(diveU)vr — 2;12 {( i+ A00)D i ( }k . (5.8)
j=1
= —uDu U — (A + p)(diveU)rr (5.9)

is the Neumann trace operator on the boundary (the traction) with
Do = Z . D¢ o € HY(?). (5.10)

In Lemma 7.3 below it will be shown that the trace 'y]t,U exists provided
that U is a solution to the basic (first) equation in (5.6).
A crucial role in the investigation of BVPs (5.4)—(5.10) belongs to the Green
formula.

Theorem 5.1. Let # € C'(Y) and Ct=¢, ¢ =6 =7\ € denote the
complemented eper—surfacey, & = CruUE—
For a solution to the equation
ZU+PBU=F, FecHY¢Y), UecH(%Y) (5.11)

(for B =10 cf. (5.1) and the basic equations in (5.4)—~(5.10)) the following Green
formula are valid

(Lo +2DUV), {@ﬁ (Le + BDU(2), V() dS
) (5.12)
— UL V) de + E2(U.V),

L (U, V
/ . [ (divee U, diveg V') + 21 (Defe U, Dty V) + B(U, V)] dS, 513
+ 5.13

Z 75, U= ZUOdﬂ V=> Vpd e H(¥) NV (%),
j=1 j=1
Here the index * denotes the traces on T from the surfaces €% and the scalar
product of matrices is defined as follows:

(M,N):=Tt[MNT], M= [Mjlnxn, N =[Njklnxn- (5.14)
Proof. We apply the integration by parts formula

/+<(9jU),V>dS: ifu%(Ui,Vf>ds+/+<U, (2;V))dS,  (5.15)
€~ r

U, VeHY(¢") j=1,...,n,
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proved in [DMM1] (cf. (1.5) for the formal adjoint Z;), and proceed as follows

(Lo +2DU,V),_ = :/+(AV%div%UwL2uDef%Def<gU+<@U,V> ds
ot

=ﬂgt (\Ve diveU + 21y {2;D6(U)},_, + BU,V)dS

Jj=1

_ [g AV diveU — 20> {(2; + A ADD(U)Y_, + BU, V) dS
. 2

_+ ]gwﬁU(T),»ygV(T»ds b ULV,

where T4 (vr, 2) is gives by formula (5.8). We have applied formulae (1.5), (0.21),
(0.15) and the equalities
(reU, V) =(U,V), <(@;‘5)*U,V> =(rey2;U,V)=(2;U,V) YV 7.

To obtain another representation (5.9) of T« (vr, Z) we start by second rep-
resentation of %% in (0.23) and proceed similarly. O

6. The Dirichlet BVP for the Lamé equation

Throughout this section € is a C2-smooth hypersurface with the Lipschitz bound-
ary I' = 0%.

Theorem 6.1. The Dirichlet problem (5.4) has a unique solution U € H(€) for
arbitrary data F € H™Y(€) and G € HY/2(T).

The proof will be exposed at the end of the section after we prove some
auxiliary results.

Lemma 6.2. (Garding’s inequality “with boundary condition”). The Lamé opera-
tor

L2, 9) : H(F) » H 1) (6.1)
is positive definite: there exists some constant C' > 0 such that
(L (2, 2)U,U), > C|UHN%)|* VYU eH\(¥). (6.2)

Proof. Due to (3.11) inequality (6.1) holds for all U € H,(.%), i.e., for U € H*(.%¥)
and U & Z(.5). Since U € H'(%) due to the strong unique continuation from the
boundary (cf. Lemma 3.12), all Killing’s vector fields K € H(%) are identically
0. Therefore, (3.11) holds for all U € H'(%). O

Corollary 6.3. The Lamé operator L¢(2,2) in (6.1) is invertible.
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Proof. From the inequality (6.2) follows that Z% (27, 2) is normally solvable (has
the closed range) and the trivial kernel Ker %4 (2, 2) = {0}. Since L% (2, 2)
is self-adjoint, the co-kernel (the kernel of the adjoint operator) is trivial as well
Ker Z2(2,2) = Ker Lg(2,2) = {0}. Therefore Ly (2, ) is invertible. O

Definition 6.4. (see [LM1, Ch.2, §1.4]). A partial differential operator
A, 2):= Y a2V, Vou=2 25, aq€C(€,CVN) (6.3)

la|<m

is called normal on I' if

inf |deteto (2, v(2))|#0, 2 e€l, =1, (6.4)
where o/ (x, £) is the homogeneous principal symbol of A
oz, €) = Z ao(2)(—i€)*, z€F, £€R™ (6.5)
la]=m

Definition 6.5. A system {B;(2, D) f;é of differential operators with matrix N x
N coefficients is called a Dirichlet system of order k if all participating operators
are normal on I' (see Definition 6.4) and ordB; = j, j =0,1,...,k— 1.

Let us assume % is k-smooth and m < k (m,k = 1,2,...) and define the
trace operator (cf. (5.10)):

R = {rBiu, ..., yrBuu} ', u € Ck@). (6.6)

Proposition 6.6. Let € be k-smooth, 1 < p < oo, m = 1,2,..., m < k and
m < s—1/p & Ny. The trace operator
R, H3(€) — j§0 We—l/P=i(T), (6.7)

where W}, (¢') = By, ,(€¢) is the Sobolev-Slobodecki- Besov space (cf. [Tr1] for details)
s a retraction, i.e., is continuous and has a continuous right inverse, called a core-
traction

(Pm)~" B WIS — HG(@)

(6.8)
R F) 1@ =D,  VEEe B W),

Proof. The result was proved in [Trl, Theorem 2.7.2, Theorem 3.3.3] for a domain

Q2 € R*! and the classical Dirichlet trace operator Zmu := {yrdyu,...,yrolu} .

In [Du3] the theorem was proved for a domain 2 C R*~! and for arbitrary trace

operator Zmyu.

A surface ¢ = U}_, % is covered by a finite number of local coordinate charts
xj + Qp — €, Q; C R After transformation, the Dirichlet trace operator
Hmu on a portion € of the surface transform into another Dirichlet trace operator
on the coordinate domains 2;. Therefore, we prove the assertion locally on each
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coordinate chart ¢; C ¢ and, by applying a partition of unity, extend it to the
entire surface €. O

Proof of Theorem 6.1. Let G = (%) 'G € H(%) be the continuation of the
Dirichlet boundary data G € H'Y2(T') from BVP (5.4) into the surface ¢ from the
boundary I', found with the help of a coretraction from Proposition 6.6. Then the
Dirichlet BVP

(Lo(2, D)U)(2) = Fo(2), 7 e,

ﬁ+(7) =0, Tel,

Fo:=F — Zs(2,2)G c H (%),
is an equivalent reformulation of BVP (5.4) and the solutions are related by the
equality U := U — G. On the other hand, since
HY(¢):={UecH (%) : U" =0},

the solvability of BVP (6.9) is equivalent to the invertibility of the operator
Lg(2,P) in (6.1). Now the unique solvability of BVP (6.9) (and of the equivalent
BVP (5.4)) follows from Corollary 6.3. O

(6.9)

7. The Neumann BVP for the Lamé equation
Throughout this section € is a C2-smooth hypersurface with the Lipschitz bound-
ary I' = 0%.

Theorem 7.1. The Neumann problem (5.6) has a solution U € H*(¥) only for
those right-hand sides F € H- (T') and H € H™ 1/2( ) which satisfy the equality

/F 2)dS = ?{H rds VK € Z(%). (7.1)

If the condition (7.1) holds, the Neumann problem has a general solution U =
U’ + K € HY(%), where U° € HY(%) is a particular solution and K € %(€) is
a Killing’s vector field.

The proof will be exposed at the end of the section after we prove some
auxiliary results. The proof is based on the celebrated Lax-Milgram lemma.

Lemma 7.2. (Lax-Milgram). Let 8 be a Banach space and A(p,) be a bilinear
A(+,7) B x B — R, positive definite form: the inequality

Alp,¢) = Cllo|B]? (7.2)
holds for some constant C > 0 and all ¢ € B. Further let L(-) : B — R be a

continuous linear form (a functional).
A linear equation

A(p,¥) = L(¥) (7.3)
has a unique solution ¢ € B for arbitrary v € ‘B.
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Proof. The proof can be retrieved from many sources (cf., e.g., [Ci3, §6.3]), mostly
for symmetric forms (we have dropped this requirement). For a non-symmetric
form the proof can be found in the original paper [LaM1]. |

Lemma 7.3. IfU € Hzl,(‘g), 1 < p < o0, is a solution to the first equations in (5.6),
then the Neumann trace on the boundary evists and YXU = (T4 (vr, 2) U)* €
H, /" ().

Proof. For =0, €T = % the Green’s formulae (5.12), (5.13) become:
(LU, V) =(U, 75 V)r +6U, V), (7.4)

EU,V)=Xdive U,dive V), + 2 (Defy U, Defe V'), (7.5)

Introducing the value Ly (2,2) U = F into the Green formula (7.4) we
rewrite it

(WU V) = (F, V), = E(U,V),
where V' € H (%) is arbitrary. The bilinear forms (F,V), and &(U,V) are
continuous for F € H,'(¢) and U € H)(¥), V € H,(¢), p' := p/(p — 1); the
bilinear form ((T¢(vr, @)U)+, V1), is well defined and, by a duality argument,

(T (vr, 2)U)" € B, V/?(T) since V* € H,V/7'(€) = HY/?(%) is arbitrary. O

Lemma 7.4. The condition (7.1) is necessary for the Neumann problem (5.6) to
have a solution U € H'(€).

Proof. First note that for a Killing’s vector field K € Z(%),

Lo, 7)K =0 and  viK = (To(vr, 2)K) "

=0. (7.6)

Indeed, if K € Z(%) is naturally extended to K € %Z(.%), then L (2, 7)K(2) =
Lo(2, D)VK(2) =0 for 2 € € (cf. (3.9)) and the first equality follows.

The second equality in (7.6) follows from (5.8) if we recall that Defey (U) = 0
(cf. Definition 3.1) and this also implies diveU = 0 (cf. (4.6)).

From(4:6)-and-the seecond-equality-in(7-6)foltows,

&(K,U) = &U,K) (7.7)
- / [A(dw U, dive K) + 2 (Defy U, Def K)] s =0
€

forall U e€HY (%) andall K € %Z(%).

Introducing into the Green formula (5.12) Z =0, F = Z4(2,2)U, V = K €
(%) and the obtained equality, we get the claimed orthogonality condition (7.1).
O

Lemma 7.5. The bilinear form (cf. (7.4) and (7.5))
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is well defined, symmetric An(U,V) = An(V,U) for all U, V € HY¥) and
non-negative Ay (U,U) > 0 for U € H'(.S) (cf. (5.13)). Moreover, the form is
positive definite

An(U,U) > Ms|[U[H'(2)|” YU € HY () (7.9)

on the orthogonal complement HL, () to the finite-dimensional subspace of
Killing’s vector fields Z(¢) in the Hilbert-Sobolev space H ().

Proof. The estimate
AU, V)| = |6, V)| < |[U[E ()] ||V [H ()]

follows from the definition of the form & (U, V') in (5.13) and proves that Ay (U, V)
is well defined. Moreover, the equality proves that the form is symmetric and non-
negative

An(U,V)=&(U,V) = &(V,U) = Ax(V,U),
An(U,U) = &(U,U) > 0.
From (5.12) and (5.13) follows
An(U,U)=EU,U) = A|diveU|Ly(#)||” + 21| Defep U Lo () ||

> 21| Defe U[La()||* > 20 c?||UH! () YU € HY () (7.10)

and accomplishes the proof. U

I

Proof of Theorem 7.1. The space of Killing’s vector fields Z(.#) is finite-dimen-
sional and consists of continuous vector-fields with bounded second derivatives
(these fields are actually as smooth as the surface €, i.e., are infinitely smooth if .
is infinitely smooth; see Theorem 3.5). Let K, ..., K,, be the finite-dimensional
orthonormal basis in Z(¢), (K, K,), = 0jr, j,r =1,...,m. Consider the finite
rank smoothing operator TU introduced in (4.7). As we already know the operator
T is symmetric and non-negative:

(TU, V), = (TV,U),. (TU,U)y=> (U, K;)7>0 (7.11)
j=1
YU,V € HY(%).
Consider the modified bilinear form

AJ(U.V) = (Ze(t, 2) + T)U, V) = (ORU 75V )1
=&U,V)+(TU,V), U,V eH (%) (7.12)
(cf. (7.4)). The form is symmetric because both summands are
AV, V) = 6U V) + (TU, V)¢ = E(V.U) +(TV,U)y = AL(V.U)
(cf. Lemma 7.5 and the first equality in (7.11)).



Lions’ Lemma, Korn’s Inequalities and the Lamé Operator 73

Moreover, the corresponding quadratic form is strongly positive
A% (U, U) = &U,U) + (TU,U), > C||[UH'(%)]| (7.13)

for some C' > 0. Indeed, Aﬁ(U, U) = 0 due to the positivity of the summands
implies: &(U,U) = 0, and further U € #(%) (cf. Lemma 7.5), (TU,U),, = 0
and further (U, K;) =0forall j =1,...,m. Then U = Z;nzl (U,K;)K; = 0.
A non-negative symmetric form with the property Aﬁ(U, U) = 0 if and only if
U = 0 is positive definite.

According to Lax-Milgram’s Lemma 7.2 the equation

AL(U,V) = (F. V), — (H V'), (7.14)
has a unique solution U € H'(%) for all V € H!(¥). This solves the problem
{ (Lo (t, 2)U)(t) + TU(t) = F(t), tet, (715)
(T4 (vr, 2) U)t (1) = H(7), Tel,

which is a modified Neumann’s problem (5.6).

Now assume that the vector functions F € H™Y(%) and H € H /(D)
satisfy the orthogonality condition (7.1) from Theorem 7.1 and U° € H'(%) be a
solution of (7.15). Since

(TU",K}), = (U, K1)y, AN(U°Kp)=&UKy)=0 k=12,...,m
(cf. (7.5)) from (7.14) we get
0=(F,Ky)y — (H,Ky)p = AL (U, K}) = AN (U, Ky) + (TU, Ky,
=U% Ky, k=12,....m.
Therefore, TU" = Y"}* | (U°, K\), K} = 0 and BVP (7.15), which is uniquely
solvable, coincides with BVP (5.6) provided that the right-hand sides satisfy the
orthogonality condition (7.1). Since the kernel of BVP (5.6) coincides with the

space of Killing’s vector fields Z(%), a general solution of BVP (5.6) has the form
U = U’ + K with arbitrary K € 2(¢€). O

Remark 7.6. If the surface is smooth, by invoking a local fundamental solution to
the Lamé equation (cf. Corollary 4.3) and the potential method, it is possible to
prove that BVPs (5.4), (5.6) and (7.17) have the same solvability properties if the
constraints (5.4) and (5.6) are replaced by the following non-classical constraints

s —2 s—1 s—1/p—1
FcH;7%(%), GeH;Y»(I), HeH; YD), (7.16)
l<p<oo, s2>1

and U € H3 (%) is unknown.

Moreover, by the potential method we can investigate the mized problem: find
the tangential displacement vector field U € H(¢’), prescribed on the part I'p of
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the boundary, while on the remainder part I'y := I'\T'p is prescribed the traction:

(Ze(2,2) U)(2) = F(z), 7 €T,
U™ (r) = Go(), relp, (7.17)
(Tx(vr, 2) U)*(r) = Ho(7), TelN.
The unique solvability of the mixed problem follows under the following conditions
FcH7%(¢), GoeHVP(Tp), HyeH VP (Ty), (7.18)
1 1 1 1
l<p<oo, s2>21, ——=-<s<—+-=.
p 2 p 2
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