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SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS
WITH INFINITE SET OF PERIODIC SOLUTIONS

I. Kiguradze UDC 517.9

For the differential equation u′′ = f(t, u, u′), where the function f : R × R2 → R is periodic in the

first variable and f(t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant

periodic solutions are found.

The problem of the existence, uniqueness, and nonuniqueness of periodic solutions of nonlinear differential

equations and systems attracts attention of many mathematicians and is the subject of numerous investigations (see,

e.g., [1–16] and references therein). Nevertheless, the description of classes of equations having a continuum of

periodic solutions is far from being complete. The goal of the present paper is to fill this gap to a certain extent.

Below we consider the differential equation

u′′ = f(t, u, u′), (1)

where the function f : R × R2 → R satisfies the local Carathéodory conditions, i.e., f(t, ·, ·) : R2 → R is

continuous for almost all t ∈ R, f(·, x, y) : R → R is measurable for all (x, y) ∈ R2, and, for an arbitrary

ρ > 0, the function fρ given by

fρ(t) = max {|f(t, x, y)| : |x| + |y| ≤ ρ} for t ∈ R,

is Lebesgue integrable on every finite interval.

We are interested in the case where the following equalities are satisfied on R × R2 :

f(t + ω, x, y) = f(t, x, y), f(−t, x,−y) = f(t, x, y),

f(t,−x,−y) = −f(t, x, y),

(2)

f(t, x, 0) = 0, (3)

where ω is a positive constant.

In view of (3), Eq. (1) has a continuum of constant solutions. There naturally arises the question of whether

Eq. (1) with conditions (2) and (3) may have nonconstant periodic solutions. As stated in Theorem 1 proved below,

the answer is positive.
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Let R+ = [0, +∞), let Lω be the space of ω-periodic real functions Lebesgue integrable on [0, ω], and let

Mω be the set of functions ϕ : R × R+ → R+ such that ϕ(·, x) ∈ Lω for arbitrary x ∈ R+, ϕ(t, ·) : R+ → R

is a continuous nondecreasing function for almost all t ∈ R, ϕ(t, 0) ≡ 0, and

ω∫

0

ϕ(t, x) dt > 0 for x > 0. (4)

Theorem 1. Suppose that conditions (2) and (3) are satisfied and

f(t, x, y) ≤ −ϕ(t, x)ψ(y) for t ∈ R+, x ∈ R+, 0 ≤ y ≤ r, (5)

where r > 0, ϕ ∈ Mω, and ψ : [0, r] → R+ is a continuous function such that

ψ(0) = 0, ψ(y) > 0 for 0 < y ≤ r,

r∫

0

dy

ψ(y)
< +∞. (6)

Then Eq. (1) has a continuum of nonconstant periodic solutions.

To prove Theorem 1 we need the following lemma:

Lemma 1. Let inequality (5) be satisfied, where ϕ ∈ Mω and ψ : [0, r] → R+ is a continuous function
satisfying condition (6). Then, for an arbitrary c ∈ (0, r), there exists tc ∈ (0, +∞) such that, on the interval
[0, tc], Eq. (1) has a solution uc satisfying the conditions

uc(0) = 0, u′
c(0) = c, (7)

uc(t) > 0, 0 < u′
c(t) < r for 0 < t < tc, u′

c(tc) = 0. (8)

Proof. Let uc be a solution of problem (1), (7) maximally extended to the right. Then either uc is defined

on R+ and

uc(t) > 0, 0 < u′
c(t) < r for t ∈ R+ (9)

or there exists tc ∈ (0, +∞) such that

uc(t) > 0, 0 < u′
c(t) < r for 0 < t < tc (10)

and

u′
c(tc) ∈ {0, r}. (11)

First, we assume that condition (9) is satisfied. Then, in view of (5), for an arbitrary fixed a > 0 the following

inequality holds almost everywhere on [a,+∞) :

ϕ(t, x) ≤ − u′′
c (t)

ψ(u′
c(t))

,
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where x = uc(a) > 0. Integrating this inequality from a to a + kω, where k is an arbitrary natural number, and

taking into account the ω-periodicity of ϕ(·, x) and condition (6), we find

k

a+ω∫
a

ϕ(t, x) dt ≤
u′

c(a)∫

u′
c(a+kω)

dy

ψ(y)
< ρ,

where

ρ =

r∫

0

dy

ψ(y)
< +∞.

Consequently,

ω∫

0

ϕ(t, x) dt =

a+ω∫
a

ϕ(t, x) dt ≤ ρ

k
→ 0 as k → +∞,

which contradicts condition (4). The obtained contradiction proves that the function uc does not satisfy inequalities

(9). Hence, for some tc ∈ (0, +∞), conditions (10) and (11) are satisfied.

According to (5) and (10), the following inequality holds almost everywhere on (0, tc) :

u′′
c (t) ≤ 0.

Therefore, u′
c(tc) ≤ c < r, whence, by virtue of (11), it follows that uc(tc) = 0. Thus, condition (8) is satisfied.

The lemma is proved.

Lemma 2. Suppose that, on R × R2, equalities (2) are satisfied and the function u is a solution of Eq. (1)
on some interval [0, t0] ⊂ R+. Then, for an arbitrary natural k, the function v given by the equality

v(t) = u(kω − t) for kω − t0 ≤ t ≤ kω

is a solution of Eq. (1) on [kω − t0, kω].

Proof. Indeed,

v′′(t) = u′′(kω − t) = f
(
kω − t, u(kω − t), u′(kω − t)

)

= f
(
kω − t, v(t),−v′(t)

)
almost everywhere on [kω − t, kω].

Thus, according to (2), we find

v′′(t) = f
(−t, v(t),−v′(t)

)

= f
(
t, v(t), v′(t)

)
almost everywhere on [kω − t, kω].

The lemma is proved.
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Proof of Theorem 1. Owing to Lemma 1, for an arbitrary c ∈ (0, r) there exists tc ∈ (0, +∞) such that, on

[0, tc], Eq. (1) has a solution u satisfying conditions (7) and (8). We choose a natural number k so that

kω ≥ 2tc

and extend uc onto R in the following manner:

uc(t) =

⎧⎨
⎩

uc(tc) for tc ≤ t ≤ kω − tc,

uc(kω − t) for kω − tc ≤ t ≤ kω,

uc(t + kω) = −uc(t) for t ∈ R.

By virtue of conditions (2) and (3) and Lemma 2, the function uc is a 2kω-periodic solution of Eq. (1). On

the other hand, it is clear that

uc1(t) 	≡ uc2(t) 	≡ const for 0 < c1 < c2 < r.

Consequently, if c runs through the interval (0, r), then we obtain a continuum of periodic nonconstant solutions

of Eq. (1).

The theorem is proved.

As an example, we consider the generalized Emden–Fowler equation

u′′ =
m∑

k=1

pk(t)|u′|μk |u|λksgn u, (12)

where

λk > 0, μk > 0 pk ∈ Lω,

pk(−t) = pk(t) ≤ 0 for t ∈ R,

(13)

ω∫

0

pk(t) dt < 0, k = 1, . . . , m. (14)

The following proposition is true:

Corollary 1. Let conditions (13) and (14) be satisfied. Then, for the existence of a continuum of periodic
solutions of Eq. (12), it is necessary and sufficient that

min{μ1, . . . , μn} < 1. (15)
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Proof. Assume first that, along with (13) and (14), condition (15) is satisfied. Then, without loss of generality,

we can assume that μ1 < 1. Due to condition (13), the function f given by the equality

f(t, x, y) =
m∑

k=1

pk(t)|y|μk |x|λksgn x

satisfies conditions (2) and (3). On the other hand, for an arbitrary r > 0, inequality (5) is satisfied, where

ϕ(t, x) = |p1(t)|xλ1 , ψ(y) = yμ1 .

Moreover, ϕ ∈ Mω and ψ satisfies condition (6) because

ω∫

0

|p1(t)| dt > 0 and 0 < μ1 < 1.

Thus, all conditions of Theorem 1 are satisfied, which guarantees the existence of a continuum of nonconstant

ω-periodic solutions of Eq. (12).

It remains to state that if

μk ≥ 1, k = 1, . . . , m, (16)

then an arbitrary periodic solution u of Eq. (12) is constant. Indeed, almost everywhere on R, the following

equality is satisfied:

u′′(t) = p(t)u′(t), (17)

where

p(t) =
m∑

k=1

pk(t)|u′(t)|μk−1|u(t)|λksgn (u(t)u′(t));

in addition, in view of (16), we have

p ∈ Lω. (18)

On the other hand, owing to the ω-periodicity of u, there exists t0 ∈ R such that

u′(t0) = 0.

Thus, it follows from (17) and (18) that u′(t) ≡ 0, i.e., u(t) ≡ const.
The corollary is proved.

Remark 1. If pk(t) ≡ 0, k = 1, . . . , m, then Eq. (12) does not have a nonconstant periodic solution. Con-

sequently, condition (14) in Corollary 1 is essential and cannot be weakened.

This work was supported by the Georgian National Science Foundation (Project No. GNSF/ST06/3-002).



526 I. KIGURADZE

REFERENCES
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