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1. INTRODUCTION 

Cohomology theory for associative algebras over a field is due to 
Hochschild [9]. Generalization of this theory for associative algebras over 
a commutative ring K posed considerable complications. Several definitions 
have been proposed. For example, in Cartan and Eilenberg’s monograph 
[S], the groups Ext$(R, M) are named as candidates for cohomology 
of the K-algebra R with coefficients in the R-R-bimodule i%f; here 
R’ = R @‘K RoP is the enveloping algebra of R. In MacLane’s book [ 141 
Hochschild cohomology is defined in the framework of relative homologi- 
cal algebra, 

Hoch*(R; M) = Ext;.,,(R, M), 

where the subscript K signifies that only those extensions which split over 
K are considered. Still another definition was proposed by Shukla [22], 
whose cohomology is denoted Shukla*(R; M). All these cohomologies are 
connected by natural homomorphisms: 

Hoch*(R; M) -+ Extg,(R; M) --) Shukla*(R; M). 

These homomorphisms are iso in dimensions 0 and 1, while if R is a pro- 
jective K-module, isomorphism holds in all dimensions. In dimension 2, the 
group Shukla’(R; M) classifies arbitrary singular extensions of the ring R 
by M, while Hoch2(R; M) classifies those singular extensions of K-algebras, 
which split as K-module extensions [ 141. The groups Ext$(R, M) have no 
good relation to algebra extensions, but they constitute a universal con- 
nected exact sequence of functors instead, unlike the others. And yet the 
Shukla cohomology is considered as the most “correct’‘-not only does it 
describe extensions well, but it also behaves well with respect to the first 
argument-namely, it can be described as Barr and Beck’s [2] cotriple 
cohomology (see Cl]); Quillen’s approach to the construction of the 
cohomology in “good” categories also yields Shukla cohomology [19]. 
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There is still another theory for rings, i.e., when K= L - Mac Lane 
cohomology H*(R; M) from [ 131. There are homomorphisms 

Shukla*(R; M) + H*(R; M) 

which are iso in dimensions 62. Mac Lane cohomologies are closely 
related to stable cohomologies of Eilenberg-Mac Lane spaces [7]. 

We make the domain of applicability of the Mac Lane cohomology 
wider in order to ensure, by suitable choice of that widened domain, that 
the Mac Lane cohomology provides a universal connected exact sequence 
of functors. This can be done thanks to the existence of the isomorphism 

H*(R; M) 2 Ext$,,,(l, A40R -), (1.1) 

where P(R) denotes the category of all functors from the category MR of 
free finitely generated left R-modules to the category R-a of all left 
R-modules, and where 

I:&t,+R-mod 

is the obvious embedding. 
The isomorphism (1.1) is a corollary of Theorem A, proved in Section 2. 
There is a full embedding 

that assigns to an R-R-bimodule M the functor 

establishing an equivalence of the category of R-R-bimodules with that 
full subcategory in W(R) which consists of additive functors. Consequently 
objects of 9(R) can be viewed as certain generalized “non-additive” 
bimodules, and conversely, real bimodules can be identified with additive 
functors from F(R). In the course of this identification the inclusion I 
corresponds to the R-R-bimodule R, and the functor MOR to M. By (1.1 ), 
Mac Lane cohomology appears to be a somewhat modified Cartan- 
Eilenberg-type cohomology: the modification consists in taking Ext not 
in the category of bimodules, i.e., of additive functors, but in the larger 
category of all functors from MR to R-d. So the isomorphism (1.1) 
motivates the following 

DEFINITION 1.2. The cohomology of an associative ring R with coef- 
ficients in an arbitrary functor 
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is defined by the equality 

H*(R; T) = Ext&,(Z, T). 

Hence, by the very definition our cohomologies 

H*(R; -): 9(R) + & 

constitute a universal exact connected sequence of functors. For additive 
T’s they recover the Mac Lane cohomology, through the aforementioned 
identification. 

In particular, H2(R; T), for additive functors T, classifies arbitrary 
singular extensions of the ring R by the R-R-bimodule T(R). What can be 
said about non-additive T’s? To answer this question, let us note that 
Theorem B of Section 3 implies the existence of isomorphisms 

H*(R; T) z H*(AJR; 3ELbmR(Z, T)), 

where the groups on the right denote the Hochschild-Mitchell cohomology 
[3, 161 of the category of free linitely generated left R-modules with coef- 
ficients in the bifunctor &%mR(Z, T), given for X, YE (M, 1 by 

(JKuwz~(Z, T))(X, Y) = Hom,(X, TY). 

But, according to [3] the second Hochschild-Mitchell cohomology 
group of a small category MR with coefficients in a bifunctor &m,(Z, T) 
classifies linear extensions of the category &fR by the bifunctor: 

c%mR(Z, T)+ +E+&f,. 

We prove that here E will always be equivalent to the category of all 
finitely generated free models of some uniquely determined algebraic theory 
in Lawvere’s sense [ 12,21, 251. The functor 

from the category of associative rings with unit to the category of algebraic 
theories, which assigns the theory of left R-modules to the ring R, is known 
to be a full embedding. This enables us to identify rings with corresponding 
theories. Hence it turns out that H’(R; T) classifies extensions of R in the 
category of algebraic theories. 

The above considerations make it clear that the natural domain of 
objects for our cohomology must be the category of algebraic theories, 
rather than rings. Section 4 is devoted to their construction. In that section 
a number of alternative approaches are presented and it is proved that they 
lead to the same result. In Section 5 examples of calculations of the 
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cohomology for free theories, theories of groups, theories of monoids, 
theories of G-sets for a monoid G, etc. are given, and in Section 6 some 
open problems are listed. 

The authors express sincere gratitude to Saunders Mac Lane, who 
showed steady attention to our work, for many valuable suggestions on 
the first version of the paper and for kindly supplying us with a copy of the 
important paper [13] which had been unavailable to us. Parts of the 
results of this paper were announced in [ll, 181. Some of them were 
obtained by the second author only, in particular, the main theorem of 
Section 2. 

2. ON THE MAC LANE COHOMOLOGY 

In this section we prove Theorem A, which is concerned with the rela- 
tionship between Mac Lane cohomology of rings and Ext groups in functor 
categories; related questions are discussed. 

Let us recall the definition of the Mac Lane cohomology from [13]. 
Consider the sets C, with 2” elements--n-tuples (si, ,.., E,), where si = 0 or 
1, for n 2 0 and i < n, and the 0-tuple ( ) for n = 0. For convenience C, can 
be visualized as the set of vertices of an n-cube, the product of n copies of 
the l-cube with vertices 0 and 1. 

DefinemapsOi,li:Cn-)Cn+,, l<i<n+l, by theequalities 

Oi(& 1,...,&,)=(&1,...,&i-l,O,&i+t, ...,En), 

lj(Elr ...2 &,)=(&I, ...) Ei-1, 1, Ej+l, ...y En). 

For an abelian group A and a set S, let A [ S] denote the sum of S copies 
of the group A. Since the sets C, are finite, the group A [ C,] can be iden- 
tilied with the group of all maps 

t: C, + A. 

Let Q;(A) be the free abelian group generated by the set A[C,], i.e., 

Following Mac Lane [ 131, define for i = 1,2, . . . . n the homomorphisms 

Ri = Z[R,], sj = Z[SJ, Pi=z[Pi], 
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where 

Ri, si, Pi: A[C,] + A[C,-,] 

are homomorphisms defined for e E C, _ 1 and t E A [ C,] by 

(&t)(e) = t(O,e); (Sit)(e) = I( lie); 

(Pit)(e) = t(Oie) + t( lie). 

In [13], Mac Lane defines the boundary homomorphism 

by the equality 

a= i (-l)i(Pi-Ri-Si). 
is1 

A generator t: C, + A of the group Q;(A) is called a slab when t( ) = 0, 
for n = 0, and an i-slab, i= 1, . . . . n, for n > 0, if either t(O,e) = 0 for all 
eEC,-i or t(l,e)=O for all eEC,-i; t is called an i-diagonal if for all 
(E 1, ..*, E,) E C, with .si # ci+ 1, we have 

q&l, . . . . E,) = 0, n>l,lGi<n-1. 

Let N,(A) denote the subgroup of Q;(A) generated by all the slabs and 
diagonals. It is easily seen that 88 = 0 and a(N,(A)) c N,- 1(A); i.e., Q’,(A) 
is a complex, with the subcomplex N,(A). So we obtain the complex 

Q,(A)= Q;(AW,(A). 

Define an augmentation q: Q,(A) + A by qt = 0 if t is a positive degree 
generator, and qt = t( ) for generators t of degree zero. 

According to [6] and [13], the homology of the chain complex Q,(A) 
is isomorphic to the stable homology of Eilenberg-Mac Lane spaces 
corresponding to A [7]; i.e., H,Q,(A)z H,+,(K(A, n)), n>q>O, where 
K(A, n) is the Eilenberg-Mac Lane space. 

In the case where A is a left module over the ring R, Dixmier (private 
communication to Mac Lane) has defined a product 

Q,(R)@ Q,(A) -+ Q,(A) 

in the following way [13]. For teR[C,], UEA[C,] define the map 
tu: C,,+,,, + A by 

(tto(El, . ..T En+,) = e-Q, . . . . Gn) 4&,+1, . . . . Em+“), 

where ci=O or 1, l<i<m+n. 
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This product equips Q*(R) with the structure of a differential graded 
(DG) ring, and Q,(A) with the structure of a left DG module over Q,(R). 

The augmentation q: Q,(R) + R is a morphism of DG rings, if R is 
given a grading concentrated in degree zero, and the trivial a. In particular, 
R becomes a Q,(R)-Q,(R)-bimodule. 

Recall that when X and Y are left and right modules over a DG ring A, 
their two-sided bar construction B(X, /i, Y) is defined (see, e.g., [4]), with 

Also B(R, Q.,.(R), R) evidently has the structure of an R-R-bimodule. 

DEFINITION 2.1 [ 131. For a ring R and an R-R-bimodule M, the 
Mac Lane cohomology of R with coefficients in A4 is defined by the 
equality 

HV; M) = H”(HomdB(R, Q,(R), RI, WI. 

It remains to state some auxiliary theorems for the proof of the main 
theorem of this section. 

Recall the definition of the cross-effects [7] of a functor T: 4 + g from 
an additive category 4 to the abelian category @. For objects A, A i , . . . . A, 
of A the cross-effects can be determined by the functorial decompositions 

For A, = ... = A, = A the object T,(A,, . . . . A,,) is denoted by T:(A) for 
brevity. 

For an arbitrary finite set S, the number of its elements is denoted by ISI 
and the set of its subsets by P(S). 

The following proposition is contained in [7]. 

PROPOSITION 2.2. Let T be an arbitrary functor from an additive 
category 4 to an abelian category &I@. For a finite set S and an object A of 
4, let A [S] be the sum of S copies of A. Then there exists a natural 
isomorphism 

WCS]) z @ T?,,(A). 
LE P(S) 
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COROLLARY 2.3. Let T: A + W be as above. Given a finite set S and 
some of its subsets S,, . . . . S,, define functors 

by the equalities 

T&U = T(HSl); Ts,{s,j = Coker 6 T,, -+ T, 
( > 

, 
i= 1 

for X E IAl an object of A, while Ts, + T, is induced by the in&sion Si 4 S, 
i = 1, . . . . n. Then the natural projection Ts + Ts,{st) has a section, 

Proof By Proposition 2.2 we have natural isomorphisms 

Ts(-V s 0 T;&O T,,(X) g 0 Tf,,W), 
LE P(S) L E P(S) 

for XE 141, i = 1, . . . . n. Since the isomorphisms of Proposition 2.2 are 
natural in S, we obtain natural isomorphisms 

Ts,~s,,@‘) = 0 Tf,,W), (2.4) 
LER 

where Q is the set of those subsets L of S which are not contained in any 
of the Si. Consequently Ts,(s,) is a direct summand of Ts. 

In the rest of the paper we repeatedly use the following direct conse- 
quence of the Yoneda Lemma [15]. 

PROPOSITION 2.5. Consider an arbitrary category C, an object c E 1 Cl, 
and an associative ring with unit R. Denote by 9 the category of all functors 
from C to R-u. Then the functor R[C(c, -)]: C -+ R-u is a projective 
object of 9, and, for any functor T: C -+ R-d, there is a natural bijection 

Hom,(RCC(c, -)I, T) x T(c). 

Moreover any projective object of 9 is a retract of a sum of functors of type 
RCC(c, -)I. 

PROPOSITION 2.6. For any ring R and a natural number n, denote by 
Q,, QL : R-mod + &8 the functors assigning to a left R-module X the 
abelian groups Q,,(X) and Q:(X), respectively. Then for any small full sub- 
category A of R-d, containing the free module R2”, restrictions of Q,, and 
Qk to A are projective objects of the category of at1 functors from A to ~28. 
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Proof Recall that by definition, for XE IR-al, 

QXG= ~CJXGII; 

so since X[C, J z Hom,(R’“, A’), projectivity of (2; 1 A follows from Proposi- 
tion 2.5. Hence it is clear that the proposition will follow if one shows that 
the projection QL + Q, has a section. To this end, put 

si = {(E, ) . ..) Gl)Gz,~i=o}, l<i<n, 

Ljj= {(El, . ..) h)E c,, q= I}, 1 <j<n, 

Dk={(~l,...,~,)~C,,&k=&k+l}, l<k<n. 

Denote by T: R-a + .dd the functot determined by 

TX= Z[X]. 

Clearly Qa = TCn ; by definition of Q,, 

Qn = Tcn/w,,~,~ for n>l 

Qn = Tw~s,,L,~ for n=l 

Qn = Tcn,~o) for n =O, 

(2.7) 

and the section exists by Proposition 2.5. 

In the following, restrictions of functors from R-d to full sub- 
categories have identical notations, if no confusion is caused. 

PROFQSITION 2.8. Let 4 be a small full subcategory of the category of 
left modules over the ring R containing the free modules R’ for 0 < i < Y, and 
let F: R-mod + ~46 be an additive functor. Then 

Proof: For a positive integer k, let [k] denote the set { 1, . . . . k}. By 
virtue of (2.4), for any functor F: R-a + @‘old there is an isomorphism 

F~&,I(c~I- {II,....c~I- I/~I}, k 2 0. 

If one uses T to denote the same functor here as in the proof of Proposi- 
tion 2.6, one has 

Hornddd( T& F) z F;(R), O<k<2”. (2.9) 
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Indeed, as we said in (2.3), there is an exact sequence 

which gives 

Hom,,O’;f, F) r Ker(Hom,,,dTCkl, F) -+ 6 Hom,,A(TCkl _ Iij, F)). 
i=l 

But for any finite set S one has 

T,= ZCHomANSI, -)I, 

and for 0 <k < 2”, Rk, Rk- ’ E 141; hence by Proposition 2.5 one has 

HomdgdA(T&F)zKer(F(Rk)+ & F(Rk-‘))=F$R). 
i=l 

Using (2.4) and (2.7), we obtain 

Qo= TI, Q, = T;, Q,,= 0 T;‘,,,n>l, 
LE V” 

where 

fi (P(si)“P(Li))“nG1 p(Dk) . 
i=l k=l > 

For any functor I;: R-d + ~~28, (2.9) implies that 

Hom,,4Q,, J’) = 4(R), 

Hom,,dQl, F) = f’$R), 

HomdrBGA(Qny J’) = 0 Ff,,(R), n> 1. 
LE V” 

For additive functors, these equalities imply our proposition, since for 
n 2 2, any L c V, satisfies IL\ > 2. 

We also need 

PROPOSITION 2.10 [ 13, Theorem 61. The morphism 

WC Q,(R), Q,(A)) + NC R, A) + A 

induced by the augmentations Q*(R)+ R and Q,(A) --, A is a quasi- 
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isomorphism; i.e., it induces isomorphisms in homology, for any ring R and 
R-module A. 

Remark. In [13], the DG-module B(R, Q,(R), Q,(A)) is denoted by 
M,(A 1. 

THEOREM A. Let A be a small full additive subcategory of the category 
of left modules over a ring R, containing the module R. Let I, T: A -+ R-mod 
be the inclusion I and an arbitrary additive functor T. Then there is an 
isomorphism 

H*(R; T(R)) z Ext*(Z, T), 

where the Mac Lane cohomology groups of R with coefficients in the obvious 
R-R-bimodule T(R) are on the left, while the Ext groups on the right are 
taken in the category of all functors from A to R-modules. 

Proof: According to Proposition 2.10 we have a resolution of Z in the 
category of all functors from A to R-modules of the form 

B(R, Q,(R), Q,(-)I + 1. (2.11) 

We claim that this is a projective resolution. Indeed, all the abelian groups 
Qi(R), i> 0, are free, while Q,(-) are projective objects of the category of 
all functors from 4 to abelian groups (by Proposition 2.6). Hence for all . . 
11, 12, -.a, ik, nE IV, the functor 

Qi,(R) 0 . . . 0 Qik(R) Q en(-) 

is a projective object of the category of all functors from 4 to abelian 
groups, and hence 

RQ Qil(R)Q . . . 0 Qi#) 0 Qn(-) (2.12) 

is also a projective object in all functors from 4 to R-modules. But every 
component of the complex B(R, Q.,.(R), Q,(-)) is precisely a sum of 
functors of type (2.12), so (2.11) really is a projective resolution. 

By virtue of Proposition 2.8, the group of natural transformations from 

Qi,(R) Q . . . 0 Qik(R) Q en(-) 

to the additive functor T: A --+ R-d, if we view both of them as functors 
to abelian groups, is trivial for n > 0 and equal to 

HomR(Qj,(R) Q ‘.. QQik(R)QR T(R)) 

for n = 0. Hence in the category of functors from 4 to R-modules, the 
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group of transformations from R @ Q,(R) @ e.. @ Qc(R) @ QJ-) to T is 
trivial for n>O and coincides with 

Ho%AR 0 QJR) 8 ... @Q,tW@R T(R)) 

for n = 0. 
Summing up, we obtain 

Ext*V, T) = ff*tHomtBtR, Q,(R), Q,(-)I, T)) 
= H*Wom,-,@(R, Q,(R), RI, T(R)) = H*(R; M), 

where Ext and Horn are taken in the category of all functors from 4 to 
R-modules. 

Recall that in Section 1 we defined the cohomology H*(R; T) of the ring 
R with coefficients in an arbitrary functor T from the category MR of 
finitely generated free left R-modules to the category of all R-modules 
R-d by the equality 

H*(R; T) = Ext&,,(Z, T), 

where 9(R) is the category of all functors from MR to R-a, and 
I: AJR + R-mod is the inclusion. In that section we also identified the 
category of R-R-bimodules with that full subcategory of F-(R) consisting 
of additive functors; clearly, the bimodule T(R) corresponds to the additive 
functor T in this way. From this point of view, Theorem A states that by 
restricting our cohomology 

H*( R; -): 9(R) + && 

to the category of R-R-bimodules, we obtain the Mac Lane cohomology. 

Cohomology with coeflicients in functors has good stability properties. 
Namely, one has 

PROPOSITION 2.13. For natural numbers r, n, let MR(r) denote the full 
subcategory of &fR with objects the R-modules 0, R, R2, . . . . R’, and 
let 9”(R, r) be the category of all functors from &fR(r) to R-a. Let 
I, T: &4, + R-mod be the inclusion and an arbitrary functor, respectively. 
Then, for r 2 2”, the homomorphism 

Ext5&, T) + Ext~$,,v,,,tL T,), 

induced by the exact functor ( )I: S(R)-rF(R, r) that assigns to 
T: MR + R-a its composition with the embedding MR(r) 4 MR, is an 
isomorphism. 
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Prooj: As we have seen in the proof of Theorem A, 

B(R Q,(R), Q,(-1) -+ 1 

is a projective resolution of Z in the category F(R). Consider the restriction 
of this resolution to the category MR(r): 

B(R, Q,(R), Q,(-))r -+ 1,. 

Proposition 2.6 implies that all components of B(R, Q,(R), Q*(-)), up to 
n are projective objects of 9(R, r). By the isomorphism (2.9) there are 
isomorphisms (2.9) there are isomorphisms 

H’( Horn ~&V, Q,(R), Q,(-I>, T) 

z H’( Horn ~cR,,JB(R Q,(R), Q,(-)L Tr)), id n. 

Hence 

Ext:&, 7’) E Ext$~,,,~K, Tr), for i<n. 

It follows from the definition that our cohomology 

H”(R; -): F(R) + de, n30 

vanishes on injective objects for n > 0. We now describe another sufficiently 
large class of objects of F(R), where these cohomologies vanish. For that 
purpose consider 

DEFINITION 2.14. A functor F from an additive category 4 to another 
additive category @ is called diagonalizable if it can be represented in the 
form F= To A, where A: 4 + 4 x 4 is the diagonal and T: 4 x 4 + & is a 
bifunctor satisfying T(0, X) = 0 = T(X, 0) for every object X from 4. 

The following proposition was proved in [ 173. 

PROPOSITION 2.15. Let 4 be a small additive category, and let 9 be the 
category of all functors from 4 to the category of modules over a ring R. 
Consider the functors U, F: 4 + R-a with U additive and F diagonal- 
izable. Then 

Ext$(U, F) = 0 = Ext$(F, U). 

COROLLARY 2.16. If F is a diagonalizable functor from the category of 
free left R-modules offinite type to the category of left R-modules, then 

H*(R; F) = 0. 
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With the aid of Corollary 2.16 we apply the methods of [23] to calculate 
cohomology groups in low dimensions of commutative rings, with coef- 
ficients in some quadratic functors: 

Let R be a commutative ring. For an R-module M, SiM denotes the 
symmetric square of M and Ai M the exterior square of M. By definition, 

SZ,M= M@I~ M/U(M), A;M= MQRM/V(M), 

where U(M) and V(M) are submodules of M OR M generated by elements 
of type m @ n - n @I m and m @ m, respectively, for m, n E M. The image of 
the element m @ n in the quotient module SiM is denoted by m v n and 
that in the module /1iM by m A n. 

Define the homomorphisms 

a: A2,M+ MQR M, &S2,M+ V(M) 

a(m A n)=m@n-n@m, /?(m v n)=mQn+nQm. 

Denote by ,R and R/2R the following R-R-bimodules: As left R- 
modules they coincide with 

,R= {r~R,2r=O) 

and R/2R, respectively, while the right actions of R on them are defined by 

x . r = r=x, rER,xEzR,orxER/2R. 

It is proved in [23] that for a flat R-module M the sequences 

0- A2,Ma MBR M- SiM-+ 0, 

0- V(M)- M@,M- AZ,M-0, 

0-,8QR M- S;Ma, V(M)- R/2R@, M- 0 

are exact. 
By varying M over the category &fR we obtain exact sequences in the 

category 9(R): 

o-n++ Q”,- s;-0 
O-V- @‘,-+A;-0 (2.17) 

o- (2aOR-j - S&+ V- (R/2ROR-)- 0. 
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Since 0: is a diagonalizable functor, we have H*(R; 0:) = 0. Hence 
(2.17) yields isomorphisms 

HO(R; V) = H’(R; V) = 0; HO(R; A’,) = 0, 

H”+2(R; V) = H”+‘(R; A”,) = H”(R; S’,), n 2 0, 

and long exact sequences 

0 + HO(R; 2R) 4 HO(R; S’,) 4 HO(R; Im(/?)) -+ H’(R; 2R) -+ . . . , 

0 -+ H’(R; Im(j?)) + H’(R; V) + H”(R; R/2R) -+ H’(R; Im(B)) + 

By combining (2.20) with (2.18) we obtain 

H’(R; Im(B)) = 0, H’(R; Im(fl)) = H’(R; R/2R). 

(2.18) 

(2.19) 

(2.20) 

Hence (2.19) implies an isomorphism H’(R; 5’:) z H’(R; 2R) and an exact 
sequence 

0 + H’(R; 2R) + H’(R; Si) + H’(R; R/2R) --t H*(R; ,i?). (2.20a) 

If we also assume that 2 R = 0, then (2.17) and (2.18) give 

H’(R; S’,) =O, H’(R; S’,) z H’(R; R/2R) 

and an exact sequence 

0 + H’(R; R/2R) + H*(R; S;) + H’(R; V). 

By (2.18), H2(R; V)=H’(R;Si)=O. Hence H*(R;S~)EH’(R;R/~R). 
The above considerations together prove 

PROPOSITION 2.21. Let R be a commutative ring. Then 

H’(R; A’,) = 0, 

H’(R; A;) E H’(R; S’,)E H’(R; ,R), 

Hn+‘(R; A’,) E H”(R; S’,), n b 0. 

Moreover, there is an exact sequence (2.20a). If, in addition, 2 R = 0, then 

H*(R; S’,) z H’(R; Rf2R). 

In particular, H’(Z; A2) = Z/22, H2(Z; S*) = 0. 
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3. CONNECTIONS WITH THE COHOMOLOGY OF SMALL CATEGORIES 

In this section we prove Theorem B and some auxiliary propositions 
which are needed in Section 4. 

First let us recall basic facts about the Hochschild-Mitchell cohomology 
theory of small categories [3, 163. 

Suppose we are given a small category C and a bifunctor D: Cp x 
C -+ &‘L. For a morphism a: A + B in C, objects X, Y of C, and elements 

~ED(X A), bED(B, Y), 

images of these elements under the homomorphisms 

D( 1 x, a): DW, A I-+ DV, B), D(a, 1 y): D(B, Y) + D(A, Y) 

are denoted by a* a and a.+ b, respectively. 
N,C denotes the nerve of C, [20]; it is that simplicial set whose 

n-simplices are diagrams 

which in the sequel will be denoted simply by (A,, . . . . A.,). Moreover, in this 
situation D(ll, . . . . A,), for a bifunctor D, denotes the group D(A,, A,). 

DEFINITION 3.1 [3]. The Hochschild-Mitchell cohomology of the 
category C with coefficients in the bifunctor D: p’x C + JZ?~ is the 
cohomology of the cochain complex F*(C; D), whose n-dimensional 
cochains are elements of the group 

F”(C; D)= n D(A,, . . . . I,) 
(AI,...,MEN~C 

for n >O and of 

F”(C; D) = n D(A, A) 
AEICI 

for n = 0, while the coboundary homomorphism 6: F”- ’ + F” is defined by 

481/131/2-2 
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for n>l and by 

(Sf)(%) = %*f(A) - %*f(B) 

for n=O, (i:A-+B)ENiC. 

By the very definition, the group H’(C; D) coincides with the end of the 
bifunctor D [IS]. In particular, we have 

PROPOSITION 3.2. Let 9 be the category of all functors from C to the 
category R-d of left modules over the ring R, and, for U, T E IFI, let the 
bifunctor s%~m,J U, T): Cop x C + sd& be defined by 

(%mzR( U, T))(X, Y) = Hom,( UX, TY), x YE ICI. 

Then H”(C; J%M~( U, T)) E Hom,( U, T). 

Cohomology groups of small categories with coefficients in bifunctors 
are known to constitute a universal exact connected sequence of functors 
[3, 163, so they are derived functors of ends. 

We also need the connection between second cohomology and linear 
extensions of categories [ 3 1. 

DEFINITION 3.3 [3]. We say that 

D+--+EAc (3.3a) 

is a linear extension of the category C by the bifunctor D: COP x C + &&; 
if B is a category with the same objects as C, p is a functor which is identity 
on objects and surjective on morphisms; and moreover, for all objects 
A, BE (Cl, an effective action of the group D(B, A) on the set E(B, A) 
(denoted by %, + a for 1,: B + A in J$ and aE D(B, A)) satisfying the 
following is given: 

(1) For i,, A, EE(B, A), p(i,)=p(A,) iff there is an aED(B, A) with 
%, = %, + a. 

(2) For a E D(B, A), b E D( C, B), and morphisms C +M B + h A in 
E, with p(l,) = %, p(po) = p, one has 

(%, + a)(po + 6) = 3.,po + A* b + p*a. 

The class of all linear extensions of C by D has a naturally defined 
equivalence relation; the set of equivalence classes is denoted by M(C; D), 
and [3] constructs a natural bijection M(C; D) x H*(C; D). 
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PROPOSITION 3.4. Given a linear extension (3.3a) of the category C by 
the btfunctor D, let 

be a diagram in E whose image under p is a coproduct diagram in C. Then 
the original diagram is a coproduct diagram in J$ iff for every XE (Cl, with 
C(A, X) x C(B, X) # 0, the homomorphism induced by a and /3, 

WC, X) -, W, X) 0 D(B, 9, 

is an isomorphism. 

Proof By the given conditions in C, a and /I induce 

C(C, W --, CM X) x C(B, Xl, 

a bijection. We need to determine the conditions under which 

E(C, X) --) EM Xl x EM Xl 

will be bijective too. Hence the proposition follows from the following easy 
lemma: 

LEMMA 3.5. Let a: G, + G2 be a homomorphism of groups and let Xi be 
nonempty sets with effective actions of Gi, i= 1,2. Suppose we are given an 
a-equivariant map /k X, +X, that induces a bijection between sets of orbits 
fi*: X,/G,* X,/G,. Then /I is a bijection lff a is an isomorphism. 

For a functor p: c’ + C and a bifunctor D on C, composition with p 
determines a bifunctor on c’ that will again be denoted by D. So p induces 
a morphism of the complexes 

p*: F*(C; D) -+ F*(C’; D) (3.6) 

of D and, so, homomorphisms in cohomology 

p*: H*(C; D) + H*(c’; D). 

Before we formulate the following proposition, recall that an augmented 
simplicial object E: X, +X_ I in some category K consists of a simplicial 
object X, = (X,, Sl, dl), n 2 0, 0 < i < n, in H; an object X- 1 of H; and a 
morphism E: X0 + X- r in K with EdA = ed i. Such an object E: X, + X-r 
is called contractible if there are morphisms h, : X, + X,, 1, n 2 - 1, 
satisfying sh-r=lX-,, d,+I n “+‘h =l, d;h,=h-,e, d;+‘h,=h,-,d;-,, 
O<i<nal. 
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PROPOSITION 3.7. Let E: C, + C-, be an augmented simplicial category, 
such that all the C,‘s, n 2 - 1, have the same set of objects and all the struc- 
ture functors involved are the identity on objects. Suppose also that for any 
A, BE 1 C- 1 1, the augmented simplicial set 

E(A, B): LTJ-4 B) + C- ,(A, B) (3.8) 

is contractible. Then for any bifunctor D: CJ x C --) de, there is a spectral 
sequence with 

Efq=Hq(~~;D)jHP+q(C_I; D). 

Proof: Denote by h the contraction of the augmented simplicial set 
(3.8). For every n > 0, applying the functor I;“(-; D) of Definition 3.1 com- 
ponentwise to 6: C, --) C- r gives the augmented cosimplicial abelian group 

6’: F”(c_,; D) + F”(C,; D), n > 0, 

which also has a contraction h given by 

@if )(A, . . . . 4J =fW,, . . . . h&J 

forfEF”K’,; D), m20, (A,,...,&JEN,C,-~. 
By varying n we obtain an augmented cosimplicial object in the category 

of cochain complexes: 

The cosimplicial cochain complex F*(C, ; D) can be converted to a bicom- 
plex, whose total complex is denoted Tot F*(C,; D). Spectral sequences 
associated with a bicomplex [S, 141 have in our case the form 

‘Efq = Hq( &‘p; D) ==- HP + q(Tot F*( C,, ; D)), 

“Efq = H”(F:“(&; D)) +HP+q(Tot F*(C,; D)). 

Since the augmented cosimplicial abelian groups en are contractible, we get 
“ETq = 0 for q > 0 and “EfO = FP(C-,; D). Hence the second spectral 
sequence degenerates to yield isomorphisms 

ZP(Tot(F*( C, ; D))) g “Ep” r HP( CM, ; D). 

Substituting this in the first spectral sequence gives the proposition. 

The proof of theorem B uses the following lemmas. 
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LEMMA 3.9. Given a functor T from the category C to the category 
R-m of modules over the ring R, define the bifunctor 

D. CoPxC+~& .- - 

from an object A of L: by the equalities 

D(X, Y) = ( TY)C(A*X) for X, YE [Cl. 

Then 

H”(C; D) = 0 for n >O, H”(C; D) = T(A). 

Proof. For a E T(A) define the function f, E F”(C; D) by 

(f,(V)(a: A + -V = T(u)(a) for Xelcl,aEC(A,X). 

Then the assignment a H f, defines a homomorphism E: T(A) + FO(C; D), 
which gives an augmented cochain complex E: T(A) + F*(C; D). To show 
that it is contractible, define the homomorphism h: F’(c; D) + T(A) by 

h(f) = (f(A))(l.) for f E F”(C; D). 

To define h”:F”+l(C;D)-+F”(C;D) for n20, note first that for any 
f EF”+l(C; D) and any (X,c”‘X, c ... c”“X~)EN,,~, each morphism 
A: A + X,, determines an element 

(X0 4L . . . LX, AA)EN,+& 

so that a map 

f(A 1, . . . . I,, A) E D(A, X0) = TX$(A’A) 

is determined. Hence one may define h” by the equality 

(h*f )(A,, . . . . M~)=f(&, ..*, L A)(l,) 

forf eF”+‘(C; D), (A,, . . . . I.,)EN,C, JEC(A, X,,). 

Direct calculation now shows that the sequence h, hl, h,, . . . determines a 
contraction for the augmented cochain complex E: T(A) --t F*(C; D). Hence 

H”( C; D) = 0 when n > 0, H”(C; D) = T(A). 

LEMMA 3.10. For covariant functors P, T from a category C to modules 
over a ring R, let 

,x?,,,(P, T): cop x C + &01e 
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be the bifunctor assigning the group Z&z,(PX, TY) to the pair 
(X, Y) E lCp x Cl. If P is a projective object of the category 9 of all 
functors from C to R-a, then 

H”(C; A%z~(P, T))= Hom,(P, T), 

H”( C; SmR( P, T)) = 0, n > 0. 

ProoJ: In dimension 0 our assertion is a corollary of Proposition 3.2. 
For positive dimensions, consider the family of “representable” functors h,, 
A E ICI; h, is the functor from 5: to R-m assigning the free R-module 
generated by the set C(A, X) to the object X of C. It is know that the h,‘s 
constitute a family of small projective generators for 9 (cf. Proposi- 
tion 2.5). Hence we can restrict ourselves to the case P= h, for some 
A E /Cl. But then the bifunctor &m,(hA, T) coincides with the bifunctor 
from the previous lemma, so that our assertion follows from Lemma 3.9. 

We now prove the main result of this section. 

THEOREM B. For any functors U, T from a category 5: to modules over 
a ring R, there is a spectral sequence of type 

E,P4 = Hp(c; &zx!;( U, T)) = ExtP,++( U, T), 

where &xti(U, T) is the bifunctor Cp x C+ &I? which assigns the group 
Ext4,(UX, TY) to X, Y from C, while Ext on the right is taken in the 
category 9 of all functors from C to R-modules. 

Proof: Let 

be a projective resolution in the category 9. It determines a complex of 
bifunctors J%M,(P,, T), whose components H*(C; -) are acyclic by 
Lemma 3.10. Hence the hypercohomology spectral sequence (cf. [a]) for 
the functor H*(C; -) and the complex %%m,(P,, T) takes the form 

E2P4= Hp(C; Hq&mR(P,, T)) * Hpfq(Ho(C; ZAz,(P,, T))). 

Now Proposition 3.2 gives the equality 

Ho@; Sm,U’, , T)) = Hom,(P,, T). 

Hence that spectral sequence has the ,required abutment Ext$(U, T). 
Furthermore the bifunctor 

H4(3%zR(P*, T)): Cp x C + ~$8 
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assigns the groups 

H4(Hom,(P,X, TY)). 

to the pairs (X, Y)E Icp x Cl. Obviously for any object XE IQ, P,X is a 
projective resolution for UX. So 

Z-ZqzW?zR(P*, T)) = 8&( u, T), 

and the theorem is proved. 

COROLLARY 3.11. Suppose that the functor 

U: C+ R-m 

takes values in projective modules; then for any T: C + R-a there are 
isomorphisms 

ZZ*(C; &‘um,( U, T)) z Ext;( U, T). 

By combining Corollary 3.11 with the results of Section 2 (e.g., Proposi- 
tion 2.13) we obtain 

PROPOSITION 3.12. Let &fR be the category of free left finitely generated 
R-modules and let &4k(r) denote, for r E N, the full subcategory of &iR whose 
objects are RO, R, R2, . . . . R’. Then, for any functor T: MR + R-d there are 
isomorphisms 

H’(R; T) z H’(M,(Z, T)) z H’(M,(r); J&wz,JZ, T),) 

for r>2’, where X”mR(Z, T), is the restriction of JEwH~(Z, T) to &fk(r). 

4. COHOMOLOGY OF ALGEBRAIC THEORIES 

Now we generalize the definition of our ring cohomology to algebraic 
theories; by proving that the cohomology of free theories vanishes in 
dimensions >2 we are able, using Proposition 3.7, to prove Theorem C, 
asserting that the cohomology of algebraic theories is a case of Barr and 
Beck’s cotriple cohomology [ 23. 

For convenience, let us recall briefly the basic notions of the Lawvere 
approach to algebraic theories. A detailed exposition may be found 
in [21]. 

A finitary algebraic theory (simply a theory for us) is a category whose 
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objects are natural numbers 0, 21, 2, . . . . n, . . . . n E N, with distinguished 
morphisms 

P;‘7 . . ..p.: un-+li, 

which give the object UII the structure of a product of n copies of the object 
II, for all n E N. Morphisms of algebraic theories are functors that are the 
identity on objects and preserve finite products (those distinguished 
functors, in more brief terms, that preserve the morphisms p;, 1 < i < n). 
The category of algebraic theories is denoted %&o~‘ed. 

A model of the theory A in a category V is a functor from A to 9? that 
preserves finite products. The category of set-valued models of a theory A 
is denoted Ab. The assignment 

M++WQ), ME (Ab( 

defines the usual “forgetful” functor 

U,: Ab--rc%tti. (4.1) 

This functor has a left adjoint L, : tit9 + Ab; a model M is called a free 
model of A on the set X if there is an isomorphism Mr LA(X). 

For every n E IV, the functor A(un, -): A + St6 is a model of A. Putting 
n I+ A(n, -) defines a functor 

I,: A’P -+ Ab. 

It is known that I, is a full embedding establishing an equivalence of AoP 
with the full subcategory of A6 consisting of finitely generated free models 
(i.e., free on finite sets) [21, 2.51. 

A morphism of theories f: A -+ B induces a pair of functors 

f*:Ab-+Bb, f”: Bb + Ab, 

where fb(i14) = MO S, ME ( Bb(, while f, is left adjoint to f ‘, and moreover 
the diagram 

commutes [21]. 
There is a functor W&~o + 9Lo~iea assigning to a ring R the theory of 

left modules over R. We denote this theory by R; in other words, Rb is the 
category of left R-modules. This causes no confusion, as that functor is 
known to be a full embedding. 
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Recall also that for theories A, B their tensor or Kronecker product 
A @I B is defined (see [21, 251). This is a theory whose set-valued models 
are the same as models of A in the category Bb, or, equivalently, models 
of B in Ab. By denoting by N the initial object of %eokea, we obtain 
A 0 N g A for any theory A, as fW b = .%td [21]. The unique morphism 
N + Z induces a morphism of theories 

i:A=A@N+A@O. 

Here Z denotes, simultaneously, the ring of integers and the theory of 
E-modules, i.e., of abelian groups. The category (A @ Z)b is equivalent to 
the category of internal abelian groups of Ab. A @E is known to be 
representable by a ring for any A (see [25]). The functor ib: (A @ E)b- 
--f Ab can be identified as the forgetful functor a&( Ab) + Ab. It has a left 
adjoint i,, called abelianization, is written 

(-)a,: Ab + d&(Ab). 

DEFINITION 4.2. Let A be a theory. For functors 

T: AoP --) &&(A’), 

the cohomology of A with coefficients in T is defined by the equality 

H*(A; T) = Ext$c,,W,),,, T), 

where F(A) is the category of all functors from Aop to d&(A’) while 
(1, Lb is the composition 

h A”P - Ab -=h &&(Ab). 

Remark. As mentioned, A &I Z may be identified with some ring for any 
theory A, which means that 

is an abelian category with enough projectives and injectives so that the 
Ext groups in Definition 4.2 can be understood in the standard sense. Also, 
since AoP is equivalent to the category of finitely generated free models of 
A, for rings this definition coincides with Definition 1.2. 

LEMMA 4.3. For any theory A and any n E N there are isomorphisms 

Horn dFBd(Ab)((b&dd A) s A(n) 

for any A from d&(Ab). In particular, (Z,),,(un) is projective in d&(Ab). 



276 JIBLADZE AND PIRASHVILI 

Proof. Since (-)ab is left adjoint to the forgetful functor, we have 

Horn d~cab~(UAM~), A) = HomWb(ZA(~), A) 

= Hom&A(n, -), A) = A(n), 

the last equality by the Yoneda Lemma. 

LEMMA 4.4. The category F(A) of functors AoP -+ d&(Ab) is equivalent 
to the category of those bifunctors A x AoP + zY& which preserve finite 
products in the first variable. Moreover, under that equivalence the bifunctor 

~‘:AxAoP+dd, (4.5) 

determined by the equality p(un, m) = T(m)(m), corresponds to the functor 
T: AoP + dc?(Ab). It can be also expressed, in our previous notations, as 

T=&m .&(/@)((~,dab T). 

Proof Since d&(Ab) 1: (A 0 Z)b, the category &&(Ab) is equivalent to 
the category of models of A in dd, the category of abelian groups. This 
implies the first part of the assertion. The second follows from the first, 
using Lemma 4.3. 

Lemma 4.3 makes it possible to use Corollary 3.11. By taking into 
account the second part of Lemma 4.4 we obtain 

PROPOSITION 4.6. Let A be a theory, and consider TE 9(A). Let T be 
the bifunctor corresponding to T as in (4.5). Then there are isomorphisms 

H*(A; T) z H*(ADP; F). 

Here the groups on the right are the Hochschild-Mitchell cohomologies of 
the category AoP of Jinitely generated free models of the theory A with coef- 
ficients in the bifunctor !?. 

By relying on Proposition 4.6, we can give more intricate descriptions of 
low-dimensional cohomology groups. 

Let A be a theory and take some ME aI&( Then the underlying set 
UM, as in (4.1), has the structure of an abelian group. Recall that the 
structure projections pl, . . . . p,, : n 4 II induce isomorphisms 

(M-P, 7 .*-, MPn): M(m) -+ ir M(j) 
i=l 

so that M(n) can be identified with (UM)“. In particular, every morphism 
o: 110 - 21 of the theory induces an operation o.,: (UM)” + UM (an n-ary 
operation on the model M). 
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For a functor T: AoP -+ d&(Ab), let T, denote the abelian group 
U(r(n)). Actions of the functor T on morphisms 4: un + on induce 
homomorphisms d*: T, + T,,. 

PROFQSITION 4.7. Let A be a theory and let T be a functor from 9(A). 
Then, in the above notations, 

Proof. By Proposition 4.6, H”(A; T) = H’(A”p; p). But the group 
H”(Aop; T) coincides with the end of the bifunctor F Hence it consists of 
sequences (a,, a I, . ..) with a, E T(nn, on), such that the equalities 

Qa, l.)(a,)= Ql,, a)b,) (4.8) 

hold for any a E A(n, un). By Lemma 4.4, T preserves products in the first 
variable. Hence 

m(P1, l,), . . . . n;(P,, 1,)): wb on)-, ii m ml 
i= 1 

are isomorphisms. By using t, to denote the inverse to this isomorphisms 
we obtain 

since ~(‘(Pi, l.)(a,)= T(l,,p,)(a,). Hence in the sequence (a,, a,, u2, . ..) all 
entries are expressible in terms of a, alone. So obviously Lemma 4.4 is 
equivalent to the condition of our proposition. 

Keeping the above notations we now turn to an analogous description 
of H’. To this end we introduce the following 

DEFINITION 4.9. For a theory A and a functor TEF(A), the abelian 
group Der(A; T), of derivations of A. with values in T, consists of 
sequences 

d= (dn: A(T Q) --* Tn)nsrw 

satisfying the equalities 

d,,z(4~,, . . . . o,,)) = (01, . . . . on)* (dnw) + o,(d,,,o,, . . . . d,,,4 

for all o~A(on, I), ol, . . . . ~,~A(uun, Q), where (ol, . . . . CO,): m +n is the 
unique morphism with the property pi(oI, ,.., w,) = oi, 1 < i,< n, which 
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exists thanks to un = 21 n. The subgroup Ider(A; T) c Der(A; T) of trivial 
derivations contains those sequences representable in the form 

A(& Q)3cowH**a-co*(p:a, . . ..p.*a) 

for some a from T, . Addition in these groups is performed componentwise. 

PROPOSITION 4.10. For any theory A and any functor TEE there 
exists an isomorphism 

H’(A; T) 2 Der(A; T)/Ider(A; T). 

ProoJ: Again by Proposition 4.6, H’(A; T) = H ‘(A”*; T). Applying 
Definition 3.1 for dimension 1 in our case gives that any element of 
H’(A; T) can be represented by a family of maps 

a= (&,,: A(m, 4 --) %‘, Q),,,,e iBI 

satisfying the cocycle condition 

for any 4: ill -+ n’, *: m + nm in A. Taking the structure projections pi: rm --+ 1, 
1 < i ,< n, in place of 4 gives 

Now recall that F preserves products in the first variable; hence &,,(+) is 
completely determined by its images under pi. for 1~ i < n, so it suffkes to 
know the tk,lL.. sequence. Furthermore, the element of H’(A; T) 
represented by the family d will remain unchanged after adding to 2 a 
coboundary, i.e., a family of type 

(Wn,d(4) = d*(&) - 4*&J 

for some sequence (~5,)“~~ E n,, N TCOI,OPj. Once again using that F preser- 
ves products on the covariant side, one can choose a sequence (ii,),, N with 
pi.(ii,)=&,(pi), and, by adding 66 to 2, obtain a new family (a;,,.),,. 
with the property &I(p,) = 0 for 1~ i G n E N. Now define 

d,(o) = &,,W, coEA(uu, Q). 

It is easy to show that the cocycle condition for d’ is equivalent to d being 
a derivation in the sense of Definition 4.9. Finally, for a sequence 
(IE~,, p(un, un), the condition (66),, (pi) =0 means that 

Pi*(an) = Pi* (al ), 
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and since F preserves suitable products, ii, is determined by the elements 
ii, = a and, moreover, the derivation corresponding to the family 6~3 in this 
case will be exactly the trivial derivation corresponding to a. 

Our next task is to define extensions of algebraic theories. To this end we 
note that iff: 5 + A is a morphism of algebraic theories, then the functor 
f”: Ab + Bb preserves products, so it carries abelian group objects to 
abelian group objects, and thus the functor fb: d&(/I’) + sBd(Bb) is 
defined. 

DEFINITION 4.11. Let A be a theory and T any functor from AoP to 
d8(Ab). An extension of A by T, 

consists of a morphism of theories f: B + A which is surjective on 
morphisms together with an action pg : f”Tf Op x I, --t I, of the internal 
abelian group f bTfOp: W’ + d&(Bb) in the category of all functors from 
!EP to Bb, on the object I, of this category, satisfying 

(4 &opB=&cpB, wherepB:fbTfoPxZg+Z, is the projection, while 
E:z,-+fbzWfop is obtained by applying the functor I, to the unit 
1 Bb + f “f, of the adjunction f, + f b; and 

(b) the natural transformation 

is an isomorphism, where I, x, I, is the pullback 

zBx,zB- 1, 

I I 
E 

1, 7 fbZA p” 
A morphism from the extension T w B +tfA to another one, 
T w 5 1 -B/’ A, consists of a morphism of theories, I: B + B r with fi I = f 

and I~,uu=pB,Iop. 

F~OWSITION 4.12. The category of all extensions of a theory A by the 
functor TE F(A) is a groupoid, whose set of components is naturally 
bijective to H2(A; T): 

N(A; T) x H2(A; T). 
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Proof: The first assertion is a fairly standard one, so we turn to the 
second. By Proposition 4.6 we have 

H2(A; T) z H2(A0P; T), 

where E A x AoP + de is the bifunctor obtained from T as in Lemma 4.4. 
Hence there is a bijection 

H*(A; T) z M(Aop; F), 

where on the right (as in Section 3) we have the set of equivalence classes 
of linear extensions of the category AoP by the bifunctor T Take one such 
linear extension 

By Lemma 4.4, p preserves products in the first variable; this enables us to 
use Proposition 3.4 to conclude that Eop can be given a structure of 
algebraic theory in such a way that pop: Eop + A will be a morphism of 
theories. Moreover this structure is obviously unique up to isomorphism. 

Now suppose a morphism of theoriesf: B + A is given with Hop = E and 
p =fOP. By Lemma 4.4 we have isomorphisms 

T(un, uvn) z Horn&Z,(n), T(m)), un,uun~ IAl. 

By the definition of linear extensions there is an action 

T(f%,f”h) x lEP(un, mu) + B”qnn, m), un, m E (BI. 

Since I, : Hop + Bb is a full embedding and 

~(~pn,~“puun) E Hom&ZA\foPun, Tf”pum) 

= Hom&f*Znn, Tf”m) = Homnb(Zgun,fbTfpm), 

we also obtain actions 

Homnb(Znn,fbT’OPm) x Hom&Znn, Znm) + Hom&Znun, Z,m) 

for OD, um E 1 BJ. In particular, for n = II this gives actions 

pm:fbTf”Pum x Z,m + Z,uun; 

then varying 00~ over Wp gives a natural transformation 

p: f”Tf” x I, + I,. 

It is easy to show that the pair (f, cc) determines an element in N(A; T). 
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Conversely, suppose we are given a surjective morphism of theories 
f: B --f A and an action p:fbTfoP x I, -+I,, such that (f, ~)EN(A, T). 
Take UE ~((so, un) and i.EIBoP(n, urn), and let 

2 Z,m + fbTfpm 

be the morphism corresponding to a under the isomorphism 

T('(na, m) E HomBb (Z,oa, fbTfopuun). 

Then 1+ a = p 0 (ii, I, 2) defines an action 

T(rn, nn) x Hom.,(m, pm) --t Hom,,(m, m), 

for 110, m E 1 IElI. It can be shown that this gives a linear extension 

T+- 5 op PP - AOP 

and hence an element in M(AoP; ?), and that the maps 

N(A; T) + M(AoP; T), M(AoP; F) + iV(A; T) 

so defined are mutually inverse bijections. 

EXAMPLFS 4.13. For a surjective morphism of algebraic theories 

f:B+A 

the induced functor f ‘: Ah + Bb is a full embedding, so if we identify Ab 
with its image in Eib under f ‘, identifying also the category A’P with the full 
subcategory in Ab consisting of free finitely generated models, then in an 
informal way we may picture extensions of the theory A by the functor 
27 AoP + d&(Ab) as surjective morphisms of theories f: B + A together 
with a family of “central extensions” 

O+ T(f,X)-+X-*f,X-+ 1 

functorial in XE [Dbl. 
Let 

O-M-Rf-S-O (4.14) 

be a singular extension of rings and let T be the functor defined by 
T(Y) = MB,, Y for YE IS-&l. Since for every free R-module X there is 
a short exact sequence 

O+ T(f,X)-+X+f,X+O, 
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where f,: R-u -+ S-d is the functor with f,(X) = SOR X, we obtain 
the extension 

(4.15) 

of the theory of S-modules by T. In this way one can define a 
homomorphism from the second Mac Lane cohomology group H*(S; M) 
to H*(S; T), carrying (4.14) to (4.15). By Theorem A and Definition 4.2 
this is an isomorphism. 

Consider a free group G with the lower central series . . . < T,G < T,G 
KG. By the classical result of Witt [24] there is an exact sequence 

O-rL,(G,,)-,G/T,+,G-,G/T,G-rl, 

where L,(G,,) is the n-dimensional homogeneous component of the free 
Lie ring generated by the abelian group Gab. From this one deduces that 

Ln((.)ab) - 
( 

theory of class n 

>-( 

theory of class n - 1 
nilpotent groups nilpotent groups > 

is an extension of algebraic theories for n 2 2. 
Similarly there are extensions 

(4.16), 

&I((. M - theory of class n 

1-c 

theory of class n - 1 
nilpotent Lie rings nilpotent Lie rings > ’ 

(4.17), 

For n=2, Proposition 4.12, (4.16), and (4.17)* determine elements of 
H*(Z; A*). At the end of Section 2 it was shown that H*(Z; A’) = Z/22. It 
can be easily shown that (4.17), determines the trivial element, while 
(4.16), gives the nontrivial one. 

Similar to (4.17),, for any commutative ring R there exist extensions of 
theories 

s’, - theory of commutative R-algebras 
with the identity xyz = 0 

(4.18) 

&- theory of (associative) R-algebras 

R with the identity xyz = 0 
(4.19) 

nz, - 
theory of anticommutative 
R-algebras with the identity xyz = 0 

) (.)ab (;eyz;;es). 

(4.20) 
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These extensions determine trivial elements of the groups H2(R; S”,), 
H2(R; a’,), and H2(R; A’,), respectively. By Corollary 2.16, H2(R; @‘,) 
= 0, so (4.19) is the only possible extension of the theory of R-modules by 
O’,. On the other hand, Proposition 2.21 says that the groups H2(R; S’,) 
and H2(R; A’,) are, in general, non-zero; they are relatively easily 
calculable when 2R = 0. Consequently there exist some nontrivial exten- 
sions of the theory of R-modules by SZ, and Ai. We know nothing about 
the corresponding theories, although for R = P, H2(h; S2) = 0, so (4.18) is 
the only possible extension of the theory of abelian groups by the functor 
Si. We also know nothing about the group 

H2 
( 

theory of class 
n - 1 nilpotent groups; L”(( . Lb) 

> 

for n > 2, whose nontrivial elements are represented by the exten- 
sions (4.17),. 

Definition 4.2 shows that the cohomologies H*(A; -): 9;(A) + de of 
a theory A constitute an exact connected sequence of functors. Let us 
consider functorial properties of the cohomology in the first variable. 

For a morphism of theories f: B + A and a functor T: A”P + db(Ab), 
denote by f *T the composition 

Assigning Tt-+ f *T defines an exact functor f *: S(A) + F(5); moreover, 
the diagram 

commutes. As in Section 3 this defines a homomorphism in the cohomol- 
ogy of categories, 

H*(AoP; T) + H*(WP; f?), 

and Proposition 4.6 enables us to transform this to the homomorphism 
H*(A; T) -+ H*(B; f *T). Then Proposition 4.7 easily implies 

PROPOSITION 4.21. For a surjective morphism of theories f: B -+ A, the 
induced homomorphism 

H’(A; T) + H’(B;f *T) 

is an isomorphism for any TE P(A). 
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Consider the functor 

definedfor a theory A by Q(A)= (A(un, I)),,,. It is known (see [21,25]) 
that 52 has a left adjoint L. The theory A is called free if there is an object 
P of9ua" with A E L(P) 

PROPOSITION 4.22. For a free theory A, H”(A; -) = 0 for n 2 2. 

Proof Since 

H”(A; -) = Ext&,,(Z,t,, -1, 

it suflices to consider the case n = 2. For TE 9(A), Proposition 4.12 shows 
that H2(A; T) x N(A; T), where N(A; T) is the group of extensions 

T-B-A. I 

Since f is surjective, sZ( f) has a section in %tdWI, and since A is free, this 
section determines a section off in Z&o&d. This shows that N(A; T) = 0. 

Now Proposition 4.22 with Proposition 3.7 enables us to prove 
Theorem C, stating that the cohomology of algebraic theories can be 
expressed by the cotriple cohomology of Barr and Beck [2]. First recall 
the definition. 

Let G be a cotriple [2] (comonad [15]) in a category W. For XE IWl, 
the cotriple resolution G *X-+ X is the augmented simplicial object of % 
whose n th component is G”+ ’ X [a]. Denote by W/X the comma category 
[ 151 whose objects are morphisms of V over X, f: Y + X Let 

be any functor. Then the 6-cotriple cohomology of the object X with 
coefficients in T is defined by the equality 

H”,(X, T)=x”(T(G*X)), 

where T( G * X) is the cosimplicial abelian group obtained from G * X by the 
componentwise application of T, while w* are the cohomotopy groups of 
that cosimplicial abelian group (by definition, for cosimplicial abelian 
groups A*, n*(A*)=H*(ChA*), where ChA* is the associated cochain 
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complex with the same components as A*, with the coboundary operator 
given by the alternating sum of cofaces of A*). 

Also recall that for 9: d -+ V, U: V + d with F left adjoint to U, there 
is a canonical cotriple structure on G = FU: % + V [15]. In that case 
UG,X+ UX is a contractible augmented simplicial object of A, for any 
XE IVI. 

For a theory A and TEE, define functors H*(-, T) and Der(-, T) 
from (Y&o*ie4/A)‘P to d& by 

H*(B /, A; T) = H*(B;f*T), 

Der(5f, A; T)=Der(B;f*T), 

where B +f A is an object of 9ZeoriedlA. 

THEOREM C. Let G be the cotriple on 9%.w~ie~ induced by the adjunc- 
tion 

JBeorierl + (%tb)N. 

For a theory A and a functor TE 9(A), there are isomorphisms 

&(A; H’(-; T)) g H”+ ‘(A; T), n 2 0, 

WAR Der(-; T)) z 
n >O, 

n = 0. 

ProoJ Let E: G,A + A be the cotriple resolution of A. Since 
QG * A + QA is a contractible augmented simplicial object of 9%tdN, we 
have a map 

G,A(m, Q)-+A(w Q) 

of contractible augmented simplicial sets, for n E N. Since 

B(ao,m)xB(m,II)” 

for every n, m E N, B E IS&u~ie~I, the augmented simplicial category 
E: G * AoP + AoP satisfies the conditions of Proposition 3.7. Hence there is a 
spectral sequence with 

E;q=Hq(GpA”P; ?+HP+q(AOp; p), 

where p corresponds to T as in Lemma 4.4. Since G, A is a free theory, 
Propositions 4.6 and 4.22 imply that 

Efq=O for q>2,p>O. 
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By Proposition 4.21 the cosimplicial abelian group ET0 is constant. Hence 
E2Pq = 0 for p > 0. The available information on the terms Ef* now implies 
that 

E”~‘=H”+‘(A”P; ~)=ffnfl(A; T), 
2 ‘n B 0. 

But 

Hence, 

E;’ = ~“H1(G,WP; ?+) = H”,(A; H’(-; T)). 

H”,(A; H’(-; T)) g H”+‘(A; T), n > 0. 

For a morphism of theories, f: IB + A, there is an exact sequence 

0 --) H’(ltB;f*T) + Uf*T(f ) + Der(B;f*T) --f H’(B;f*T) -0. 

Since U,f*T(II ) = U, T(4) and H’(B;f*T) = H”(A; T), this gives the 
exact sequence 

0 + H”(A; T) + U, T(f) + Der(B;f*T) + H’(B;f*T) + 0, 

which in turn implies exactness of the sequence of cosimplicial abelian 
groups 

O+H”(A;T)-,U,T(Q)-+Der(G,A;T)+H1(G,A;T)-+O. 

Since the first two entries are constant, 

xc”Der(G,A; T)rYH’(f3,A; T), n > 0. 

Whence the second part of theorem. 

5. TOWARDS SOME CALCULATIONS 

The cohomology of some “classical” theories, such as those of groups, 
monoids, nonassociative monoids, commutative nonassociative nonoids, 
and G-sets for a monoid G, turn out to be successfully calculable. Calcula- 
tions rely on the fact that in [6] Eilenberg and Mac Lane have built very 
handy projective resolutions of functors (ZA)ab from Section 4, under the 
name of freely acyclic constructions. 

A. Cohomology of Theories of Groups and of Monoids 

Recall that for a group or monoid G, internal to a category K, BG 
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denotes the simplicial object in H whose nth component is G” and whose 
face and degeneracy operators are, in element notation, 

i 

(x 2, ..., XJ, i = 0, 

di(xl, ...P xn) = txl 9 es.3 xjxi+ 13 .a*> xn), O<i<n, 

(x 1, ..*> x, - I), i = n, 

4x, > . . . . XPZ) = Cxl Y *..Y xi, l, xi+ 13 ...Y Xrz), O<i<n. 

Let A be the theory of groups (resp. monoids). The identity functor 
1 a : A + A preserves products, hence it defines a model of the theory A in 
the category A, i.e., an internal group (resp. monoid) in A. The underlying 
object of this internal group (resp. monoid) is, clearly, II ; consequently we 
obtain the simplicial object BII in A. Obviously Ab is the category of 
groups (resp. monoids), d6(Ab) is the category of abelian groups, and 
( .)ab : Ab + &&( Ab) coincides with the one-dimensional integral homology 
functor. 

PROPOSITION 5.1. Let A be the theory of groups or of monoids and let 
T: AoP + ~6’8 be any finctor. Then there are natural isomorphisms 

H”(A; T)rn”+‘(TBIl), n >O, 

where the cohomotopy groups of the cosimplicial abelian group obtained from 
Bll by applying T componentwise are on the right. 

Proof. Given a group or a monoid G, denote by C,(G) the complex of 
chains of the simplicial set BG. As is widely known, H,(C,(G)) = H,(G; h) 
is the integral homology of G (see [14]). When G is free, H,(C,(G))=O 
for n > 1. Let C,+(G) be the nonnegative chain complex with C:(G) = 
C, + r(G), n 2 0, and whose boundary operator is that of C,(G). Then for 
free G we have 

n>O 
ab, n = 0. 

By varying G over AoP we obtain a resolution of the functor (IW)ab from 
9(A) (here we identify GOP, as before, with the category of finitely 
generated free groups (resp. monoids)). 

Since C,+(G) = Z[G”“] and G”+’ = A”p(m + I, G) for GE IA”PI, 
Proposition 2.5 implies that 
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is a projective resolution in the category 9(A). Hence 

H”(A; T)=Ext$,,,((Z,),,, T)=H* Hom,(C,+, T)=R”+‘(Z’BQ) 

for any T: AoP + ~28. The last equality follows from 

Hom,(C,+, T) = T( UI + Q ), iEN. 

PROPOSITION 5.2. Let gk (resp. m,) be the category of free groups 
(resp. monoids) of rank not exceeding k, and gr, (resp. m,) be the 
category of free groups (resp. monoids) of finite rank. For any functor 
T: gfQ) --f d4e (resp. m, + s¶&), the restriction natural transformations 

Hi(gfm : p) + H’(gf,; p), 

(resp. H’(mon . T) -+ H’(m,; T)) -m 2 

are isomorphisms for i < k - 1, where the bifunctor T is defined by 

F(‘cx, Y) = Hom(X, TY). 

Proof Consider the group case only, as the monoids are dealt with in 
absolutely the same way. By Corollary 3.11 we have isomorphisms 

where 9 (resp. F(k)) is the category of functors from grn (resp. gfk) 
to &&. From the proof of Proposition 5.1 one can deduce that Cz is 
a projective resolution of the functor ( .)ab in 9 and is also a resolution in 
B(k) up to dimension k - 1. Furthermore 

Hom,(C’, T)=T(i+II), i2 0, 

Hom,(,,( CT , 7’) = 7’( i + II ), O<i<k-1. 

This readily implies the proposition. 

B. The Theory of Nonassociative Monoids 

Let W denote the theory of nonassociative monoids, that is, the theory 
whose models are determined by universal algebras M with a binary opera- 
tion (multiplication) with a two-sided unit 1 EM. Then d.4(Wb) is the 
category of abelian groups, while the abelianization functor assigns to a 
nonassociative monoid M the abelian group Ma,, with generators (a), 
a E M, and defining relations 

(l>=O, (ab)= (a)+ (b). 
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For any nonassociative monoid M, define the chain complex C,(M) by 
C,(M) = 0 for n # 0, 1, while the group C,(M) (resp. C,(M)) is the abelian 
group generated by symbols [a] (resp. [a, b]) for a, b E M, with defining 
relations [l] = 0 (resp. [ 1, a] =0 = [a, 11, REM); the boundary operator 
8: C,(M) + C,(M) is given by 

a(Ca, bl) = Cal - CabI + Cbl, a, bEM. 

It is proved in [6] that if M is a free object in Wb, then 

ffi(C*W)) = i#O, 
ab, i = 0. 

Let it4 vary over HoP to obtain a resolution of the functor (ZW)ab in the 
category 9( W ): 

c,(*) + (It-&b. 

Let us show that this is a projective resolution in S(H). To this end, note 
that the functors given by 

Ml+ uw, MH Z[M’], MEW”, 

are projective objects in 9( W ); since 

M = fP( II ) M), M2 = Hyt?, M) 

and one can apply Proposition 2.5. From the definitions follows the 
existence of epimorphisms Z[M] -+ C,(M) and Z[M*] + C,(M). These 
homomorphisms have functorial sections 

so: Cowf) -+ zcja s1 : C,(M) -+ rn[M’] 

given by the equalities 

soCal = Cal - Cl1 

~,[a, bl= [a, bl- EL bl - [a, II+ [I, 11, 

U, b E M. Hence the functors Co, C, : W ‘JJ + .JX!& are projective objects in 
9(W). These considerations imply the following propositions: 

PROPOSITION 5.3. Let W be the theory of nonassociative monoids and 
T: Hop + ~48 be any functor. Denote by p: 2 -+ II the multiplication in W and 
by e: 0 + ll the unit. Then 

0, i b 2, 
H’(W; T) = Coker 6, i= 1, 

Ker 6, i= 0, 
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(;:I 
6: Ker( Te) -+ Ker( T2 A TQ@TQ) 

is induced by Tp while e, and ez are the morphisms 

e,:Q =OxQ 
C%l -QxQ=2 

e,:Q =3 x8 
llxe ----+QxQ=2. 

PROPOSITION 5.4. Let W, he the category offree nonassociative monoids 
of rank not exceeding k and W, the category of all free finitely generated 
nonassociative monoids. Then for any functor T: W oL’ + .&d, the restriction 
homomorphisms in cohomology groups of categories 

H*(W,; F’) -+ H*(Wk; T) 

are isomorphisms for any k > 2, where the bljiinctor T is defined by 
F(‘cx, Y)=Hom(X, TY), X, YEW,. 

C. Theory of Commutative Nonassociative Monoids 

PROPOSITION 5.5. Let @omm be the theory of commutative non- 
associative monoids and T: @omm”P + .ralt? he any functor. Then 

H”(@omm; T) z H”+*(@omm; T) for na4. 

Proof Let A be some commutative nonassociative monoid. Consider 
the chain complex C,(A) with C,(A) and C,(A) as in the previous exam- 
ple, while for n 2 2, 

C*(A) = C,(A), C,(A)=C,(A)OC,(A),n~3. 

The boundary homomorphism is defined by 

&lCX~ Yl = [xl - CXYI + CYI 

a,Cx,Yl= CAY1 - CY9 xl 

a/Ax, Yl = cx, Yl + CY, xl, adal = [a, al, n 2 2 even 

J,[x, Yl = 1x3 Yl - CY, xl, Z,[a] = [a, al - 2[al, n>,3 odd. 

In [6] it is proved that for free A’s one has 

H,(C,(A)) = 0”“’ 
i=O 

7 i > 0. 
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Hence C,( .) is a resolution of the functor (IComm)ab in the category 
F(@omm). As in Proposition 5.3, one can prove that the functors C,( .) 
and C,( .) are projective. This gives the desired periodic resolution of the 
object UCommLb. 

Moreover an analogue of Proposition 5.4 holds with W replaced 
by Comm. 

D. Theories of G-Sets 

Let G be a monoid, and denote by G the theory of left G-sets, i.e., 
Gb 1: G-Y&d. It is clear that 

while the functor ( .)ab: Gb + G-d is given by XI+ E [Xl, where the 
structure of a G-module on Z[X] is inherited from the action of G on X. 

In the category of G-sets consider the augmented simplicial object 
E: B,(G; X) +X, where B,(G, X) = G”+l xX, n > 0, and 

dg, x) =gx, 

di(g09 gl, ...9 gn, x)= 
I 

(go, *--, gigi+ 19 ..7 gn3 x)3 O<icn, 

(g 03 . . . . 8,-l, g,, XL i = n, 

si(gO, ...7 gn, x, = (807 *..3 gi, l, gi+ 13 -.9 gn3 x), O<i<n, 

and the action of G on B,(G, X) is given by 

gko, g1 ? . . . . g,, x) = (ggo, g,, *.., g,, xl. 

It is easy to show that E: B.,.(G, X) +X is contractible in the category of 
sets; in fact the maps 

h:X+GxX, h,: B,(G; X) + B, + ,(G; X), n 2 0, 

given by 

h(x) = (1, x), Ugo, . ..> gn, x) = (1, go, ...7 g,, xl 

give a contraction for it. Hence 

ZE: C,(B,(G; X)) + ZX 

is a contractible augmented chain complex, where 

C, : (simplicial sets) + (chain complexes) 
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is the functor giving chains with integer coefficients. Let A = Z[G] be 
the semigroup ring of G. Then one can show easily that there is an 
isomorphism of G-modules 

C, B,(G; X) = 0 A [Xl, 
G” 

for every it. (5.6) 

Since X= (60p(I, X) for XE GOP, Proposition 2.5 implies that 

Z&* : C,(B,(G; -)I -+ (.)a~, 

is the projective resolution in the category of functors from Gap to G-d 
(i.e., in 9(G)). Let T: Go” + G-a be an arbitrary functor. Then 

H*(Q T) = Exf&)((h,, T) 

= H*(Hom sca;,(GB,(G; -), T)) r H*(C T(Q 11, 

where the last group is that of Eilenberg-Mac Lane cohomology of the 
monoid G in the obvious G-G-bimodule T(l), since (5.6) implies that 

Horn ,,,,(C,B,(G; -), T) = YMG”, T(j 1). 

Hence we have arrived at 

PROPOSITION 5.7. Let G be a monoid and G the theory of G-sets. For any 
functor T: Gap + G-a there are isomorphisms 

H*(G; T) 2 H*(G; T(Q)), 

where on the right are Eilenberg-Mac Lane cohomology groups of the 
monoid G with coefficients in the G-G-bimodule T(II ), with left action deter- 
mined by T’s taking values in G-d, while the right action is T applied to 
the action of G on 21 via Horn&Q, ll ) z G. 

PROPOSITION 5.8. For a monoid G, denote by 6, (resp. ~3~) the category 
of free finitely generated G-sets (resp. those of rank not exceeding k). 
Then for any functor T: 6, + G-d the restriction homomorphism in 
Hochschild-Mitchell cohomology 

H*(G,; p) -+ H*(G,; p) 

is an isomorphism for k 2 1, where F is the bifunctor 

p(‘cx, Y) = HomJX, TY), x, YEG,. 
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6. FURTHER AREAS OF INVESTIGATION AND OPEN PROBLEMS 

1. In Section 2 (Theorem A) the isomorphisms 

H*(R; T(R)) z Ext’&(Z, T) 

were established, where 9(R) is the category of all functors from the 
category &fR of finitely generated free left R-modules to the category of all 
R-modules, I: MR --f R-m is the embedding, and T: &lR --t R-mod is an 
additive functor, while H* denotes the Mac Lane cohomology. Since the 
category of additive functors from &ZR to R-m is equivalent to the 
category of R-R-bimodules, the embedding 

(additive functors) c (all functors) 

induces homomorphisms 

Ext’,-JR, T(R)) + Ext&,,(Z, T). 

These are isomorphisms for i = 0, 1. And if the additive group of R is 
torsion-free, isomorphism holds also in dimension 2 (this follows from 3.6 
of [19]). 

But between additive functors and all functors there are the so-called 
quadratic, cubical, and other functors. It would be interesting to find out 
what the corresponding Ext groups will give. In [18], the following was 
proposed. 

Conjecture. Let P(R, n) be the full subcategory of 9(R) consisting of 
those functors T: &ZR + R-a with Eilenberg-Mac Lane degree <n 
(cf. C71h i.e., T,, + 1 = 0 for the (n + 1)st cross-effects. Suppose that R has a 
torsion-free additive group. Then 

Ext~~,,,~K T) + Ext$c,,,U, T) 

is an isomorphism for n < 2i for any additive functor T: i&f, + R-a. 

This conjecture is true for n = 1, 2, 3 (see [ 183). 
2. One can define Mac Lane homology H,(R; M) of a ring R with 

coefficients in a bimodule M by replacing the functor Horn by @ in 
Definition 2.1; for homology groups, a dual of Theorem A is valid. Hence 
according to [18] there exists a natural transformation 

8,: K”,(R) + H,(R; R) 

from Waldhausen’s stable K-theory to the Mac Lane homology. Is 8, an 
isomorphism? This is so in all the cases when the values of stable K-theory 
are known to us. 
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3. There are many important algebraic theories A with trivial 
cohomology for coefficients in any functor T: AoP -+ .drP(Ah) because the 
category &&(Ah) is trivial, for example, the theory of rings with unit. This 
signifies that it would be desirable to find still more general coefficients for 
our cohomology. One well-known general approach to this, in the spirit of 
Barr and Beck and Quillen [2, 191, suggests internal abelian groups of the 
comma category Z&n~~‘eti/A as coefficients. For the Hochschild-Mitchell 
cohomology, Baues and Wirsching generalize the H*(A; D), the cohomology 
of a category A with coefhcients D, by the so-called natural systems [3]. 
Namely, the natural system D consists of the family (D,) indexed by 
morphisms f of A and the families of homomorphisms of abelian groups 
(g*: Df + Drg)(~/,)E Tz(A)’ (f*:D,+DLkhhw-2(A) indexed by the set T2(A) 
of composable pairs of morphisms of A. These are required to satisfy 
certain natural equalities (see [3]). Now it can be shown that for any 
theory A there is an equivalence 

&‘&(5&4,r’ea/G) N (natural systems D on AoP satisfying (6.1)), 

where the condition (6.1) is 

for any morphismf: x -+ y, x y, x . . . x y, the 

homomorphism (p:, . . . . p,*): D,-+ DPlfx . . . x D,, 

is an isomorphism, where pi: y, x . . x y, -+ yi, 
(6.1) 

1 < i < n, are the projections. 

Any bifunctor D: A x AoP --) dd can be viewed as a natural system by 
setting D,-: X-r r= D(X, Y); in particular F(A) is a full subcategory of 
d&(5&t&/A). 

Accordingly there are two ways to define cohomology groups H*(A; M) 
for ME Jd8(5&e;ed/A)l. The first one relies on the cotriple cohomology 
of Barr and Beck. 

H”(A; M) = H”,-‘(A; Der(-, M)), n 2 2, 

where G is the comonad from Theorem C of Section 4. The second way 
follows Baues and Wirsching’s approach [3] and gives H”(A; M) = 
H”( AoP; a), where & is the natural system, satisfying (6.1), which 
corresponds to M under the equivalence mentioned there. Theorem C says 
that when coefficients are restricted to F(A) these approaches lead to 
the same result. Will this be the case for any coefficients from 
&d(fle~rieg/A)? It can be shown that this is so in dimensions ~2, and 
probably the answer is affirmative in all dimensions. By the way, another 
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motivation for widening the area of coefficients is that, if one wants to con- 
sider extensions of type (4.16), with nilpotent groups replaced by merely 
solvable ones, one encounters precisely these general coefficients which do 
not arise from any object of 8. 

4. For algebraic theories A let us identify the category A”P with the 
category of finitely generated free models of A, and let Gzp be the full sub- 
category of AoP consisting of models that are free on sets of cardinality <:r. 
Call the theory A stable if for every i there exists an r0 such that the restric- 
tion homomorphisms 

H’(AoP, D) + H’(A;p; D,) (6.2) 

are isomorphisms for every r > r,, and every bifunctor D: A x A’J’ + de 
which preserves products in the first variable (here D, is the restriction of 
D to A,, and cohomology groups are those of the Hochschild-Mitchell 
type 1. 

For a stable theory A denote by f(A, i) the smallest r,, such that (6.2) 
are isomorphisms for r > ro. By Propositions 3.12, 5.2, 5.4, and 5.8, theories 
of R-modules R for any ring R, of groups gr, of monoids m, of non- 
associative monoids W, of commutative noi%sociative monoids Comm, 
and of G-sets G for any monoid G, are stable. Moreover, we showed that 

f(R, n) d 7’9 I-@, n) G n + 1, f(mon,n)<n+l, 

f(W n) G 2, f(Comm, n) 6 2, f(G, n) d 1. 

We know no answer to the following questions: 
Is the estimate f(R, n) < 2” the best one? (It seems unlikely.) 
Do there exist unstable theories? 
It is also interesting to characterize those theories for which f(A, n) is a 

bounded function of n. 

5. In Proposition 2.21 we have calculated the groups 

H2(R A’,,, H2(R; S;) 

for commutative rings R, especially those with 2 R = 0. Construct explicitly 
the extensions 

corresponding to the elements of H2(R; A’,) z H’(R; R/2R), H2R; S’,) z 
H’(R; R/2R). 
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