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1. INTRODUCTION

Cohomology theory for associative algebras over a field is due to
Hochschild [9]. Generalization of this theory for associative algebras over
a commutative ring K posed considerable complications. Several definitions
have been proposed. For example, in Cartan and Eilenberg’s monograph
[5], the groups Ext%(R, M) are named as candidates for cohomology
of the K-algebra R with coefficients in the R-R-bimodule M; here
R°=R®x R is the enveloping algebra of R. In MacLane’s book [14]
Hochschild cohomology is defined in the framework of relative homologi-
cal algebra,

Hoch*(R; M) =Ext} (R, M),

where the subscript K signifies that only those extensions which split over
K are considered. Still another definition was proposed by Shukla [22],
whose cohomology is denoted Shukla*(R; M). All these cohomologies are
connected by natural homomorphisms:

Hoch*(R; M) — Ext%.(R; M) — Shukla*(R; M).

These homomorphisms are iso in dimensions 0 and 1, while if R is a pro-
jective K-module, isomorphism holds in all dimensions. In dimension 2, the
group Shukla®(R; M) classifies arbitrary singular extensions of the ring R
by M, while Hoch?(R; M) classifies those singular extensions of K-algebras,
which split as K-module extensions [14]. The groups Exi%(R, M) have no
good relation to algebra extensions, but they constitute a universal con-
nected exact sequence of functors instead, unlike the others. And yet the
Shukla cohomology is considered as the most “correct”—not only does it
describe extensions well, but it also behaves well with respect to the first
argument—namely, it can be described as Barr and Beck’s [2] cotriple
cohomology (see [17); Quillen’s approach to the construction of the
cohomology in “good” categories also yields Shukla cohomology [19].
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There is still another theory for rings, i, when K=7 — Mac Lane
cohomology H*(R; M) from [13]. There are homomorphisms

Shukla*(R; M) - H*(R; M)

which are iso in dimensions <2. Mac Lane cohomologies are closely
related to stable cohomologies of Eilenberg—Mac Lane spaces [7].

We make the domain of applicability of the Mac Lane cohomology
wider in order to ensure, by suitable choice of that widened domain, that
the Mac Lane cohomology provides a universal connected exact sequence
of functors. This can be done thanks to the existence of the isomorphism

H*(R; M) = Ext% (L, M®g -), (L.1)

where #(R) denotes the category of all functors from the category M, of
free finitely generated left R-modules to the category R-mod of all left
R-modules, and where

I: M, — R-mod

is the obvious embedding,
The isomorphism (1.1) is a corollary of Theorem A, proved in Section 2.
There is a full embedding

Ré-mod - #(R)
that assigns to an R—R-bimodule M the functor
M®g-: M- R-mod,

establishing an equivalence of the category of R-R-bimodules with that
full subcategory in %(R) which consists of additive functors. Consequently
objects of F(R) can be viewed as certain generalized “non-additive”
bimodules, and conversely, real bimodules can be identified with additive
functors from % (R). In the course of this identification the inclusion 7
corresponds to the R—R-bimodule R, and the functor M ® ; to M. By (1.1),
Mac Lane cohomology appears to be a somewhat modified Cartan—
Eilenberg-type cohomology: the modification consists in taking Ext not
in the category of bimodules, ie., of additive functors, but in the larger
category of all functors from M to R-mod. So the isomorphism (1.1)
motivates the following

DeFINITION 1.2, The cohomology of an associative ring R with coef-
ficients in an arbitrary functor

T: Mz — R-mod
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is defined by the equality
H*(R; T)=Ext% (L, T).
Hence, by the very definition our cohomologies
H*(R;-). #(R) - 4b

constitute a universal exact connected sequence of functors. For additive
T’s they recover the Mac Lane cohomology, through the aforementioned
identification.

In particular, H*(R; T), for additive functors T, classifies arbitrary
singular extensions of the ring R by the R-R-bimodule T(R). What can be
said about non-additive T’s? To answer this question, let us note that
Theorem B of Section 3 implies the existence of isomorphisms

H*(R; T)= H*(Mg; #Homp(l, T)),

where the groups on the right denote the Hochschild—Mitchell cohomology
[3, 16] of the category of free finitely generated left R-modules with coef-
ficients in the bifunctor #oxs (1, T), given for X, Ye |M,| by

(Hom (I, T))(X, Y)=Hom (X, TY).

But, according to [3] the second Hochschild-Mitchell cohomology
group of a small category M, with coefficients in a bifunctor #osmg(l, T)
classifies linear extensions of the category M. by the bifunctor:

Homp(l, T)+ » E—> M.

We prove that here E will always be equivalent to the category of all
finitely generated free models of some uniquely determined algebraic theory
in Lawvere’s sense [ 12, 21, 25]. The functor

@inya = Theoriea

from the category of associative rings with unit to the category of algebraic
theories, which assigns the theory of left R-modules to the ring R, is known
to be a full embedding. This enables us to identify rings with corresponding
theories. Hence it turns out that H2(R; T) classifies extensions of R in the
category of algebraic theories.

The above considerations make it clear that the natural domain of
objects for our cohomology must be the category of algebraic theories,
rather than rings. Section 4 is devoted to their construction. In that section
a number of alternative approaches are presented and it is proved that they
lead to the same result. In Section 5 examples of calculations of the
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cohomology for free theories, theories of groups, theories of monoids,
theories of G-sets for a monoid G, etc. are given, and in Section 6 some
open problems are listed.

The authors express sincere gratitude to Saunders Mac Lane, who
showed steady attention to our work, for many valuable suggestions on
the first version of the paper and for kindly supplying us with a copy of the
important paper [13] which had been unavailable to us. Parts of the
results of this paper were announced in [11, 18]. Some of them were
obtained by the second author only, in particular, the main theorem of
Section 2.

2. ON THE Mac LaNE COHOMOLOGY

In this section we prove Theorem A, which is concerned with the rela-
tionship between Mac Lane cohomology of rings and Ext groups in functor
categories; related questions are discussed.

Let us recall the definition of the Mac Lane cohomology from [13].
Consider the sets C,, with 2” elements—n-tuples (¢, ..., €,), where ¢;=0 or
1, for n >0 and i < n, and the O-tuple ( ) for n=0. For convenience C, can
be visualized as the set of vertices of an n-cube, the product of n copies of
the 1-cube with vertices 0 and 1.

Define maps 0, 1,: C,—» C,.;, 1<i<n+ 1, by the equalities

0{(8‘, avay Sn) = (81, aray 8,‘7 1s 0, 8i+ 13 rees 8"),
1;(815 s €)= (81 woor €415 Ly €54 15 wees €4)-
For an abelian group A4 and a set S, let A[S] denote the sum of S copies

of the group A. Since the sets C, are finite, the group A[C,] can be iden-
tified with the group of all maps

t.C,— A
Let Q,(A) be the free abelian group generated by the set A[C, ], ie.,
Q.(4)=2Z[A[C,]].
Following Mac Lane [13], define for i=1, 2, ..., n the homomorphisms
R;, S, P Qn(A4) = @, _(4)
by
R,=7Z[R.], S;=2Z[S.]. P,=Z[P,],
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where
Ria gi’ pi: A[Cn] - A[Cn—l]

are homomorphisms defined for ee C,_, and te A[C,] by
(Rit)e)=1(0;e);  (Sit)e)=1(1e);
(P;t)(e)=t(0e) + t(1,e).
In [13], Mac Lane defines the boundary homomorphism

0:0(A)—> @, _1(4)
by the equality

0= z (_l)i(Pi“Ri_Si)'
i=1
A generator 1. C, — A of the group Q,(A) is called a slab when #( ) =0,
for n=0, and an i-slab, i=1, .., n, for n>0, if either #(0,e)=0 for all
eeC,_, or t(l,e)=0 for all ee C,_,; t is called an i-diagonal if for all
(&4, .., 8,) € C,, with &,# ¢, ,, we have

t(ey, .y £,)=0, n>1,1<i<n—1.

Let N,(A) denote the subgroup of 0,(A4) generated by all the slabs and
diagonals. It is easily seen that 60 =0 and 6(N,(4))= N, _;(4);ie., O, (A)
is a complex, with the subcomplex N, (A4). So we obtain the complex

Q4(4) = QL (A)/N (4).

Define an augmentation n: Q,(4) —» 4 by nt=0 if ¢ is a positive degree
generator, and 5t =t( ) for generators ¢ of degree zero.

According to [6] and [13], the homology of the chain complex Q,(A4)
is isomorphic to the stable homology of Eilenberg-Mac Lane spaces
corresponding to 4 [7]; ie, H,Q,(4)=H,, (K(4,n)), n>q>0, where
K(A, n) is the Eilenberg—Mac Lane space.

In the case where A4 is a left module over the ring R, Dixmier (private
communication to Mac Lane) has defined a product

Q*(R) ® Q*(A) s Q*(A)

in the following way [13]. For teR[C,,], ue A[C,] define the map
. C,,.,—Aby

(1u)(Eys oy € ) = H(E s oy E1) W(Epm g 15 o> Epa)s

where ¢,=0or 1, 1<i<m+n
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This product equips Q,(R) with the structure of a differential graded
(DG) ring, and Q,(A4) with the structure of a left DG module over Q,(R).

The augmentation n: @ (R)— R is a morphism of DG rings, if R is
given a grading concentrated in degree zero, and the trivial é. In particular,
R becomes a @, (R)-Q,(R)-bimodule.

Recall that when X and Y are left and right modules over a DG ring A,
their two-sided bar construction B(X, A4, Y) is defined (see, e.g., [4]), with

BX, 4, Y)=Y X®A®"®Y.

nz0

Also B(R, Q.(R), R) evidently has the structure of an R—R-bimodule.

DerFiniTION 2.1 [13]. For a ring R and an R-R-bimodule M, the
Mac Lane cohomology of R with coefficients in M is defined by the
equality

H"(R; M) = H"(Homg x(B(R, Q,(R), R), M)).

It remains to state some auxiliary theorems for the proof of the main
theorem of this section.

Recall the definition of the cross-effects [7] of a functor T: 4 - # from
an additive category 4 to the abelian category #. For objects 4, 4, ..., 4,
of 4 the cross-effects can be determined by the functorial decompositions

T, = T(0), T(A)=T,®T,(A4),
T(A,@A)=T,(4))D T (A,)D Ty(A4,, 4,),
Ty (A, @Ay, A3)=Ty(A;, A3) D Ty(A,, A3)D T5(Ay, 43, A3), .

For A;= --- =A,=A the object T,(A4,, .., A,) is denoted by T%(4) for
brevity.

For an arbitrary finite set S, the number of its elements is denoted by |S|
and the set of its subsets by P(S).

The following proposition is contained in [7].

PROPOSITION 2.2. Let T be an arbitrary functor from an additive
category A to an abelian category A. For a finite set S and an object A of
A, let A[S] be the sum of S copies of A. Then there exists a natural
isomorphism

TALSD= @ THhiA).

Le P(S)
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COROLLARY 2.3. Let T: A —> B be as above. Given a finite set S and
some of its subsets S,, ..., S, define functors

TS:A_"%Q TS/{S,}:A—)‘%

by the equalities

Ty X)=T(X[S]); T(s; = Coker ( @ T~ Ts),
i=1
for X e|A| an object of A, while Ts,— Ty is induced by the inclusion S;g S,
=1, .., n. Then the natural projection Ts— T, has a section.

Proof. By Proposition 2.2 we have natural isomorphisms

TdX)= @ TiX), TsX)z @ TiX)

Le PLS) Le P(S))

for Xeld|, i=1,..,n Since the isomorphisms of Proposition 2.2 are
natural in S, we obtain natural isomorphisms

Tsisp(X)= @ T (X), (24)

Leg

where Q is the set of those subsets L of S which are not contained in any
of the §;. Consequently Ty, is a direct summand of T.

In the rest of the paper we repeatedly use the following direct conse-
quence of the Yoneda Lemma [15].

PrROPOSITION 2.5. Consider an arbitrary category C, an object ce|C|,
and an associative ring with unit R. Denote by F the category of all functors
from C to R-mod. Then the functor R[C(c,-)]: C - R-mod is a projective
object of &, and, for any functor T: C — R-mod, there is a natural bijection

Hom 4(R[C(c, )], T)~ T(c).

Moreover any projective object of F is a retract of a sum of functors of type
R[C(c,-)].

PROPOSITION 2.6. For any ring R and a natural number n, denote by
Q.. Q,: R-mod - A4 the functors assigning to a left R-module X the
abelian groups Q,(X) and Q,(X), respectively. Then for any small full sub-
category A of R-mod, containing the free module R”', restrictions of Q,, and
Q. to A are projective objects of the category of all functors from A to 4.
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Proof. Recall that by definition, for X' e |R-mod|,
0.(X)y=2[X[C,1];

so since X[ C, ] = Homk(R*, X), projectivity of Q| , follows from Proposi-
tion 2.5. Hence it is clear that the proposition will follow if one shows that
the projection Q. — Q,, has a section. To this end, put

Si:{(81""’8")ecn,8i=0}9 ISISJI,
L= {(ef, r 8y)€Cp, g,=1}, 1<j<n,
Dk:{(81’""8")€Cn78k=8k+1}7 1<k<n

Denote by 7: R-mod — =74 the functor determined by

TX=7[X].
Clearly Q, =T,; by definition of Q,,

Qn=TCn/{S;,Lj,DA-} for n>1
Q.=Tc, /s, 1} for n=1 (2.7)
anTC,,/{O) fOI‘ n=0,

and the section exists by Proposition 2.5.

In the following, restrictions of functors from R-mod to full sub-
categories have identical notations, if no confusion is caused.

PROPOSITION 2.8. Let A be a small full subcategory of the category of
left modules over the ring R containing the free modules R’ for 0<i< 2" and
let F: R-mod — /¢4 be an additive functor. Then

0, 0<i<n,

Hom ,,(Q;, F)z{F(R) i=0.

Proof. For a positive integer k, let [k] denote the set {1, .. k}. By
virtue of (2.4}, for any functor F: R-mod — /¢ there is an isomorphism

d
Fe2Fuyma-gy.ma-wy k20

,,,,,

If one uses T to denote the same functor here as in the proof of Proposi-
tion 2.6, one has

Hom ,(T¢, F)=F4R), 0<k<2" (29)
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Indeed, as we said in (2.3), there is an exact sequence
k
0T Ty @ Tog-g
i=1
which gives
k
Homdﬁé(TZ, F)= Ker(Hom,qmé(T[k], Fy- @ Homdgé(T[k]— (i} F)).
i=1
But for any finite set S one has

T's=Z[Hom g(R[S], -)],

and for 0 <k <2", R*, R*~'e|A|; hence by Proposition 2.5 one has
k
Hom ,,(T¢, F)x=Ker(F(R*) » @ F(R*'))= F¥R).

i=1

Using (2.4) and (2.7), we obtain

Q0=T1’ Q1=Tg’ an (‘D T‘|1L|’n>11

LeVy,

where

V=PC)=( U (Ps)v L)Y U PD).

i= k=1
For any functor F: R-mod — &/, (2.9) implies that
Hom (@, F)=F\(R),
Hom.d&_‘(Qla F) = Fg(R)9
Hom ,,(Q,, F)= @ F{,(R), n>L.

LeVy

For additive functors, these equalities imply our proposition, since for
nz=2, any Lc V, satisfies |L| > 2.

We also need
PrOPOSITION 2.10 [13, Theorem 6]. The morphism
B(R, Q,(R), 0,(4))~>B(R,R, 4)> A

induced by the augmentations Q. (R)—>R and Q,(A)—> A is a quasi-
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isomorphism; Le., it induces isomorphisms in homology, for any ring R and
R-module A.

Remark. 1In [13], the DG-module B(R, Q,(R), 0,(A4)) is denoted by
Mg(A).

THEOREM A. Let A be a small full additive subcategory of the category
of left modules over a ring R, containing the module R. Let I, T: 4 - R-mod
be the inclusion I and an arbitrary additive functor T. Then there is an
isomorphism

H*(R; T(R)) =Ext*(I, T),

where the Mac Lane cohomology groups of R with coefficients in the obvious
R-R-bimodule T(R) are on the left, while the Ext groups on the right are
taken in the category of all functors from A to R-modules.

Proof. According to Proposition 2.10 we have a resolution of 7 in the
category of all functors from 4 to R-modules of the form

B(R, 0, (R), Q4(-)) > 1. (2.11)

We claim that this is a projective resolution. Indeed, all the abelian groups
Q:(R), i 20, are free, while Q,(-) are projective objects of the category of
all functors from 4 to abelian groups (by Proposition 2.6). Hence for all
iy, I3, e I, n€N, the functor

Qy(R)® -+ ®Q,(R)® 2.(-)

is a projective object of the category of all functors from A4 to abelian
groups, and hence

R®Q(R)® - ®Q,(R)®Q,(-) (212)

is also a projective object in all functors from 4 to R-modules. But every
component of the complex B(R, Q,(R), Q,(-)) is precisely a sum of
functors of type (2.12), so (2.11) really is a projective resolution.

By virtue of Proposition 2.8, the group of natural transformations from

2i(R)® - ®Q(R)® 2u(-)

to the additive functor T: 4 — R-mod, if we view both of them as functors
to abelian groups, is trivial for n >0 and equal to

Homgz(Q,(R)® --- ® Q,(R)® R, T(R))

for n=0. Hence in the category of functors from 4 to R-modules, the
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group of transformations from R® Q;(R)® --- ® Q,(R)® Q,(-) to T is
trivial for n> 0 and coincides with

Hom, x(R®Q,(R)® --- ® 0, (R)® R, T(R))

for n=0.
Summing up, we obtain

Ext*(/, T)= H*(Hom(B(R, 0 ,(R), 0,(-)), T))
= H*(Homg_z(B(R, Q,(R), R), T(R)) = H*(R; M),

where Ext and Hom are taken in the category of all functors from A4 to
R-modules.

Recall that in Section 1 we defined the cohomology H*(R; T') of the ring
R with coefficients in an arbitrary functor 7 from the category M, of
finitely generated free left R-modules to the category of all R-modules
R-mod by the equality

H*(R9 T) = EXt}(R)(Ia T),

where #(R) is the category of all functors from M, to R-mod, and
I: My — R-mod is the inclusion. In that section we also identified the
category of R—R-bimodules with that full subcategory of % (R) consisting
of additive functors; clearly, the bimodule T(R) corresponds to the additive
functor T in this way. From this point of view, Theorem A states that by
restricting our cohomology

H*(R;-): F(R) > ¢
to the category of R—R-bimodules, we obtain the Mac Lane cohomology.

Cohomology with coefficients in functors has good stability properfies.
Namely, one has

PROPOSITION 2.13.  For natural numbers r, n, let M g(r) denote the full
subcategory of My with objects the R-modules 0, R, R? .., R, and
let F(R,r) be the category of all functors from Mg(r) to R-mod. Let
I, T: Mp— R-mod be the inclusion and an arbitrary functor, respectively.
Then, for r = 2", the homomorphism

EXt}(R)(I’ T)- EXt?f(R,r)(In T,),

induced by the exact functor (),:F(R)—> F(R,r) that assigns to
T: My — R-mod its composition with the embedding My(r)s My, is an
isomorphism.
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Proof. As we have seen in the proof of Theorem A,

B(R’ Q*(R)’ Q*(-)) -1

is a projective resolution of 7 in the category & (R). Consider the restriction
of this resolution to the category M g(r):

B(R, Q4 (R), Q4 (=), = 1.

Proposition 2.6 implies that all components of B(R, Q,(R), Q,(-)), up to
n are projective objects of F (R, r). By the isomorphism (2.9) there are
isomorphisms (2.9) there are isomorphisms

H'(Hom g 1)(B(R, Q,(R), Q4(-)), T)
= H'(Hom g ,(B(R, Q4(R), Q4(-)),, T,)),  i<n.
Hence
Extiy L, T)=Extiy (1, T,), for i<n.
It follows from the definition that our cohomology
H"(R;-): F(R) —» ¢, n=0

vanishes on injective objects for n > 0. We now describe another sufficiently
large class of objects of #(R), where these cohomologies vanish. For that
purpose consider

DerFmNiTION 2.14. A functor F from an additive category 4 to another
additive category B is called diagonalizable if it can be represented in the
form F=ToA, where 4: A - Ax A is the diagonal and T: 4x4 > Bis a
bifunctor satisfying T(0, X)=0= T(X, 0) for every object X from 4.

The following proposition was proved in [17].

PrOPOSITION 2.15. Let A be a small additive category, and let & be the
category of all functors from A to the category of modules over a ring R.
Consider the functors U, F: A - R-mod with U additive and F diagonal-
izable. Then

ExtXU, F)=0=ExtX(F, U).

COROLLARY 2.16. If F is a diagonalizable functor from the category of
Jree left R-modules of finite type to the category of left R-modules, then

H*(R; F)=0.
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With the aid of Corollary 2.16 we apply the methods of [23] to calculate
cohomology groups in low dimensions of commutative rings, with coef-
ficients in some quadratic functors:

Let R be a commutative ring. For an R-module M, S%M denotes the
symmetric square of M and A% M the exterior square of M. By definition,

S2M=MQ M/UM), A:iM=M®M/V(M),

where U(M) and V(M) are submodules of M ® r M generated by elements
of type m®n—n®m and m® m, respectively, for m, ne M. The image of
the element m ® n in the quotient module S% M is denoted by m v n and
that in the module A3 M by m A n.

Define the homomorphisms

wAFMS>M@g M, B:SIM- V(M)
by
a(mAn)=m@n—n®m, Bmvn)=m@®n+n@m.
Denote by ,R and R/2R the following R-R-bimodules: As left R-
modules they coincide with
:R={reR, 2r=0}
and R/2R, respectively, while the right actions of R on them are defined by

x-r=r’x, reR xe,R orxeR/2R

It is proved in [23] that for a flat R-module M the sequences

0— AAM—"> MR M— S2M—0,
0— V(M)— M@ M —> A3M — 0,
0—RR® M — SiM—ﬂ-» ViMy— RPR2R®x M — 0
are exact.
By varying M over the category M we obtain exact sequences in the
category % (R):
0— A% — ®%— S2—0
0— V— ®%—> 41— 0 (2.17)
0— LR®z-)— Siz—};_’ V— (R/2R®z-)— 0.
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Since ®2 is a diagonalizable functor, we have H*(R; ®%)=0. Hence
(2.17) yields isomorphisms

HR;V)=H'(R, V)=0; H°(R; %) =0, 2.18)
H™ YR, V)= H"*\(R; A%) = H'(R; S%),  n>0,
and long exact sequences
0- H%R; ,R)— H°(R; S%) - H(R; Im(B)) > H'(R; L,R)— ---,  (219)
0— H°(R; Im()) » HO(R; V) - H(R; RI2R) » H'(R; Im(B)) - ---.
(2.20)

By combining (2.20) with (2.18) we obtain
HO(R;Im(B))=0,  H'(R;Im(B))= H(R; R2R).

Hence (2.19) implies an isomorphism H°(R; S%) =~ H°(R; , R) and an exact
sequence

0— H'(R; ,R)— H'(R; S%) - H°(R; R/2R) » H¥(R; ,R). (2.20a)
If we also assume that ,R=0, then (2.17) and (2.18) give
H(R;S%)=0, H'R;S%)=H°(R; R/2R)
and an exact sequence
0— H'(R; R2R) —» H*(R; $%) > H¥(R; V).

By (2.18), H*(R; V)= H°(R; S%)=0. Hence H?*(R; S%)= H"(R; R/2R).
The above considerations together prove

PROPOSITION 2.21. Let R be a commutative ring. Then
HO(R; A3) =0,
HY(R; AZ)= H(R; S3) = H(R; 1 R),
H"*Y(R; A%)= H"(R; S3%), n>=0.
Moreover, there is an exact sequence (2.20a). If, in addition, , R =0, then

HX(R; S3)=~ H'(R; R/2R).

In particular, H*(Z; A*)=2Z/27, H*(Z; $*)=0.
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3. CONNECTIONS WITH THE COHOMOLOGY OF SMALL CATEGORIES

In this section we prove Theorem B and some auxiliary propositions
which are needed in Section 4.

First let us recall basic facts about the Hochschild—-Mitchell cohomology
theory of small categories [3, 16].

Suppose we are given a small category C and a bifunctor D: C* x
C — 4. For a morphism a: 4 —» B in C, objects X, Y of C, and elements

aeD(X,A), beD(B Y),

images of these elements under the homomorphisms
D(1X9 a): D(Xa A) - D(X, B)s D(a, 1Y)' D(B3 Y) -)D(A’ Y)

are denoted by «,a and «, b, respectively.
N, C denotes the nerve of C, [20]; it is that simplicial set whose
n-simplices are diagrams
A An
Ape— A — - — A4, nz0,

which in the sequel will be denoted simply by (4, ..., 4,). Moreover, in this
situation D(4,, .., 4,), for a bifunctor D, denotes the group D(4,, 4,).

DerFiNITION 3.1 [3]. The Hochschild-Mitchell cohomology of the
category C with coefficients in the bifunctor D: C”xC — &£ is the
cohomology of the cochain complex F*(C; D), whose n-dimensional
cochains are elements of the group

F(C; D)= [l DAy, .4y
(A1, An) € Ny C
for n>0 and of
FYC; D)= [] D(4, 4)
4€iCl

for n =0, while the coboundary homomorphism §: F*~! — F” is defined by

(Of N(A1s s Ar)
n—1
= j'1=|:fu-2: s An) + Z (- l)if(ily s AiA i 15 vees A)
i=1

+(_1)n)":f('11,"-, )“nfl)

481/137/2-2
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for n=1 and by
(0f WA) =2, f(A) — A*/(B)
for n=0, (4: A- B)e N,C.
By the very definition, the group H°(C; D) coincides with the end of the

bifunctor D [15]. In particular, we have

PrROPOSITION 3.2. Let F be the category of all functors from C to the
category R-mod of left modules over the ring R, and, for U, Te|F|, let the
bifunctor Homg(U, T): C? x C — ¢ be defined by

(Homg(U, T))(X, Y)=Homx(UX, TY), X, Ye|Cl.

Then H(C; #om (U, T))=Hom 4(U, T).

Cohomology groups of small categories with coefficients in bifunctors
are known to constitute a universal exact connected sequence of functors
[3, 16], so they are derived functors of ends.

We also need the connection between second cohomology and linear
extensions of categories [3].

DerFiNiTION 3.3 [3]. We say that
D+ —E-2C (3.3a)

is a linear extension of the category C by the bifunctor D: C” x C - /¢4;
if E is a category with the same objects as C, p is a functor which is identity
on objects and surjective on morphisms; and moreover, for all objects
A, Be|C|, an effective action of the group D(B, A) on the set E(B, A)
(denoted by Ao+a for iy;: B— A in E and ae D(B, A)) satisfying the
following is given:

(1) For Ag, 4, € E(B, A), p(4¢) = p(4,) iff there is an g e D(B, 4) with
Ai=Aota

(2) For ae D(B, A), be D(C, B), and morphisms C»* B—-* 4 in
E, with p(i,)=4, p(uy) = u, one has

(AN'O + a)(ﬂo + b) = ;.ouo + j.*b + ﬂ*a.

The class of all linear extensions of C by D has a naturally defined
equivalence relation; the set of equivalence classes is denoted by M(C; D),
and [3] constructs a natural bijection M(C; D)~ H?*(C; D).
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ProrosiTION 3.4. Given a linear extension (3.3a) of the category C by
the bifunctor D, let
A cL B

be a diagram in E whose image under p is a coproduct diagram in C. Then
the original diagram is a coproduct diagram in E iff for every X € |C|, with
C(A, X)x C(B, X) # O, the homomorphism induced by o« and P,

D(C, X) - D(4, X)@® D(B, X),
is an isomorphism.
Proof. By the given conditions in C, o« and f§ induce
C(C, X) - C(4, X) x C(B, X),
a bijection. We need to determine the conditions under which
E(C, X) - E(4, X) x E(B, X)
will be bijective too. Hence the proposition follows from the following easy

lemma:

LemMa 3.5. Let a: G, — G, be a homomorphism of groups and let X, be
nonempty sets with effective actions of G,, i=1, 2. Suppose we are given an
a-equivariant map B: X, - X, that induces a bijection between sets of orbits
B*: X,/G—=> X,/G,. Then B is a bijection iff « is an isomorphism.

For a functor p: C' — C and a bifunctor D on C, composition with p
determines a bifunctor on C’ that will again be denoted by D. So p induces
a morphism of the complexes

p*: F*(C; D)— F*(C'; D) (3.6)
of D and, so, homomorphisms in cohomology
p*: H*(C; D) > H*(C'; D).

Before we formulate the following proposition, recall that an augmented
simplicial object &: X, » X_, in some category KK consists of a simplicial
object X, =(X,, S7,d?), n20, 0<i<n, in K; an object X_, of K; and a
morphism &: X, — X_, in K with edg=ed|. Such an object &: X, » X _,
is called contractible if there are morphisms 4,:X,—>X,,,, n= —1,
satisfying eh_, =1y, ditlh,=1, dihe=h_se, d"*'h,=h,_,d" |,
O<igsnzl
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ProposITION 3.7. Let ¢: C, — C | be an augmented simplicial category,
such that all the C,’s, n> — 1, have the same set of objects and all the struc-
ture functors involved are the identity on objects. Suppose also that for any
A, Be|C_,|, the augmented simplicial set

g(A4, B): C.(A, B)=»C (A, B) (3.8)

is contractible. Then for any bifunctor D: C?, x C — <4, there is a spectral
sequence with

E{?=HYC,; D)= H?*%(C_,; D).

Proof. Denote by h the contraction of the augmented simplicial set
(3.8). For every n >0, applying the functor F"(—; D) of Definition 3.1 com-
ponentwise to &: C, — C_, gives the augmented cosimplicial abelian group

g F"(C ,;D)y—-»F"C,; D), nz=0,

which also has a contraction / given by
(Af NA1s s ) = [ (R, oy hA)

for fe FY(C,,; D), m20, (4, .., 4,)eN,C,._,.
By varying n we obtain an augmented cosimplicial object in the category
of cochain complexes:

E*ZF*(Q_l;D)_’F*(.C*;D)'

The cosimplicial cochain complex F*(C, ; D) can be converted to a bicom-
plex, whose total complex is denoted Tot F*(C, ; D). Spectral sequences
associated with a bicomplex [5, 14] have in our case the form

'EY*=HC,; D)= H?*9(Tot F¥*(C,; D)),
"Ef?=HYF*(C,;D))=>H?*(Tot F*(C,; D)).
Since the augmented cosimplicial abelian groups ¢” are contractible, we get

"E®#=0 for ¢>0 and "E{®=F?(C_,; D). Hence the second spectral
sequence degenerates to yield isomorphisms

HY(Tot(F*(C,; D))= "E{’~H"(C _,; D).

Substituting this in the first spectral sequence gives the proposition.

The proof of theorem B uses the following lemmas.
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LemMaA 39. Given a functor T from the category C to the category
R-mod of modules over the ring R, define the bifunctor

D:CPxC—- At
Jrom an object A of C by the equalities
D(X, Y)=(TY)“4Y  for X, Ye|C|.

Then
H*(C;D)=0  for n>0, HY(C; D)= T(A).

Proof. For ae T(A) define the function f, € F°(C; D) by
(fa(X)N: 4> X)=T(a)a) for Xel|Cl|, aeC(4,X).

Then the assignment a— f, defines a homomorphism ¢: T(4) —» F°(C; D),
which gives an augmented cochain complex &: T(A4) » F*(C; D). To show
that it is contractible, define the homomorphism A: F°(C; D) - T(A4) by

h(f)=(f(4))1,) for feFC;D).

To define A" F"*'(C; D) - F*(C; D) for n>0, note first that for any
feF"Y(C; D) and any (X,«* X, « --- «* X,)e N, C, each morphism
A: A - X, determines an element

Xy o & X, < A)eN,,,C
so that a map

S(A1s s Ay A) € D(4, Xo) = TX§ A4
is determined. Hence one may define A" by the equality

(h*f)(}“l’ i An)(l) =f('11’ R }'n’ A’)(IA)
fOl’fGF"+ l(g’ D)’ (j'lﬁ ey j'n)e Nng, L€ Q(A’ Xn)

Direct calculation now shows that the sequence A, h,, h,, ... determines a
contraction for the augmented cochain complex &: T(4) — F*(C; D). Hence

H"(C;D)=0whenn>0, H%C;D)=T(A).

LeMMaA 3.10. For covariant functors P, T from a category C to modules
over a ring R, let

Homg(P, T): CPx C— AL
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be the bifunctor assigning the group Homg(PX,TY) to the pair
(X, Y)e|C?’xC|. If P is a projective object of the category F of all
Sfunctors from C to R-mod, then

H(C; #omp(P, T))=Hom (P, T),
H"(C; #Hom (P, T))=0, n>0.

Proof. In dimension 0 our assertion is a corollary of Proposition 3.2.
For positive dimensions, consider the family of “representable” functors 4 ,,
A€|C|; h, is the functor from C to R-mod assigning the free R-module
generated by the set C(A, X) to the object X of C. It is know that the A ’s
constitute a family of small projective generators for & (cf. Proposi-
tion 2.5). Hence we can restrict ourselves to the case P=#h, for some

A €|C). But then the bifunctor #s#:x(h,, T) coincides with the bifunctor
from the previous lemma, so that our assertion follows from Lemma 3.9.

We now prove the main result of this section.

THEOREM B. For any functors U, T from a category C to modules over
a ring R, there is a spectral sequence of type

Ef'=H?(C; §4%(U, T)) = Ext} (U, T),

where Ex¢%(U, T) is the bifunctor C% x C — /¢ which assigns the group
Ext%(UX, TY) to X, Y from C, while Ext on the right is taken in the
category F of all functors from C to R-modules.

Proof. Let
P, -U-0

be a projective resolution in the category #. It determines a complex of
bifunctors #omg(P,, T), whose components H*(C;—) are acyclic by
Lemma 3.10. Hence the hypercohomology spectral sequence (cf. [8]) for
the functor H*(C;-) and the complex #zsmp(P,, T) takes the form

E3"=HP(C; H'#omp(P,, T)) = H?*(HC; Homg(P,, T))).
Now Proposition 3.2 gives the equality
H(C; #omp(P,, T))=Hom(P,, T).

Hence that spectral sequence has the required abutment Ext%(U, T).
Furthermore the bifunctor

H(Homg(P,, T)): C? x C > ¢
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assigns the groups

HY(Hom (P, X, TY)).

to the pairs (X, Y)e |C% x C|. Obviously for any object Xe|C|, P, X is a
projective resolution for UX. So

HY(Homp(P,,T))=E2¢%(U, T),

and the theorem is proved.

CoroLLARY 3.11. Suppose that the functor
U:.C— R-mod

takes values in projective modules; then for any T:.C — R-mod there are
isomorphisms

HX(C; #om (U, T)) = Ext%(U, T).

By combining Corollary 3.11 with the results of Section 2 (e.g., Proposi-
tion 2.13) we obtain

PROPOSITION 3.12. Let M, be the category of free left finitely generated
R-modules and let M g(r) denote, for re N, the full subcategory of M r whose
objects are R°, R, R?, ..., R". Then, for any functor T: M  — R-mod there are
isomorphisms

H{(R; T)x H(M (I, T)) = H(M g(r); #omg(I, T),)

for r=2', where #Homg(l, T), is the restriction of Homg(I, T) to Mp(r).

4. COHOMOLOGY OF ALGEBRAIC THEORIES

Now we generalize the definition of our ring cohomology to algebraic
theories; by proving that the cohomology of free theories vanishes in
dimensions >2 we are abie, using Proposition 3.7, to prove Theorem C,
asserting that the cohomology of algebraic theories is a case of Barr and
Beck’s cotriple cohomology [2].

For convenience, let us recall briefly the basic notions of the Lawvere
approach to algebraic theories. A detailed exposition may be found
in [21].

A finitary algebraic theory (simply a theory for us) is a category whose
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objects are natural numbers 0,1, 2, .. m, .., neN, with distinguished
morphisms

n n.
J 2Ty Al R

which give the object n the structure of a product of # copies of the object
1, for all ne N. Morphisms of algebraic theories are functors that are the
identity on objects and preserve finite products (those distinguished
functors, in more brief terms, that preserve the morphisms p7, 1<i<n).
The category of algebraic theories is denoted F#eors ea.

A model of the theory A in a category € is a functor from A to ¥ that
preserves finite products. The category of set-valued models of a theory A
is denoted A®. The assignment

M M(1), Me |A?
defines the usual “forgetful” functor
Uy: AP > St (4.1)

This functor has a left adjoint L, : %2¢a— A% a model M is called a free
model of A on the set X if there is an isomorphism M~ L ,(X).

For every ne N, the functor A(n, -): A - F%¢s is a model of A. Putting
m > A(m, —) defines a functor

IA:ADP—»AI’.

It is known that 7, is a full embedding establishing an equivalence of A%
with the full subcategory of A® consisting of finitely generated free models
(ie., free on finite sets) [21, 25].

A morphism of theories /: A — B induces a pair of functors

fei AP B, 2 B> AY,

where f2(M)= M- f, M e |B”|, while f, is left adjoint to f*, and moreover

the diagram

ar 2, Al

o j l/.

Be? g Bb

commutes [21]. .

There is a functor Rergas > Theories assigning to a ring R the theory of
left modules over R. We denote this theory by R; in other words, R? is the
category of left R-modules. This causes no confusion, as that functor is
known to be a full embedding.
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Recall also that for theories A, B their tensor or Kronecker product
A®B is defined (see [21,25]). This is a theory whose set-valued models
are the same as models of A in the category B, or, equivalently, models
of B in A’ By denoting by N the initial object of T#esties, we obtain
A®N A for any theory A, as N®= %¢s [21]. The unique morphism
N — Z induces a morphism of theories

PTA=ARN-A®Z

Here Z denotes, simultaneously, the ring of integers and the theory of
Z-modules, ie., of abelian groups. The category (A ® Z)® is equivalent to
the category of internal abelian groups of A%, A®Z is known to be
representable by a ring for any A (see [25]). The functor i*: (A® Z)°*-
- A’ can be identified as the forgetful functor &/4(A%) — A®. It has a left
adjoint i,, called abelianization, is written

()av: AP > A E(AY).
DeFINITION 4.2. Let A be a theory. For functors
T: A - o 6(A?),
the cohomology of A with coefficients in T is defined by the equality
H*(A; T)=Extaf((Ta)a, T)

where #(A) is the category of all functors from A% to /4(A”) while
{(I4)ap is the composition

 Jab

AP A, Ab » AH(AY).

Remark. As mentioned, A ® Z may be identified with some ring for any
theory A, which means that

SEAP)=(AQRZ)

is an abelian category with enough projectives and injectives so that the
Ext groups in Definition 4.2 can be understood in the standard sense. Also,
since A% is equivalent to the category of finitely generated free models of
A, for rings this definition coincides with Definition 1.2.

LEMMA 4.3. For any theory A and any neN there are isomorphisms
Hom ;4 a6)((I4)ap(m), 4) = A(n)

for any A from S6(A®). In particular, (I4).,(n) is projective in oA£(A®).
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Proof. Since (-),, is left adjoint to the forgetful functor, we have

Hom _,,56((14)an(n), 4)=Hom 5:(/5(n), A)
= Hom 4»(A(m, ), 4) = A(n),

the last equality by the Yoneda Lemma.

LEMMA 4.4. The category F(A) of functors A — of 6(A®) is equivalent
to the category of those bifunctors A x A" — ofé which preserve finite
products in the first variable. Moreover, under that equivalence the bifunctor

T-AXA” > o4, (4.5)

determined by the equality T(n, m)= T(m)(n), corresponds to the functor
T: A% — o £(A). It can be also expressed, in our previous notations, as

T= xomMA(Ab)((IA)ab’ T)

Proof. Since #/4(A%)~ (A ® Z)®, the category «/£(A®) is equivalent to
the category of models of A in &4, the category of abelian groups. This
implies the first part of the assertion. The second follows from the first,
using Lemma 4.3.

Lemma 4.3 makes it possible to use Corollary 3.11. By taking into
account the second part of Lemma 4.4 we obtain

PROPOSITION 4.6. Let A be a theory, and consider Te % (A). Let T be
the bifunctor corresponding to T as in (4.5). Then there are isomorphisms

H*(A; TY= H*(A"; T).

Here the groups on the right are the Hochschild—-Mitchell cohomologies of
the category A of finitely generated free models of the theory A with coef-
ficients in the bifunctor T.

By relying on Proposition 4.6, we can give more intricate descriptions of
low-dimensional cohomology groups.

Let A be a theory and take some M e o/£(A%). Then the underlying set
UM, as in (4.1), has the structure of an abelian group. Recall that the
structure projections p,, ..., p,: n — 1 induce isomorphisms

(Mph eoey Mpn):M(lm) - l—[ M(ﬂ)
i=1
so that M(m) can be identified with (UM)". In particular, every morphism
w:n—1 of the theory induces an operation w,:(UM)"—» UM (an n-ary
operation on the model M).
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For a functor T:A” - o/#£(A%), let T, denote the abelian group
U(T(n)). Actions of the functor 7 on morphisms ¢:m—m induce
homomorphisms ¢*: T, —» T,.

PROPOSITION 4.7. Let A be a theory and let T be a functor from F(A).
Then, in the above notations,

HYA; T)x{aeT,;;YoeA(n 1), o*a=o (p}a, .. p¥a)}.

Proof. By Proposition 4.6, H%(A; T)=HA”; T). But the group
H®A; T) coincides with the end of the bifunctor T. Hence it consists of
sequences (a,, a,, ...) with a, € T(n, n), such that the equalities

(o, 1,)a,) = T(1,,, 2)(a,,) (4.8)

hold for any a € A(n, m). By Lemma 4.4, T preserves products in the first
variable. Hence :

(TP 1) T(pns 1)) T, ) [T T, m)

are isomorphisms. By using ¢, to denote the inverse to this isomorphisms
we obtain

a,=t""(T(1;, p Nay)s s (14, p.)a)),

since T(p;, 1,)(a,)=T(1,, p.)a,). Hence in the sequence (aq, a,, a5, ...) all
entries are expressible in terms of a, alone. So obviously Lemma 4.4 is
equivalent to the condition of our proposition.

Keeping the above notations we now turn to an analogous description
of H!'. To this end we introduce the following

DerFiNITION 4.9. For a theory A and a functor Te #(A), the abelian
group Der(A; T), of derivations of A with values in T, consists of
sequences

d=(d,: A(m, 1) > T,), .n
satisfying the equalities
d(w(wy, .., 0,)= (@, .., 0,)* (d,0)+ 0, d,0, .. d,0,)

for all weA(n,1), wy, .., w,€A(m, 1), where (@, .., »,): m—>n is the
unique morphism with the property p,(w,, .., ®,)=w,, 1<i<n, which
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exists thanks to m=1" The subgroup Ider(A; T)< Der(A; T') of trivial
derivations contains those sequences representable in the form

A(m, 1)so—o*a—ow,.(pfa, .., pra)

for some a from T,. Addition in these groups is performed componentwise.

PrROPOSITION 4.10. For any theory A and any functor Te F(A) there
exists an isomorphism

HY(A; T)=Der(A; T)/Ider(A; T).

Proof. Again by Proposition 4.6, H'(A; T)=H'(A%; T). Applying
Definition 3.1 for dimension 1 in our case gives that any element of
H'(A; T) can be represented by a family of maps

d=(d,: A(m, n') > T(w', n))

nneN

satisfying the cocycle condition

U*d, (0) — Ay (W) + 6, d, (W) =0

for any ¢: m — m’, : m — n in A. Taking the structure projections p;:mn — 1,
1<i<n, in place of ¢ gives

Pl ) =d,, (pW)—¥*d, ().

Now recall that T preserves products in the first variable; hence 2,,,,,,(1/1) is
completely determined by its images under p,. for 1 <i<n, so it suffices to
know the (d,, )nen Sequence. Furthermore, the element of H\(A;T)
represented by the family d will remain unchanged after adding to d a
coboundary, ie., a family of type

(08, () = *(dr) — 9(a,)

for some sequence (d,),e v €[ 1en T(qq)- Once again using that T preser-
ves products on the covariant side, one can choose a sequence (d,), . With

p,-.(&,,)=3,,, 1(p:), and, by adding éd to d, obtain a new family (3;,,,'),,,,,
with the property d; (p;)=0 for 1 <i<neN. Now define

d(w)=d, (©), weA(n,1).

It is easy to show that the cocycle condition for d’ is equivalent to d being
a derivation in the sense of Definition 4.9. Finally, for a sequence
ae[], I(m, m), the condition (4d), ; (p;) =0 means that

pi‘(ﬁn) = P;* (é1)9
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and since T preserves suitable products, @, is determined by the elements
d, = a and, moreover, the derivation corresponding to the family d4 in this
case will be exactly the trivial derivation corresponding to a.

Our next task is to define extensions of algebraic theories. To this end we
note that if /- B — A is a morphism of algebraic theories, then the functor
f? A’ B® preserves products, so it carries abelian group objects to
abelian group objects, and thus the functor f°: &/£(A”)— A4(B®) is
defined.

DerFiNiTION 4.11. Let A be a theory and T any functor from A% to
S 6(AP). An extension of A by T,

T»——)B-—/—»A,

consists of a morphism of theories f:B — A which is surjective on
morphisms together with an action ug:f°Tf” x Iz — I, of the internal
abelian group f°Tf?: B” — &/4(B®) in the category of all functors from
B to B, on the object I of this category, satisfying

(@) eopg=¢opy, where py: fPTf P x I, — I is the projection, while
e:Ig— f%I, f is obtained by applying the functor Iy to the unit
14— f*f, of the adjunction f, — f?; and

(b) the natural transformation

(g Po) [T xTg > Iy %, Iy

is an isomorphism, where I x, I is the pullback

Igx, Ig—— Iy

X
Iy, —— /MW"
A morphism from the extension 7> B —/A to another one,

T > B, »/' A, consists of a morphism of theories, /: B » B, with f;/=f
and [ pug=pg .

PROPOSITION 4.12.  The category of all extensions of a theory A by the
functor Te F(A) is a groupoid, whose set of components is naturally
bijective to H*(A; T):

N(A; T)~ H¥A; T).
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Proof. The first assertion is a fairly standard one, so we turn to the
second. By Proposition 4.6 we have

HYA; T)=HYA”; T),

where T: A x A% - o/£ is the bifunctor obtained from 7T as in Lemma 4.4.
Hence there is a bijection

H*A; T~ M(A”?; T),

where on the right (as in Section 3) we have the set of equivalence classes
of linear extensions of the category A% by the bifunctor 7. Take one such
linear extension

T+— E-2 AP,

By Lemma 4.4, T preserves products in the first variable; this enables us to
use Proposition 3.4 to conclude that E”” can be given a structure of
algebraic theory in such a way that p”: E%” - A will be a morphism of
theories. Moreover this structure is obviously unique up to isomorphism.

Now suppose a morphism of theories f: B — A is given with B = [ and
p=/°. By Lemma 4.4 we have isomorphisms

T(n, m) = Hom po(I4(m), T(m)), m, melA|
By the definition of linear extensions there is an action
T(form, f’m) x B®(n, m) > B*(n, m),  m, me |B|.

Since I,: B - B? is a full embedding and

T(form, fPm) = Hom (I , £ n, Tf "m)

=Hom ([, Ign, Tf m) = Homz(Ign, f°Tf "m),

we also obtain actions

Homg(Ign, f°Tf ’m) x Homg,(Izn, Izm) — Homgs(Ign, Izm)
for m, m e |B|. In particular, for n =1 this gives actions

U foTfPm x Tym — [y m;
then varying m over B gives a natural transformation
w TP x1y—I,.

It is easy to show that the pair (f, u) determines an element in N(A; T).
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Conversely, suppose we are given a surjective morphism of theories
f:B— A and an action u:f°Tf”xI,— I, such that (f, u)e N(A, T).
Take ac T(n, m) and 4eB°(n, m), and let

a: Iyn — f2Tf’m
be the morphism corresponding to a under the isomorphism
T(n, m) = Homg, (Igm, foTf’m).
Then A+ a=u-(d, Iz1) defines an action
T(n, m) x Hom g,,(n, m) - Hom 4,,(n, m),
for m, m e |B|. It can be shown that this gives a linear extension
T+— B* L5 A
and hence an element in M(A%; T), and that the maps
NA; T)-> MA”,T), MA” T)->NA;T)
so defined are mutually inverse bijections.
ExaMpLES 4.13. For a surjective morphism of algebraic theories
fB->A

the induced functor f%: A® — B” is a full embedding, so if we identify A®
with its image in B? under f?, identifying also the category A? with the full
subcategory in A’ consisting of free finitely generated models, then in an
informal way we may picture extensions of the theory A by the functor
T: A” —» of/4(A®) as surjective morphisms of theories f: B — A together
with a family of “central extensions”

0-T(f, X)) X->f,X-1

functorial in X e |B?|.
Let

0— M— R-L55—0 (4.14)

be a singular extension of rings and let T be the functor defined by
T(Y)=M®sY for Ye|S-mod|. Since for every free R-module X there is
a short exact sequence

0-T(f, X)»X->f, X0,



282 JIBLADZE AND PIRASHVILI

where f,: R-mod — S-mod is the functor with f,(X)=S®y X, we obtain

the extension
theory of theory of
d (R-modules) <S—modules> (4.15)

of the theory of S-modules by 7. In this way one can define a
homomorphism from the second Mac Lane cohomology group H?(S; M)
to H*(S; T), carrying (4.14) to (4.15). By Theorem A and Definition 4.2
this is an isomorphism.

Consider a free group G with the lower central series --- <I';G<TI,G
< G. By the classical result of Witt [24] there is an exact sequence

0-L(Gw)>G/T,, G~>G/I,G— 1,

where L,(G,,) is the n-dimensional homogeneous component of the free
Lie ring generated by the abelian group G,,. From this one deduces that

(4.16),

theory of class n theory of class n— 1
L) — (o )—»( Y )

nilpotent groups nilpotent groups

is an extension of algebraic theories for » > 2.
Similarly there are extensions

theory of class n theory of class n — 1
L) — (Groy )= (i

nilpotent Lie rings nilpotent Lie rings

). (4.17),

For n=2, Proposition 4.12, (4.16), and (4.17), determine elements of
H?(Z; A?). At the end of Section 2 it was shown that H*(Z; A*)=2Z/2Z. Tt
can be easily shown that (4.17), determines the trivial element, while
(4.16), gives the nontrivial one.

Similar to (4.17),, for any commutative ring R there exist extensions of
theories

) (theory of commutative R-algebras) ab (theory of >
- — 2 ,

with the identity xyz =10 R-modules
(4.18)
é (theory of (associative) R-algebras theory of
>—— —_—
e with the identity xyz =0 R-modules /°
(4.19)
42 (theory of anticommutative (-)ab theory of
> ——
R R-algebras with the identity xyz =0 R-modules )

(4.20)
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These extensions determine trivial elements of the groups H*(R; S%),
H?*(R; ®%), and H?*(R; A%), respectively. By Corollary 2.16, H*(R; ®3%)
=0, so (4.19) is the only possible extension of the theory of R-modules by
®2. On the other hand, Proposition 2.21 says that the groups H*(R; S%)
and H?(R; A%) are, in general, non-zero; they are relatively easily
calculable when ,R=0. Consequently there exist some nontrivial exten-
sions of the theory of R-modules by S% and A%. We know nothing about
the corresponding theories, although for R=27, H*(Z; S*)=0, so (4.18) is
the only possible extension of the theory of abelian groups by the functor
S2. We also know nothing about the group

) (theory of class
n — 1 nilpotent groups;

L,.((-)ab))

for n>2, whose nontrivial elements are represented by the exten-
sions (4.17),,.

Definition 4.2 shows that the cohomologies H*(A;-). #(A)— ¢ of
a theory A constitute an exact connected sequence of functors. Let us
consider functorial properties of the cohomology in the first variable.

For a morphism of theories f: B — A and a functor T: A” — o/ 4(A®),
denote by f*T the composition

B” L7 A” L\ 4(A%) = (AR Z)® -L22 (B Z) = (BY).

Assigning T+ f*T defines an exact functor f*: #(A) - #(B); moreover,
the diagram

B x B L2, A x AP
N
AE

commutes. As in Section 3 this defines a homomorphism in the cohomol-
ogy of categories,

H*A”; T) > H*(B”;/*T),

and Proposition 4.6 enables us to transform this to the homomorphism
H*(A; T) - H*(B; f*T). Then Proposition 4.7 easily implies

PROPOSITION 4.21. For a surjective morphism of theories - B — A, the
induced homomorphism

HO(A;T) > HYB; f*T)

is an isomorphism for any Te F(A).
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Consider the functor

Q: Theories — Sl ™

defined for a theory A by Q(A)=(A(n, 1)), - It is known (see [21,25])
that Q has a left adjoint L. The theory A is called free if there is an object
P of Sets™ with A= L(P)

PROPOSITION 4.22. For a free theory A, H"(A;-)=0 for n=2.

Proof. Since

H"(A;-) = Extg )l —)s

it suffices to consider the case n=2. For Te % (A), Proposition 4.12 shows
that H?(A; T)~ N(A; T), where N(A; T') is the group of extensions

Since f is surjective, 2(f) has a section in %2¢sN, and since A is free, this
section determines a section of fin J%eotseq. This shows that N(A; T)=0.

Now Proposition 422 with Proposition 3.7 enables us to prove
Theorem C, stating that the cohomology of algebraic theories can be
expressed by the cotriple cohomology of Barr and Beck [2]. First recall
the definition.

Let G be a cotriple [2] (comonad [15]) in a category €. For X e |€),
the cotriple resolution G, X — X is the augmented simplicial object of ¥
whose nth component is G"*'X [2]. Denote by /X the comma category
[15] whose objects are morphisms of € over X, f: Y — X. Let

T: (6/X)* ~ a4

be any functor. Then the G-cotriple cohomology of the object X with
coefficients in T is defined by the equality

He(X; T)=n"(T(G, X)),

where T(G, X) is the cosimplicial abelian gtoup obtained from G, X by the
componentwise application of 7, while n* are the cohomotopy groups of
that cosimplicial abelian group (by definition, for cosimplicial abelian
groups A*, n*(A4*)= H*(Ch A*), where Ch A* is the associated cochain
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complex with the same components as A*, with the coboundary operator
given by the alternating sum of cofaces of 4*).

Also recall that for #: o« » €, U: € - o with F left adjoint to U, there
is a canonical cotriple structure on G=FU:¥ > % [15]. In that case
UG, X — UX is a contractible augmented simplicial object of A, for any
Xe|¥|.

For a theory A and Te #(A), define functors H*(-, T') and Der(-, T')
from (Fheories/A)°P to ¢ by

H*B—L A;T)= H*(B; /*T),
Der(B —Z5 A; T)=Der(B; f*T),
where B -/ A is an object of Theories/A.

TureoreM C. Let G be the cotriple on Theories induced by the adjunc-
tion

Theories # (Fot o).
For a theory A and a functor Te % (A), there are isomorphisms
HE (A H' (= T))=H" ' (A; T), n=0,

H"™*YA;T), n>0,

H(A; Der(-; T))E{Der(A. T) n=0.

Proof. Let &G, A—>A be the cotriple resolution of A. Since
QG,A - QA is a contractible augmented simplicial object of Fés™, we
have a map

G, Am 1)~ A(n,1)
of contractible augmented simplicial sets, for ne N. Since
B(n, m)~ B(n, 1)™

for every n,meN, Be|J4cories|, the augmented simplicial category
e: G, A” » A satisfies the conditions of Proposition 3.7. Hence there is a
spectral sequence with

Er=HYG,A% T)=H?*9(A; T),

where T corresponds to T as in Lemma 4.4. Since G,A is a free theory,
Propositions 4.6 and 4.22 imply that

EM=0 for ¢g=22,p>0.
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By Proposition 4.21 the cosimplicial abelian group E}° is constant. Hence
Ef9=0 for p>0. The available information on the terms E%* now implies
that

Ey'=H" (A% T)=H"" (A, T),  n>0,
But
Er'=a"HYG A® T)=HLA; H'(-; T)).
Hence,
HY(A; H' (-; TY)=H" Y (A; T), nz0.
For a morphism of theories, f: B — A, there is an exact sequence
0-HYB;f*T)—> Uf*T(1) » Der(B; f*T) - H'(B; f*T) - 0.

Since U f*T(1)=U,T(1) and HB;f*T)=H°(A;T), this gives the
exact sequence

0— H%A; T) > U, T(1) > Der(B; f*T) —» H'(B; f*T) -0,

which in turn implies exactness of the sequence of cosimplicial abelian
groups

0 HYA; T)> U, T(1) > Der(G,A; T) > H(G,A; T)—0.
Since the first two entries are constant,
n" Der(G, A; T)=n"H' (G ,A;T), n>0.

Whence the second part of theorem.

5. TOWARDS SOME CALCULATIONS

The cohomology of some “classical” theories, such as those of groups,
monoids, nonassociative monoids, commutative nonassociative nonoids,
and G-sets for a monoid G, turn out to be successfully calculable. Calcula-
tions rely on the fact that in [6] Eilenberg and Mac Lane have built very
handy projective resolutions of functors (/,),, from Section 4, under the
name of freely acyclic constructions.

A. Cohomology of Theories of Groups and of Monoids
Recall that for a group or monoid G, internal to a category K, BG
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denotes the simplicial object in [ whose nth component is G” and whose
face and degeneracy operators are, in element notation,

(X5 ey Xp)s i=0,
AKXy oy X)) =Xy ooy XX 1y 15 oo X))y O<i<n,

(xl; weey xn—l), i=n,
Si(2 05 e X) = (X1 ooy Xy 1y X g5 ey X ) 0<ign

Let A be the theory of groups (resp. monoids). The identity functor
1,:A — A preserves products, hence it defines a model of the theory A in
the category A, i.e, an internal group (resp. monoid) in A. The underlying
object of this internal group (resp. monoid) is, clearly, 1; consequently we
obtain the simplicial object B1 in A. Obviously A’ is the category of
groups (resp. monoids), /£(A”) is the category of abelian groups, and
(+)an: A% - o/ 4(A®) coincides with the one-dimensional integral homology
functor.

PROPOSITION 5.1. Let A be the theory of groups or of monoids and let
T: A% —» of 6 be any functor. Then there are natural isomorphisms

H"(A; T)=n"*(TB1), n30,

where the cohomotopy groups of the cosimplicial abelian group obtained from
B1 by applying T componentwise are on the right.

Proof. Given a group or a monoid G, denote by C,(G) the complex of
chains of the simplicial set BG. As is widely known, H,(C,(G)) = H(G; Z)
is the integral homology of G (see [14]). When G is free, H,(C,(G))=0
for n>1. Let C;(G) be the nonnegative chain complex with C; (G)=
C,.1(G), n=0, and whose boundary operator is that of C,(G). Then for
free G we have

0, 0
mer@={; "7
ab>

n=0.

By varying G over A” we obtain a resolution of the functor (7,),, from
F(A) (here we identify A, as before, with the category of finitely
generated free groups (resp. monoids)).

Since C}H(G)=Z[G"*'] and G"*'=A%m+1,G) for Ge|A>|,
Proposition 2.5 implies that

C: g (IA)ab
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is a projective resolution in the category & (A). Hence
H"(A; T)=Ext} o ((I4)w, T)=H*Hom,(C;, T)=n""Y(TB1)
for any T: A% — /4. The last equality follows from

Hom,(C;},T)=T(m+1), ieN.

PROPOSITION 5.2. Let gry (resp. mon,) be the category of free groups
(resp. monoids) of rank not exceeding k, and gr,, (resp. mon,) be the
category of free groups (resp. monoids) of finite rank. For any functor
T:gr., — of (resp. mon,, — oA£), the restriction natural transformations

Higr,,: T) - H'(gr,; T),
(resp. H(mon,; T) - H'(mon,; T))
are isomorphisms for i <k — 1, where the bifunctor T is defined by

T(X, Y)=Hom(X, TY).

Proof. Consider the group case only, as the monoids are dealt with in
absolutely the same way. By Corollary 3.11 we have isomorphisms

H*(g_roo’ T)EEXt;((')ab9 T)

H*(gry; T)gEXt}(k)((')ab’ 1),
where # (resp. #(k)) is the category of functors from gr. (resp. gry)
to &/¢. From the proof of Proposition 5.1 one can deduce that CJ is

a projective resolution of the functor (-),, in & and is also a resolution in
F (k) up to dimension k — 1. Furthermore

Hom,(C}, T)=T(i+1), i>0,
Homg (C*, T)=T(i+1), 0<igk-1

This readily implies the proposition.

B. The Theory of Nonassociative Monoids

Let H denote the theory of nonassociative monoids, that is, the theory
whose models are determined by universal algebras M with a binary opera-
tion (multiplication) with a two-sided unit 1€ M. Then #4(H®) is the
category of abelian groups, while the abelianization functor assigns to a
nonassociative monoid M the abelian group M,, with generators {(a),
a€ M, and defining relations

{1>=0,  (ab)=<a)+<b>.
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For any nonassociative monoid M, define the chain complex C,(M) by
C.(M)=0 for n#0, 1, while the group Cy(M) (resp. C,(M)) is the abelian
group generated by symbols [a] (resp. [a, b]) for a, be M, with defining
relations [1]=0 (resp. [1, a]l=0=1[a, 1], ae M); the boundary operator
0: C(M) - Co(M) is given by

d([a,b])=[a]—[ab]+ [b], abeM.

It is proved in [6] that if M is a free object in H?, then

0, i#0,

Heon={y, 7o

Let M vary over H* to obtain a resolution of the functor (1), in the
category & (H):

C*() - (I[Hl)ab-

Let us show that this is a projective resolution in # (H). To this end, note
that the functors given by

M Z[M], M- 7Z[M?], MeH®™,
are projective objects in # (H); since
M=H*(1, M), M?=H>»?2, M)

and one can apply Proposition 2.5. From the definitions follows the
existence of epimorphisms Z[M] — Co(M) and Z[M?] - C,(M). These
homomorphisms have functorial sections

so: Co(M)—>Z[M],  5,: C\(M) > Z[M?]
given by the equalities
so[a]=[a]l—[1]
sila, b =1[a,b]—-[1,6] —[a, 11+ [1, 1],

a, be M. Hence the functors C,, C,: H” — of¢ are projective objects in
F (H). These considerations imply the following propositions:

PROPOSITION 5.3. Let H be the theory of nonassociative monoids and
T:H*” — /¢ be any functor. Denote by u:2 —1 the multiplication in H and
by e:0 -1 the unit. Then

0, iz2,
Hi(H; T)= < Coker 6, i=1,
Ker 4§, i=0,
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where
Tey
Ten

&: Ker(Te) - Ker(T2 — 22— T1@® T1)

is induced by Tu while e, and e, are the morphisms

ext

e 1=0x1—— 1Ix1=2

e 1=1x0—5 5 I x]=2
PrOPOSITION 54. Let H, be the category of free nonassociative monoids
of rank not exceeding k and H . the category of all free finitely generated

nonassociative monoids. Then for any functor T:H ., — ¥4, the restriction
homomorphisms in cohomology groups of categories

H*MH_;T)- H*H; T)

are isomorphisms for any k=2, where the bifunctor T is defined by
T(X,Y)=Hom(X, TY), X, YeH_.

C. Theory of Commutative Nonassociative Monoids

PROPOSITION 5.5. Let Comm be the theory of commutative non-
associative monoids and T: Comm® — /¢ be any functor. Then

H"(Comm; T)x H"**Comm; T)  for nz=4.

Proof. Let A be some commutative nonassociative monoid. Consider
the chain complex C,(A4) with Cy(4) and C,(A4) as in the previous exam-
ple, while for n> 2,

C,(A)=C,(A4), C(A)=C{(A)PCy(A),n=3.
The boundary homomorphism is defined by
do[x, y1=[x]—[xy]+[y]
0,[x, y1=[xy]— L[y x]
Oclx, y1=[x,y]+ [y x1, oclal=[a, al, nz2even
3, [x,y1=0xy]—-1[»,x), 0,lal=[a,a]l-2[a]l, n=3odd
In [6] it is proved that for free 4’s one has

Aabs l=0

Hean={3" 12,
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Hence C,(-) is a resolution of the functor (/¢om,m)a.e in the category
Z (Comm). As in Proposition 5.3, one can prove that the functors Cgy(-)
and C,(-) are projective. This gives the desired periodic resolution of the
object (Icymm)ab-

Moreover an analogue of Proposition 54 holds with H replaced
by Comm.

D. Theories of G-Sets

Let G be a monoid, and denote by G the theory of left G-sets, ie,
G’ ~ G-F%/a. It is clear that

#4(G®%) ~ G-mod,

while the functor (-),,: G® — G-mod is given by X+ Z[X], where the
structure of a G-module on Z[X] is inherited from the action of G on X.

In the category of G-sets consider the augmented simplicial object
e: B,(G; X) - X, where B,(G, X)=G"""'x X, n>0, and

e(g, x)=gx,
(gO’~~~’gigi+1’"~’gnax)s O<i<n’
d' * 3 s S5n =
‘(go gl g X) {(go’ '"’gn_lagn9x), i=n’

si(g09 ety gm X) = (gO’ At gi! 1’ gi+l’ bkt gna X), 0<l<n’

and the action of G on B,(G, X) is given by
8(80: 815 > 8> X) = (880> 815 - &ns X)-

It is easy to show that &: B (G, X)— X is contractible in the category of
sets; in fact the maps

h: X - GxX, h,:B,(G;X)— B, (G;X),n=0,
given by

hx)=(1,x),  h(8os - 8n» X)=(L, 805 -» &> X)
give a contraction for it. Hence

Ze: Co (B (G X)) > ZX

is a contractible augmented chain complex, where

C,: (simplicial sets) —» (chain complexes)
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is the functor giving chains with integer coefficients. Let A =Z7[G] be
the semigroup ring of G. Then one can show easily that there is an
isomorphism of G-modules

C.B.(G:X)= @ A[X], for every n. (5.6)
Gn

Since X =G*(1, X) for Xe G”, Proposition 2.5 implies that
Zey: Co(B(G; =) = ()ap

is the projective resolution in the category of functors from G to G-mod
(ie., in #(G)). Let T: G - G-mod be an arbitrary functor. Then

H*(G; T)=Ext% )((-)an, T)
=H*(Homg )(C,B,(G;-), T))= H*G; T(1)),
where the last group is that of Filenberg—-Mac Lane cohomology of the

monoid G in the obvious G—G-bimodule T'(1), since (5.6) implies that

Hom ;/(C, B (G; -), T) = Fels(G", T(1)).
Hence we have arrived at

PROPOSITION 5.7. Let G be a monoid and G the theory of G-sets. For any
Sunctor T: G - G-mod there are isomorphisms

H*G; T)= H*(G; T(1)),

where on the right are Eilenberg—Mac Lane cohomology groups of the
monoid G with coefficients in the G-G-bimodule T(1), with left action deter-
mined by T’s taking values in G-mod, while the right action is T applied to
the action of G on 1 via Homg(1,1)x=G.

PROPOSITION 5.8. For a monoid G, denote by G, (resp. G,) the category
of free finitely generated G-sets (resp. those of rank not exceeding k).
Then for any functor T:G, — G-mod the restriction homomorphism in
Hochschild-Mitchell cohomology

H*G; T)» H*G; T)
is an isomorphism for k > 1, where T is the bifunctor

T(X, Y)=HomyX, TY), X,YeG,.
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6. FURTHER AREAS OF INVESTIGATION AND OPEN PROBLEMS

1. In Section 2 (Theorem A) the isomorphisms
H*(R; T(R)) = Ext¥ &I, T)

were established, where #(R) is the category of all functors from the
category M  of finitely generated free left R-modules to the category of all
R-modules, I: M, — R-mod is the embedding, and 7 M —» R-mod is an
additive functor, while H* denotes the Mac Lane cohomology. Since the
category of additive functors from M, to R-mod is equivalent to the
category of R—R-bimodules, the embedding

(additive functors) < (all functors)
induces homomorphisms
Ext% o(R, T(R)) = Exty \(1, T).

These are isomorphisms for i=0, 1. And if the additive group of R is
torsion-free, isomorphism holds also in dimension 2 (this follows from 3.6
of [197).

But between additive functors and all functors there are the so-called
quadratic, cubical, and other functors. It would be interesting to find out
what the corresponding Ext groups will give. In [18], the following was
proposed.

Conjecture. Let 2(R, n) be the full subcategory of #(R) consisting of
those functors T: M, — R-mod with FEilenberg-Mac Lane degree <n
(cf. [7]), ie., T, =0 for the (n+ 1)st cross-effects. Suppose that R has a
torsion-free additive group. Then

Extip g (5, T) = Exty g (I, T)

is an isomorphism for n < 2 for any additive functor T: M, — R-mod.

This conjecture is true for n=1,2, 3 (see [18]).

2. One can define Mac Lane homology H,(R; M) of a ring R with
coefficients in a bimodule M by replacing the functor Hom by ® in
Definition 2.1; for homology groups, a dual of Theorem A is valid. Hence
according to [18] there exists a natural transformation

0,: K (R)- H,(R; R)
from Waldhausen’s stable K-theory to the Mac Lane homology. Is 6, an

isomorphism? This is so in all the cases when the values of stable K-theory
are known to us.
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3. There are many important algebraic theories A with trivial
cohomology for coefficients in any functor T: A” — o//£(A") because the
category /£(A”) is trivial, for example, the theory of rings with unit. This
signifies that it would be desirable to find still more general coefficients for
our cohomology. One well-known general approach to this, in the spirit of
Barr and Beck and Quillen [2, 19], suggests internal abelian groups of the
comma category J4eorces/A as coefficients. For the Hochschild—Mitchell
cohomology, Baues and Wirsching generalize the H*(A; D), the cohomology
of a category A with coefficients D, by the so-called natural systems [37].
Namely, the natural system D consists of the family (D,) indexed by
morphisms f of A and the families of homomorphisms of abelian groups
(8*: D> Dp) s gye raars (fa:Dg= Dgo) (s oye ma) indexed by the set T,(A)
of composable pairs of morphisms of A. These are required to satisfy
certain natural equalities (see [3]). Now it can be shown that for any
theory A there is an equivalence

A b(Theories/A) ~ (natural systems D on A satisfying (6.1)),
where the condition (6.1) is

for any morphism /> x - y, x y,x -+ x y, the

homomorphism (pf, .., pf): D> D, ;X --- xD, . 6.1)
is an isomorphism, where p,: y; X -+ X y, = y,, '

1 €i< n, are the projections.

Any bifunctor D: A x A? —» o/ can be viewed as a natural system by
setting D, x_, y=D(X, Y); in particular #(A) is a full subcategory of
A U(Theories]/A).

Accordingly there are two ways to define cohomology groups H*(A; M)
for M € | b(Theorcea/A)|. The first one relies on the cotriple cohomology
of Barr and Beck,

H'(A; M)=Hg '(A;Der(-, M)), n2z2,

where G is the comonad from Theorem C of Section 4. The second way
follows Baues and Wirsching’s approach [3] and gives H"(A; M)=
H"(A°; M), where M is the natural system, satisfying (6.1), which
corresponds to M under the equivalence mentioned there. Theorem C says
that when coefficients are restricted to #(A) these approaches lead to
the same result. Will this be the case for any coefficients from
A b(FTheorces/A)? It can be shown that this is so in dimensions <2, and
probably the answer is affirmative in all dimensions. By the way, another
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motivation for widening the area of coefficients is that, if one wants to con-
sider extensions of type (4.16), with nilpotent groups replaced by merely
solvable ones, one encounters precisely these general coefficients which do
not arise from any object of Z.

4. For algebraic theories A let us identify the category A with the
category of finitely generated free models of A, and let A% be the full sub-
category of A% consisting of models that are free on sets of cardinality <r.
Call the theory A stable if for every i there exists an r, such that the restric-
tion homomorphisms

H(A”, D)—> H(A%*;D,) (6.2)

are isomorphisms for every r=r, and every bifunctor D: A x A” — /¢
which preserves products in the first variable (here D, is the restriction of
D to A,, and cohomology groups are those of the Hochschild-Mitchell
type).

For a stable theory A denote by f(A, i) the smallest r, such that (6.2)
are isomorphisms for r > ry. By Propositions 3.12, 5.2, 5.4, and 5.8, theories
of R-modules R for any ring R, of groups gr, of monoids mon, of non-
associative monoids H, of commutative nonassociative monoids Comm,
and of G-sets & for any monoid G, are stable. Moreover, we showed that

SR )<, flgr,m)<n+1,  f(mon,n)<n+1,
fH,n)<2,  f(Comm,n)<2, f(G,n)<1.
We know no answer to the following questions:
Is the estimate f(R, n) <2" the best one? (It seems unlikely.)
Do there exist unstable theories?

It is also interesting to characterize those theories for which f(A, n) is a
bounded function of n.

5. In Proposition 2.21 we have calculated the groups
HYR; A43),  HY(R;S3)

for commutative rings R, especially those with , R =0. Construct explicitly
the extensions

Hom (I, AR)+ =7 Mg
Hom (I, SE)+ =7 My

corresponding to the elements of H*(R; A%)= H°(R; R/2R), H?R; S%)=
H'(R; R2R).
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