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ABSTRACT 

A formula is obtained for the dimension a(n, m) of the space of degree m invariants of the regular 
representation of the n-th order cyclic group. This formula implies in particular that a(n, m) = 

a(m, n). Moreover, the automorphism group of the multiplicative semigroup generated by invariant 
monomials of the cyclic group in that representation is determined. 

INTRODUCTION 

The classical Hermite Reciprocity Law asserts the isomorphism 

S” S”(k2) s S” Srn(k2) 

of symmetric powers of representations of the Lie group S&(K) acting stand- 
ardly on k2, for a characteristic zero field k (see [4], Remark 12 by V.L. Popov in 
Appendix 3 of the Russian translation). In particular, the space of degree m 
polynomial invariants of the irreducible (n + I)-dimensional representation is 
equidimensional with the space of degree IZ invariants of the irreducible 
(m + 1)-dimensional representation. 

In [l], one can find certain generalization of this fact, formulated for rep- 
resentations of cyclic groups. We will consider another variation of it, which 
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also can be called Hermite reciprocity for cyclic groups; however the precise 
relationship with the original Hermite reciprocity, although clearly apparent, is 
unknown to us. 

In this paper, we will obtain an explicit formula for the dimension a@, m) of 
the space of degree m homogeneous polynomial invariants of the regular rep- 
resentation of the n-th order cyclic group. This formula implies that 
a@, m) = a(m, n). 

Let us also note that in connection with applications of invariant theory to 
the study of the Steenrod algebra, algebras of invariants of another series of 
representations of cyclic groups (not regular ones) have been considered in [2], 

131. 
The authors are grateful to V.L. Popov - correspondence with him has stim- 

ulated writing of the present paper in the first place; to G. Almkvist, for sup- 
plying us with a copy of [l] and other important related material; and to D. 
Wehlau, who has sent his works related to ours, and has given valuable remarks 
on the preliminary version of the paper. 

1. 

For the cyclic group C,, = Z/nZ of order n, let p be the following linear rep- 
resentation of that group in the vector space V, over a field k, with dimk I’, = n: 
we will suppose that k has characteristic zero and contains a primitive root of 
unity of degree 12. We will denote this root by <, and identify it with a generator 
of C,. Moreover we fix a base es, ei, . . , e,_t in V,,, and define the action in the 
representation by 

p(<)ej = <jej. 

It must be clear that p is isomorphic to the regular representation of the cyclic 
group Z/HZ. This representation can be extended to a representation in the al- 
gebra P[ Vn] of polynomial functions on V,, which may be identified with the 
standard polynomial algebra k[yo, ~1, . . . , m-11. Consider the algebra of in- 
variants of this representation, P[ Vn] ” c k[yo, yl, . . . , y,_l], which has a finite 
set of generators by Hilbert’s theorem; these generators may be chosen to be 
homogeneous. In fact they may be chosen to be monomials, as p is diagonal. 
Now it is easy to check that a monomial y$yf’ . . . y,f:j’ is invariant under p iff 
the numbers X0, Ai, . . , X,-l satisfy the congruence 

n-1 

(1) C jXj E 0 (modn). 
j=O 

Let us call degree of a solution (X0, Xi, . . . , X,-l) of (1) the total degree of the 

corresponding invariant monomial yoxo~:I . .y,xril 
n-l 

, i.e. C Aj. 

j=O 

Let A(n, m) be the set of all nonnegative integer solutions of degree m of the 
congruence (l), and denote a(n, m) = #A(n, m) (here and in the sequel #S 
means the number of elements in a finite set S). In what follows, p(x) is the 
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Euler function, the greatest common divisor of integers n, m is denoted by 
(n, m) and (k), denotes the residue of k modulo n. 

Theorem 1. (“Hermite reciprocity”). The dimension a(n, m) of the vector space 
of degree m homogeneous invariants of the regular representation of the cyclic 
group of order n is given by 

(2) 
1 

a(n, m) = - C 
n + mdl(n,mj 

cp(d) (n’dn;y’d) ; 

in particular, 

a(n, m) = a(m, n). 

Proof. We will make use of a formula by T. Molien: if one denotes by a(G, m) 
the dimension of the space of degree m invariants for a finite group G C GL( V) 
of linear transformations of a vector space V, there is an equality of formal 
power series: 

’ a(G’ m)tm = kTFG de& ty) 

m=O 

(see e.g. [4]). If G 2 GL( V) realizes the regular representation of G, then this 
formula can be simplified as follows (see [ 11): 

E a(G, m)P = 1 5 cpc(d)(l - td)-y, 
m=O #Gd=, 

where cpc(d) is the number of elements of order din G. 
In our case, when G = p(C,), an element p(ck) E G has order d iff Ck is a 

primitive root of unity of degree d; so there are cp(d) such elements. Taking this 
into account, one obtains 

z a(n, m)tm = i $ cp(d)(l - td)-j. 
m=O n 

Now substituting 

(1 - P-2 = 5 
j=O 

one obtains 
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Hence 

We have obtained 

which is the equality claimed. 0 

Remark 1. It is clear that a(n, m), being the number of solutions of the con- 
gruence (l), has also a combinatorial definition, in terms of partitions of mul- 
tiples of n into no more than m parts, each less than n. Hence it would be 
desirable to have a combinatorial explanation of the above formula giving 
Hermite reciprocity. We are going to do this in a sequel to this paper (a joint 
work with D. Pataraia). 

Remark 2. From (2) one easily derives the following equality of formal power 
series 

n go a(n, m)x”yM = - 5 Tlo,( 1 - Xk - yk). 
k=l 

Also, (2) can be written in terms of Dirichlet series: one has 

where C(x) is the Riemann zeta function. 

2. 

The set A(n) = U, A(n, m) of all nonnegative solutions of (1) carries a structure 
of a commutative monoid, i.e. semigroup, under componentwise addition, with 
the trivial solution as zero element. 

Theorem 2. For n # 2, the automorphism group of the monoid A(n) is isomorphic 
to Z/nZ * - the automorphism group of ZlnZ . 

Proof. The theorem being trivially true for n < 2, let us concentrate on the case 
n > 2. In this proof, we will represent A(n) by a submonoid of a free abelian 
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group with generators ei, 0 5 i < n, by identifying (X0, X1, . . . A,_,) E A(n) 

with &es + Xiei + . . . + X,_ie,_t. 
Call an element Xof a monoid extremal if for any X’, X” in the monoid such 

that X’ + X” is a multiple of X, it follows that both X’ and X” are also multi- 
ples of X. Obviously any monoid automorphism carries extremal elements 
to extremal ones. On the other hand, it is clear that any extremal element 
of A(n) has exactly one nonzero component, hence is one of the 
X(i) = &ei, 0 5 i < n. Indeed, as soon as an element Y has at least two 
nonzero components - say i-th andj-th - one can find a natural N such that the 
i-th component of NYwill exceed fi. Then NY - X(i) will belong to A(n), i.e. 
NY = X(i) + 2 for some 2 E A(n). But all positive multiples of Y have non- 
zeroj-th component, hence X(i) cannot coincide with any of them. It follows 
that Y is not extremal. 

One obtains that any automorphism Q of A(n) permutes the extremal ele- 
ments X(i), i.e., cr(X(i)) = X(a,(i)), for a certain permutation fla E S, from 
the symmetric group on n = (0, 1, . . . , n - 1). 

Lemma. For any automorphism a of A(n), n # 2, let ua be the corresponding 
permutation as above. Then for any 0 I: i < n, (a,(i), n) = (i, n). 

Proof. As above, we only consider the case n > 2. Then for any 0 < i < n there 
exists 0 <j < n with j # i and (j, n) = 1. Hence the congruence i +jx E 0 
(mod n) has a solution, say, b. It follows that Y = ei + bej is in A(n). One checks 
that (i, n)X(i) + bX(j) = n Y. Then also (i, n)X(a,(i)) + bX(o,(j)) = ncu( Y), 
so that all components of the left hand side are divisible by n. But since j # i, 

also o,(j) # a,(i), so the last equality implies n 1 (i, n)&, i.e. 
(a,(i), n) / (i, n). Now the same argument for a-’ in place of cy gives 
(i, n) 1 (a,(i), n), which proves the lemma. 0 

Remark 3. For n = 2, A(2), being a free commutative monoid with two gen- 
erators eo and 2ei, has a unique nontrivial automorphism violating the lemma. 

Now for any 0 < i, j < n, there is a unique 0 5 k < n with 
x(i, j) = ei + ej + ek E A(n). This x(i, j) satisfies 

nX(i, j) = (i, n)X(i) + (j, n)X(j) + (k, n)X(k). 

Applying our automorphism (Y one then obtains 

MX(i,j)) = (i, n)JU49) + 6, n)X(cF,o’)) + (k, n)X(&)). 

Using the lemma one has (Y(X(I’, j)) = e,X(i) + cVe(j) + e,(k). Since c~(x(i, j)) 
belongs to A(n), this implies an(i) + a,(j) + o,(k) E 0 (mod n). We have ob- 
tained 

i +j + k E 0 (modn) + a,(i) + a,(j) + aa E 0 (modn), 

which means that (T, is an automorphism of Z/nZ. 
Conversely it is very well known that any element of (Z/nZ) * is multi- 
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plication by an invertible element of the ring Z/nZ, i.e. by a k with (k, n) = 1. 
And any such k gives rise to an obvious automorphism of A(n) that carries an 
element X with components xi to the one with components x(ki),. 0 

Remark 4. The notion of extremal element has appeared in the literature under 
various names: see e.g. [5], 4.6. Its use in our proof has been inspired by the 
work of J. Gubeladze [6]. 
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