
Transactions of A. Razmadze
Mathematical Institute
Vol. 179 (2025), issue 3, 399–410

SOME BOUNDARY VALUE PROBLEMS OF THE THEORY OF

CONSOLIDATION WITH DOUBLE POROSITY

LEVAN GIORGASHVILI1 AND SHOTA ZAZASHVILI2

Abstract. In this paper, the boundary value problems of statics of consolidation theory with double
porosity for a half-space are considered. On the boundary of the half-space, the limiting values of

normal component of the displacement vector, the tangent components of the stress vector, and

the normal derivatives of the fluid pressure in the primary and secondary pores, or the limiting
values of the normal component of the stress vector, the tangent components of the displacement

vector, and the fluid pressure in the primary and secondary pores are given. Using general formulas
for representing the solution of a system of differential equations of consolidation theory and the

Fourier transform, the solutions of the boundary value problems are constructed in explicit form in

quadratures.

1. Introduction

The physical and mathematical foundations of the consolidation theory with double porosity were
proposed in [6, 12,17].

In [4], the two-dimensional version of the quasi-static Aifantis equation of the consolidation theory
with double porosity is consider and the uniqueness and existence of solutions of basic boundary value
problems are studied.

In [3], the first and second boundary value problems of the consolidation theory with double porosity
for the half-space are explicitly solved by using the potential method and the theory of integral
equations.

More detailed information on the theory of porous media and the results obtained in this direction
can be found in [1, 2, 7, 9, 10,13,16].

The present paper deals with two boundary value problems of statics of the consolidation theory
with double porosity for a half-space. In the case of problem (A), the limiting values of the tan-
gent components of the stress vector, the normal component of displacement vector, and the normal
derivatives of the fluid pressure in the primary and secondary pores are specified on the boundary of
the half-space. In the case of problem (B), the tangent components of the displacement vector, the
limiting values of the normal component of the stress vector and the fluid pressure in primary and
secondary pores are specified. It should be noted that in solving these problems, the formulas for
representing the general solution of the system of homogeneous differential equations of the consoli-
dation theory play an important role. As in [8, 11, 15], in this work, a general solution of the system
of equations, containing four harmonic and one metaharmonic functions, is constructed. We look for
these functions in the form of certain potentials with unknown densities. Using the Fourier transform,
we obtain a system of algebraic equations with respect to the densities, and than, applying the inverse
Fourier transform, we construct explicit solutions of the problems.

2. Basic Differential Equations and Boundary Value Problems

Let Ω− be a half-space, Ω− := {x : x ∈ R3, x3 > 0 }, whose boundary ∂ Ω− is a plane ∂ Ω− =
{x : x ∈ R3, x3 = 0 }. By n = (0, 0, 1)⊤ we denote the unit normal vector to ∂ Ω−. The symbol (·)⊤
denotes transposition operation.
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The homogeneous system of partial differential equations of statics of the consolidation theory with
double porosity reads as [6, 17]:

µ∆u(x) + (λ+ µ) grad div u(x)− grad(β1p1(x) + β2p2(x)) = 0, (2.1)

(m1∆− κ) p1(x) + κ p2(x) = 0, (2.2)

κ p1(x) + (m2∆− κ) p2(x) = 0, (2.3)

where ∆ is the tree-dimensional Laplace operator, u = (u1, u2, u3)
⊤ is the displacement vector; p1 is

the fluid pressure within the primary pores, and p2 is the fluid pressure in the secondary pores; λ and
µ are the Lamé constants; βj , j = 1, 2, are measures of the change of porosities due to an applied
volumetric strain; mj = kj/µ

∗, j = 1, 2, where k1 and k2 are the permeabilities of the primary and
secondary systems of pores, µ∗ denotes the viscosity of the pore fluid; κ measures the transfer of fluid
from the secondary pores to the primary pores. The material parameter λ, µ,κ, βj , kj , j = 1, 2, and
µ∗ are the positive constants.

Definition 2.1. A vector-function U = (u, p1, p2)
⊤ is said to be regular in a domain Ω−, if U ∈

C2(Ω−) ∩ C1(Ω−) and satisfies at infinity the following conditions:

Uj(x) = O(|x|−1),
∂Uj

∂xi
= O(|x|−2), x3 > 0, |x| → ∞,

Uj(x) = o(1),
∂Uj

∂xi
= O(|x|−1), x3 = 0, |x| → ∞,

j = 1, 2, . . . , 5, i = 1, 2, 3; |x|2 = x2
1 + x2

2 + x2
3.

Here, we assume that Uj = uj , j = 1, 2, 3, U4 = p1, U5 = p2.

For the system of equations (2.1)–(2.3), we consider the following boundary value problems.

Problem (A). Find a regular vector-function U = (u, p1, p2)
⊤ satisfying the system of differential

equations (2.1)–(2.3) in Ω− and the boundary conditions

{[P (∂, n)U(z)]j}− = fj(z), j = 1, 2, {u3(z)}− = f3(z), (2.4){
∂p1(z)

∂n(z)

}−

= f4(z),

{
∂p2(z)

∂n(z)

}−

= f5(z), z = (z1, z2) ∈ ∂ Ω−, (2.5)

where P (∂, n)U is the stress vector having the form [17]

P (∂, n)U(x) = 2µ
∂u

∂n
+ λn div u+ µ[n× rotu]− n (β1 p1(x) + β2p2(x)),

∂

∂n
=

3∑
j=1

nj
∂

∂xj
;

n = (n1, n2, n3)
⊤ is a unit vector; the functions fj , j = 1, 2, . . . , 5, are given on the boundary ∂ Ω−,

fj ∈ C 1,δ(∂ Ω−), j = 1, 2, 4, 5, f3 ∈ C 0,δ(∂ Ω−), 0 < δ < 1, and satisfy at infinity the following decay
conditions:

|fj(z)| <
A

1 + |z|2
, j = 1, 2, 4, 5, |f3(z)| <

A

1 + |z|
, z ∈ ∂ Ω−, A = const > 0.

Problem (B). Find a regular vector-function U = (u, p1, p2)
⊤ satisfying the system of differential

equations (2.1)–(2.3) in Ω− and the boundary conditions

{uj(z)}− = Fj(z), j = 1, 2, {[P (∂, n)U(z)]3}− = F3(z), (2.6)

{p1(z)}− = F4(z), {p2(z)}− = F5(z), z ∈ ∂ Ω−, (2.7)

where the functions Fj , j = 1, 2, . . . , 5, are given on the boundary ∂ Ω−, Fj ∈ C 0,δ(∂ Ω−), j = 1, 2, 4, 5,
F3 ∈ C 1,δ(∂ Ω−), 0 < δ < 1, and satisfying at infinity the decay conditions:

|Fj(z)| <
A

1 + |z|
, j = 1, 2, 4, 5, |F3(z)| <

A

1 + |z|2
, z ∈ ∂ Ω−, A = const > 0.
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Here and in what follows, the symbol [a× b] denotes the cross product of two vectors in R3, while the

central dot denotes the real scalar product a · b =
∑3

k=1 akbk for a, b ∈ R3, the symbol {·}− denotes
the limiting value on the boundary ∂Ω− from Ω−,

{w(z)}− = lim
Ω−∋x→z∈∂ Ω−

w(x),

{
∂w(z)

∂xj

}−

= lim
Ω−∋x→z∈∂ Ω−

∂w(x)

∂xj
, j = 1, 2, 3.

The uniqueness of the solution to the above-formulated problems can be easily proved using Green’s
formula for the system of differential equations of the theory of consolidation [5].

3. Solution of Problem (A)

First, we prove the following assertion.

Theorem 3.1. A vector U = (u1, u2, u3, p1, p2)
⊤ ∈ C2(Ω−) is a general solution of the homogeneous

system (2.1)–(2.3) in a domain Ω− ⊂ R3 if and only if it is representable in the form

u(x) = gradΦ1(x) + αx3 gradΦ2(x)− e3 Φ2(x) + rot(e3 Φ3(x))

+ α1 grad(x3 Φ4(x)) + α2 gradΦ5(x), (3.1)

p1(x) =
∂Φ4(x)

∂x3
+m2Φ5(x), p2(x) =

∂Φ4(x)

∂x3
−m1Φ5(x), (3.2)

where

∆Φj(x) = 0, j = 1, 2, 3, 4, (∆− λ2
0)Φ5(x) = 0, λ2

0 =
m1 +m2

m1m2
κ,

α =
λ+ µ

λ+ 3µ
, α1 =

β1 + β2

2(λ+ 2µ)
, α2 =

1

λ2
0(λ+ 2µ)

(β1m2 − β2m1), e3 = (0, 0, 1)⊤.

Proof. Assume that a vector U = (u1, u2, u3, p1, p2)
⊤ ∈ C2(Ω−), is a solution of the homogeneous

system (2.1)–(2.3). Than from equations (2.2)–(2.3), we get

∆(∆− λ2
0)P (x) = 0, P = (p1, p2)

⊤,

which means that the functions pj(x), j = 1, 2, can be represented as a linear combination of harmonic
and metaharmonic functions

p1(x) = A
∂Φ4(x)

∂x3
+BΦ5(x), p2(x) = C

∂Φ4(x)

∂x3
+DΦ5(x).

Here, A,B,C,D are arbitrary constants. In particular, if A = C = 1, B = m2, and D = −m1, we
get equalities (3.1), which satisfy equations (2.2)–(2.3). Substituting the expessions of the functions
pj(x), j = 1, 2 from (3.2) into (2.1), we obtain

µ∆u(x) + (λ+ µ) grad div u(x) = grad

(
(β1 + β2)

∂Φ4(x)

∂x3
+ (β1m2 − β2m1))Φ5(x)

)
. (3.3)

Denote by u(0)(x) a particular solution of equation (3.3). Then a general solution of the homogeneous
equation (3.3) we can represent in the form u(x) = u′(x) + u(0)(x), where u′(x) is a general solution
of the homogeneous equation of the classical theory of elasticity for isotropic homogeneous bodies

µ∆u′(x) + (λ+ µ) grad div u′(x) = 0. (3.4)

The particular solution of equation (3.3) we can construct explicitly:

u(0)(x) = α1 grad
(
x3Φ4(x)

)
+ α2 gradΦ5(x).

As it is known, the general solution of equation (3.4) has the following form [8]:

u′(x) = gradΦ1(x) + αx3 gradΦ2(x)− e3 Φ2(x) + rot
(
e3 Φ3(x)

)
,

where ∆Φj(x) = 0, j = 1, 2, 3.

The sum of the vectors u(0)(x) and u′(x) gives us the vector u(x), which is defined by formula (3.1),
and this proves the first part of the theorem.
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The second part of the theorem can be proved by substituting the vector U = (u, p1, p2)
⊤ repre-

sented by (3.1)–(3.2) into the homogeneous system (2.1)–(2.3). □

According to formulas (3.1)–(3.2), the stress vector has the form

P (∂, n)U(x) = 2µ grad
∂Φ1(x)

∂x3
+ 2µαx3 grad

∂Φ2(x)

∂x3
− 2µα e3

∂Φ2(x)

∂x3
+ µ(α− 1) gradΦ2(x)

+ µ rot

(
e3

∂Φ3(x)

∂x3

)
+ 2µα1 x3 grad

∂Φ4(x)

∂x3
+ 2µα1 gradΦ4(x)

+ α (β1 + β2) e3
∂Φ4(x)

∂x3
+ 2µα2

(
grad

∂

∂x3
− λ2

0 e3

)
Φ5(x), x ∈ Ω−. (3.5)

We look for the functions Φj(x), j = 1, 2, 3, 4, 5 in the following form:

Φj(x) =
1

2π

∫
∂Ω−

e−i x̃·ξ−x3|ξ| gj(ξ) dξ1dξ2, j = 1, 2, 3, 4, (3.6)

Φ5(x) =
1

2π

∫
∂Ω−

e−i x̃·ξ−x3

√
|ξ|2+λ2

0 g5(ξ) dξ1dξ2,

x ∈ Ω−, x̃ = (x1, x2)
⊤, ξ = (ξ1, ξ2)

⊤, |ξ| =
√
ξ21 + ξ22 , (3.7)

where gj(ξ), j = 1, 2, 3, 4, 5 are sought for functions.
Substitute Φj(x), j = 1, 2, 3, 4, 5, into (3.1) and (3.2), to obtain

u(x) =
1

2π

∫
∂Ω−

[(
− e1 g1(ξ)− ( e3 + αx3 e1) g2(ξ) + e2 g3(ξ) + α1(e3 − x3 e1) g4(ξ)

)
e−x3|ξ|

− α2 e4 e
−x3

√
|ξ|2+λ2

0g5(ξ)
]
e−i x̃·ξ dξ1dξ2, x ∈ Ω−, (3.8)

where e1 = ( iξ1, iξ2, |ξ| )⊤, e2 = (−iξ2, iξ1, 0 )
⊤ e4 =

(
iξ1, iξ2,

√
|ξ|2 + λ2

0

)⊤
.

Similarly, we have (
p1(x)
p2(x)

)
=

1

2π

∫
∂Ω−

A(x, ξ) e−i x̃·ξ
(
g4(ξ)
g5(ξ)

)
dξ1dξ2, (3.9)

where

A11(x, ξ) = −|ξ|e−x3|ξ|, A12(x, ξ) = m2 e
−x3

√
|ξ|2+λ2

0 ,

A21(x, ξ) = −|ξ|e−x3|ξ|, A22(x, ξ) = −m1 e
−x3

√
|ξ|2+λ2

0 .

Analogously, substituting the function Φj(x), j = 1, 2, 3, 4, 5, defined by (3.6) and (3.7) into the
right-hand side of (3.5), we have

P (∂, n)U(x) =
1

2π

∫
∂Ω−

{[
2µ |ξ| e1 g1(ξ) +

(
2µαx3|ξ|e1 − µ(α− 1) e1 + 2µα |ξ| e3

)
g2(ξ)

− µ|ξ| e2 g3(ξ) +
(
2µα1 x3|ξ| e1 − 2µα1 e1 − α(β1 + β2)|ξ|e3

)
g4(ξ)

]
e−x3|ξ|

+ 2µα2

(√
|ξ|2 + λ2

0 e4 − λ2
0 e3

)
g5(ξ) e

−x3

√
|ξ|2+λ2

0

}
e−i x̃·ξ dξ1dξ2. (3.10)

The normal derivatives of the fluid pressure in the primary and the secondary pores p1 and p2 in Ω−

have the form
∂

∂x3

(
p1(x)
p2(x)

)
=

1

2π

∫
∂Ω−

∂

∂x3
A(x, ξ) e−i x̃·ξ

(
g4(ξ)
g5(ξ)

)
dξ1dξ2. (3.11)
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Taking into account the boundary conditions (2.4), (2.5) and passing to the limit in (3.10), (3.8),
(3.11) as Ω− ∋ x → z ∈ ∂ Ω−, and using the inverse Fourier transform, for the unknown functions
gj(ξ), j = 1, 2, . . . , 5, we obtain the following system of equations:

2µ
[
|ξ| g1(ξ)− α1 g4(ξ) + α2

√
|ξ|2 + λ2

0 g5(ξ)
]
iξj − µ |ξ|i (δ2jξ1 − δ1jξ2) g3(ξ)

− µ(α− 1) iξj g2(ξ) = f̂j(ξ), j = 1, 2, (3.12)

|ξ| g1(ξ) + g2(ξ)− α1 g4(ξ) + α2

√
|ξ|2 + λ2

0 g5(ξ) = −f̂3(ξ), (3.13)

|ξ|2 g4(ξ)−m2

√
|ξ|2 + λ2

0 g5(ξ) = f̂4(ξ), (3.14)

|ξ|2 g4(ξ) +m1

√
|ξ|2 + λ2

0 g5(ξ) = f̂5(ξ), ξ ∈ ∂Ω−, (3.15)

where

f̂j(ξ) =
1

2π

∫
∂Ω−

ei z·ξfj(z)dz1dz2, j = 1, 2, . . . , 5. (3.16)

Using the equalitis

ẽ1 · ẽ1 = −|ξ|2, ẽ1 · e1 = −|ξ|2, ẽ1 · e2 = 0, ẽ1 · e3 = 0, ẽ1 · e4 = −|ξ|2,

e1 · e1 = 0, e1 · e2 = 0, e1 · e3 = |ξ|, e1 · e4 = |ξ|
(√

|ξ|2 + λ2
0 − |ξ|

)
,

e2 · e2 = −|ξ|2, e2 · e3 = 0, e2 · e4 = 0, e3 · e4 =
√
|ξ|2 + λ2

0,

where ẽ1 = (iξ1, iξ2, 0)
⊤, from equations (3.12)–(3.15), we obtain

g1(ξ) =− 1

µ(α+ 1)

(
iξ1
|ξ|3

f̂1(ξ) +
iξ2
|ξ|3

f̂2(ξ)

)
+

1− α

1 + α

1

|ξ|
f̂3(ξ)

+

(
α1 m1

m1 +m2

1

|ξ|3
+

α2

m1 +m2

1

|ξ|

)
f̂4(ξ) +

(
α1 m2

m1 +m2

1

|ξ|3
− α2

m1 +m2

1

|ξ|

)
f̂5(ξ),

g2(ξ) =
1

µ(α+ 1)

(
iξ1
|ξ|2

f̂1(ξ) +
iξ2
|ξ|2

f̂2(ξ)

)
− 2

α+ 1
f̂3(ξ),

g3(ξ) =− iξ2
µ|ξ|3

f̂1(ξ) +
iξ1
µ|ξ|3

f̂2(ξ),

g4(ξ) =
m1

m1 +m2

1

|ξ|2
f̂4(ξ) +

m2

m1 +m2

1

|ξ|2
f̂5(ξ),

g5(ξ) =− 1

(m1 +m2)
√

|ξ|2 + λ2
0

f̂4(ξ) +
1

(m1 +m2)
√
|ξ|2 + λ2

0

f̂5(ξ).

Taking into account the above equalities in (3.8), we get

u(x) =
1

2π

∫
∂Ω−

{
N (1)(x, ξ) e−x3|ξ| +N (2)(ξ) e−x3

√
|ξ|2+λ2

0

}
e−ix̃·ξ f̂(ξ) dξ1dξ2, (3.17)

where

N (1)(x, ξ) =
[
N

(1)
kj (x, ξ)

]
3×5

, N (2)(ξ) =
[
N

(2)
kj (ξ)

]
3×5

, f̂ = (f̂1, f̂2, f̂3, f̂4, f̂5)
⊤,

N
(1)
11 (x, ξ) = − 1

µ|ξ|
+

α

µ(α+ 1)

ξ21
|ξ|3

+
αx3

µ(α+ 1)

ξ21
|ξ|2

,

N
(1)
21 (x, ξ) =

α

µ(α+ 1)

ξ1ξ2
|ξ|3

+
αx3

µ(α+ 1)

ξ1ξ2
|ξ|2

,

N
(1)
31 (x, ξ) = − αx3

µ(α+ 1)

iξ1
|ξ|

, N
(1)
12 (x, ξ) =

α

µ(α+ 1)

ξ1ξ2
|ξ|3

+
αx3

µ(α+ 1)

ξ1ξ2
|ξ|2

,
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N
(1)
22 (x, ξ) = − 1

µ

1

|ξ|
+

α

µ(α+ 1)

ξ22
|ξ|3

+
αx3

µ(α+ 1)

ξ22
|ξ|2

,

N
(1)
32 (x, ξ) = − α

µ(α+ 1)

iξ2
|ξ|

, N
(1)
13 (x, ξ) =

α− 1

α+ 1

iξ1
|ξ|

+
2αx3

α+ 1
iξ1,

N
(1)
23 (x, ξ) =

α− 1

α+ 1

iξ2
|ξ|

+
2αx3

α+ 1
iξ2, N

(1)
33 (x, ξ) = 1 +

2αx3

α+ 1
|ξ|,

N
(1)
14 (x, ξ) = − α2

m1 +m2

iξ1
|ξ|

− α1 m1

m1 +m2

iξ1
|ξ|3

− α1 m1 x3

m1 +m2

iξ1
|ξ|2

, (3.18)

N
(1)
24 (x, ξ) = − α2

m1 +m2

iξ2
|ξ|

− α1 m1

m1 +m2

iξ2
|ξ|3

− α1 m1 x3

m1 +m2

iξ2
|ξ|2

,

N
(1)
34 (x, ξ) = − α2

m1 +m2
− α1 m1 x3

m1 +m2

1

|ξ|
,

N
(1)
15 (x, ξ) =

α2

m1 +m2

iξ1
|ξ|

− α1 m2

m1 +m2

iξ1
|ξ|3

− α1 m2 x3

m1 +m2

iξ1
|ξ|2

,

N
(1)
25 (x, ξ) =

α2

m1 +m2

iξ2
|ξ|

− α1 m2

m1 +m2

iξ2
|ξ|3

− α1 m2 x3

m1 +m2

iξ2
|ξ|2

,

N
(1)
35 (x, ξ) =

α2

m1 +m2
− α1 m2 x3

m1 +m2

1

|ξ|
,

N
(2)
11 (ξ) = N

(2)
21 (ξ) = N

(2)
31 (ξ) = N

(2)
12 (ξ) = N

(2)
22 (ξ) = 0,

N
(2)
32 (ξ) = N

(2)
13 (ξ) = N

(2)
23 (ξ) = N

(2)
33 (ξ) = 0,

N
(2)
14 (ξ) =

α2

m1 +m2

iξ1√
|ξ|2 + λ2

0

, N
(2)
24 (ξ) =

α2

m1 +m2

iξ2√
|ξ|2 + λ2

0

,

N
(2)
34 (ξ) =

α2

m1 +m2
,

N
(2)
15 (ξ) = − α2

m1 +m2

iξ1√
|ξ|2 + λ2

0

, N
(2)
25 (ξ) = − α2

m1 +m2

iξ2√
|ξ|2 + λ2

0

,

N
(2)
35 (ξ) = − α2

m1 +m2
.

(3.19)

Further, we use the following equalities [14]:

1

2π

∫
∂Ω−

1

|ξ|
e−x3 |ξ|−i(x̃−y)·ξdξ1dξ2 =

1

r
,

1

2π

∫
∂Ω−

1

|ξ|2
e−x3 |ξ|−i(x̃−y)·ξdξ1dξ2 = −∂Φ(x, y)

∂x3
,

1

2π

∫
∂Ω−

iξk
|ξ|2

e−x3 |ξ|−i(x̃−y)·ξdξ1dξ2 =
∂2Φ(x, y)

∂xk∂x3
,

1

2π

∫
∂Ω−

iξk
|ξ|3

e−x3 |ξ|−i(x̃−y)·ξdξ1dξ2 = −∂Φ(x, y)

∂xk
,

1

2π

∫
∂Ω−

ξk ξj
|ξ|3

e−x3 |ξ|−i(x̃−y)·ξdξ1dξ2 = −∂2Φ(x, y)

∂xk ∂xj
,

1

2π

∫
∂Ω−

1√
|ξ|2 + λ2

0

e−x3

√
|ξ|2+λ2

0−i(x̃−y)·ξ dξ1dξ2 =
e−λ0 r

r
, k = 1, 2,

(3.20)
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where

r =
√
(x1 − y1)2 + (x2 − y2)2 + x2

3, Φ(x, y) = x3 ln(r + x3)− r,
∂2Φ(x, y)

∂x2
3

=
1

r
.

Substituting f̂j(ξ), j = 1, 2, . . . , 5, from (3.16) into (3.17) and employing equalities (3.18)–(3.20),
for the displacement vector in the case of the boundary value problem (A), we get the following
expression:

u(x) =
1

2π

∫
∂Ω−

K(x, y)f(y)dy1dy2, (3.21)

where

K(x, y) = [Kkj(x, y)]3×5 , f = (f1, f2, f3, f4, f5)
⊤,

K11(x, y) = − 1

µ r
+

α

µ(α+ 1)

(
x3

∂

∂x3
− 1

)∂2Φ(x, y)

∂x2
1

,

K12(x, y) = − α

µ(α+ 1)

(
x3

∂

∂x3
− 1

)∂2Φ(x, y)

∂x1∂x2
,

K13(x, y) =
∂

∂x1

1

r
+

2α

α+ 1

(
x3

∂

∂x3
− 1

) ∂

∂x1

1

r
,

K14(x, y) = − α2

m1 +m2

∂

∂x1

e−λ0 r − 1

r
− α1 m1

m1 +m2

(
x3

∂

∂x3
− 1

)∂Φ(x, y)
∂x1

,

K15(x, y) =
α2

m1 +m2

∂

∂x1

e−λ0 r − 1

r
− α1 m2

m1 +m2

(
x3

∂

∂x3
− 1

)∂Φ(x, y)
∂x1

,

K21(x, y) =
α

µ(α+ 1)

(
x3

∂

∂x3
− 1

)∂2Φ(x, y)

∂x1∂x2
,

K22(x, y) = − 1

µ r
− α

µ(α+ 1)

(
x3

∂

∂x3
− 1

)∂2Φ(x, y)

∂x2
2

,

K23(x, y) =
∂

∂x2

1

r
+

2α

α+ 1

(
x3

∂

∂x3
− 1

) ∂

∂x2

1

r
,

K24(x, y) = − α2

m1 +m2

∂

∂x2

e−λ0 r − 1

r
+

α1 m1

m1 +m2
(x3 + 1)

∂Φ(x, y)

∂x2
,

K25(x, y) =
α2

m1 +m2

∂

∂x2

e−λ0 r − 1

r
− α1 m2

m1 +m2

(
x3

∂

∂x3
− 1

)∂Φ(x, y)
∂x2

,

K31(x, y) =
α

µ(α+ 1)
x3

∂

∂x1

1

r
, K32(x, y) =

α

µ(α+ 1)
x3

∂

∂x2

1

r
,

K33(x, y) = − ∂

∂x3

1

r
+

2α

α+ 1
x3

∂2

∂x2
3

1

r
,

K34(x, y) = − α2

m1 +m2

∂

∂x3

e−λ0 r − 1

r
− α1 m1

m1 +m2

x3

r
,

K35(x, y) =
α2

m1 +m2

∂

∂x3

e−λ0 r − 1

r
− α1 m1

m1 +m2

x3

r
.

Note that

lim
Ω−∋ x→z ∈ ∂ Ω−

K3k(x, y) = 0, k = 1, 2, . . . , 5. (3.22)

Quite similarly, for the fluid pressure in the primary and secondary pores in the case of problem (A),
we get the following formulas:(

p1(x)
p2(x)

)
=

1

2π

∫
∂Ω−

L(x, y)

(
f4(y)
f5(y)

)
dy1dy2,
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where

L(x, y) = [Lkj(x, y)]2×2 ,

L11(x, y) = −1

r
− m2

m1 +m2

eλ0 r − 1

r
, L12(x, y) =

m2

m1 +m2

eλ0 r − 1

r
,

L21(x, y) =
m1

m1 +m2

eλ0 r − 1

r
, L22(x, y) = −1

r
− m2

m1 +m2

eλ0 r − 1

r
.

Therefore, the normal derivatives of the fluid pressure in the primary and the secondary pores p1 and
p2 in Ω− have the form

∂

∂x3

(
p1(x)
p2(x)

)
=

1

2π

∫
∂Ω−

∂

∂x3
L(x, y)

(
f4(y)
f5(y)

)
dy1dy2. (3.23)

Note that

lim
Ω−∋ x→z ∈ ∂ Ω−

∂

∂x3
L(x, y) = 0. (3.24)

The stress vector in the case of the boundary value problem (A), according to (3.10), has the form

P (∂, n)U(x) =
1

2π

∫
∂Ω−

M(x, y)f(y) dy1dy2, (3.25)

where

M(x, y) = [Mkj(x, y)]3×5 ,

M11(x, y) = − ∂

∂x3

1

r
+

2α

α+ 1
x3

∂2

∂x2
1

1

r
, M21(x, y) =

2α

α+ 1
x3

∂2

∂x1∂x2

1

r
,

M31(x, y) =
1− α

α+ 1

∂

∂x1

1

r
+

2α

α+ 1
x3

∂2

∂x1∂x3

1

r
, M12(x, y) =

2α

α+ 1
x3

∂2

∂x1∂x2

1

r
,

M22(x, y) = − ∂

∂x3

1

r
+

2α

α+ 1
x3

∂2

∂x2
2

1

r
, M32(x, y) =

1− α

α+ 1

∂

∂x2

1

r
+

2α

α+ 1
x3

∂2

∂x2∂x3

1

r
,

M13(x, y) =
4µα

α+ 1
x3

∂3

∂x1∂x2
3

1

r
, M23(x, y) =

4µα

α+ 1
x3

∂3

∂x2∂x2
3

1

r
,

M33(x, y) =
4µα

α+ 1

∂

∂x3

(
x3

∂2

∂x2
3

) 1

r
, M14(x, y) = − 2µα2

m1 +m2

∂2

∂x1∂x3

e−λ0 r − 1

r

− 2µα1 m1

m1 +m2
x3

∂

∂x1

1

r
, M24(x, y) = − 2µα2

m1 +m2

∂2

∂x2∂x3

e−λ0 r − 1

r
− 2µα1 m1

m1 +m2
x3

∂

∂x2

1

r
,

M34(x, y) = − 2µα2

m1 +m2

∂2

∂x2
3

e−λ0 r − 1

r
+

2µα2λ
2
0

m1 +m2

e−λ0 r

r
− 2µα1 m1

m1 +m2
x3

∂

∂x3

1

r

− α (β1 + β2)m1

m1 +m2

1

r
, M15(x, y) =

2µα2

m1 +m2

∂2

∂x1∂x3

e−λ0 r − 1

r
− 2µα1 m2

m1 +m2
x3

∂

∂x1

1

r
,

M25(x, y) =
2µα2

m1 +m2

∂2

∂x2∂x3

e−λ0 r − 1

r
− 2µα1 m2

m1 +m2
x3

∂

∂x2

1

r
,

M35(x, y) =
2µα2

m1 +m2

∂2

∂x2
3

e−λ0 r − 1

r
− 2µα2λ

2
0

m1 +m2

e−λ0 r

r
− 2µα1 m2

m1 +m2
x3

∂

∂x3

1

r

− α (β1 + β2)m2

m1 +m2

1

r
.

Note that

lim
Ω−∋ x→z ∈ ∂ Ω−

Mjk(x, y) = 0, j = 1, 2, k = 1, 2, . . . , 5. (3.26)
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Taking into account formulas (3.22), (3.24), and (3.26), we can show that the tangent components of
vector (3.25), the normal component of vector (3.21), and vector (3.23) satisfy the boundary conditions
of problem(A):

{[P (∂, n)U(x)]j}− = fj(z), j = 1, 2, {u3(z)}− = f3(z),{
∂p1(z)

∂x3

}−

= f4(z),

{
∂p2(z)

∂x3

}−

= f5(z), z ∈ ∂ Ω−.

4. Solution of Problem (B)

According to formulas (3.8), (3.9), and (3.10) in the case of BVP (B) we get the following system
of algebraic equations with respect to unknown functions gj(ξ), j = 1, 2, . . . , 5:

iξ1
(
g1(ξ) + α2g5(ξ)

)
+ iξ2 g3(ξ) = −F̂1(ξ),

iξ2
(
g1(ξ) + α2g5(ξ)

)
− iξ1 g3(ξ) = −F̂2(ξ),

2µ |ξ|2
(
g1(ξ) + α2g5(ξ)

)
+ µ(α+ 1)|ξ|g2(ξ)−

(
2µα1 + α(β1 + β2)

)
|ξ|g4(ξ) = F̂3(ξ),

− |ξ|g4(ξ) +m2g5(ξ) = F̂4(ξ),

− |ξ|g4(ξ)−m1g5(ξ) = F̂5(ξ).

The solution of the system is given by the formulas:

g1(ξ) =
iξ1
|ξ|2

F̂1(ξ) +
iξ2
|ξ|2

F̂2(ξ)−
α2

m1 +m2
F̂4(ξ) +

α2

m1 +m2
F̂5(ξ),

g2(ξ) = − 2

α+ 1

iξ1
|ξ|

F̂1(ξ)−
2

α+ 1

iξ2
|ξ|

F̂2(ξ) +
1

µ(α+ 1) |ξ|
F̂3(ξ)

− m1 γ

(m1 +m2) |ξ|
F̂4(ξ)−

m2 γ

(m1 +m2) |ξ|
F̂5(ξ),

g3(ξ) =
iξ2
|ξ|2

F̂1(ξ)−
iξ1
|ξ|2

F̂2(ξ),

g4(ξ) = − m1

(m1 +m2)|ξ|
F̂4(ξ)−

m2

(m1 +m2)|ξ|
F̂5(ξ),

g5(ξ) =
1

m1 +m2
F̂4(ξ)−

1

m1 +m2
F̂5(ξ), γ =

2µα1 + α(β1 + β2)

µ(α+ 1)
.

Substituting the functions gj(ξ), j = 1, 2, . . . , 5, into formula (3.8) and applying the inverse Fourier
transform, for the displacement vector, we obtain

u(x) =
1

2π

∫
∂Ω−

B(x, y)F (y)dy1dy2,

where

B(x, y) = [Bkj(x, y)]3×5 ; F = (F1, F2, F3, F4, F5)
⊤;

B11(x, y) = − ∂

∂x3

1

r
+

2α

α+ 1
x3

∂2

∂x2
1

1

r
, B21(x, y) =

2α

α+ 1
x3

∂2

∂x1∂x2

1

r
,

B31(x, y) =
α− 1

α+ 1

∂

∂x1

1

r
+

2α

α+ 1
x3

∂2

∂x1∂x3

1

r
, B12(x, y) =

2α

α+ 1
x3

∂2

∂x1∂x2

1

r
,

B22(x, y) = − ∂

∂x3

1

r
+

2α

α+ 1
x3

∂2

∂x2
2

1

r
, B32(x, y) =

α− 1

α+ 1

∂

∂x2

1

r
+

2α

α+ 1
x3

∂2

∂x2∂x3

1

r
,

B13(x, y) =
α

µ(α+ 1)
x3

∂

∂x1

1

r
, B23(x, y) =

α

µ(α+ 1)
x3

∂

∂x2

1

r
,

B33(x, y) = − 1

µ(α+ 1)

1

r
+

α

µ(α+ 1)
x3

∂

∂x3

1

r
,
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B14(x, y) = − α2

m1 +m2

∂2

∂x1∂x3

e−λ0 r − 1

r
− m1(α1 + αγ)

m1 +m2
x3

∂

∂x1

1

r
,

B24(x, y) = − α2

m1 +m2

∂2

∂x2∂x3

e−λ0 r − 1

r
− m1(α1 + αγ)

m1 +m2
x3

∂

∂x2

1

r
,

B34(x, y) = − α2

m1 +m2

∂2

∂x2
3

e−λ0 r − 1

r
− m1(α1 + αγ)

m1 +m2
x3

∂

∂x3

1

r
+

m1(γ − α1)

m1 +m2

1

r
,

B15(x, y) =
α2

m1 +m2

∂2

∂x1∂x3

e−λ0 r − 1

r
− m2(α1 + αγ)

m1 +m2
x3

∂

∂x1

1

r
,

B25(x, y) =
α2

m1 +m2

∂2

∂x2∂x3

e−λ0 r − 1

r
− m2(α1 + αγ)

m1 +m2
x3

∂

∂x2

1

r
,

B35(x, y) =
α2

m1 +m2

∂2

∂x2
3

e−λ0 r − 1

r
− m2(α1 + αγ)

m1 +m2
x3

∂

∂x3

1

r
+

m2(γ − α1)

m1 +m2

1

r
,

lim
Ω−∋ x→z ∈ ∂ Ω−

Bjk(x, y) = 0, j = 1, 2, k = 1, 2, . . . , 5.

For the pressure function, we get(
p1(x)
p2(x)

)
=

1

2π

∫
∂Ω−

C(x, y)

(
F4(y)
F5(y)

)
dy1dy2,

where

C(x, y) = [Ckj(x, y)]2×2 ,

C11(x, y) = − ∂

∂x3

1

r
− m2

m1 +m2

∂

∂x3

eλ0 r − 1

r
, C12(x, y) =

m2

m1 +m2

∂

∂x3

eλ0 r − 1

r
,

C21(x, y) =
m1

m1 +m2

∂

∂x3

eλ0 r − 1

r
, C22(x, y) = − ∂

∂x3

1

r
− m2

m1 +m2

∂

∂x3

eλ0 r − 1

r
.

Note that

lim
Ω−∋ x→z ∈ ∂ Ω−

C(x, y) = 0.

Using (3.10), for the stress vector, we have the following formula:

P (∂, n)U(x) =
1

2π

∫
∂Ω−

D(x, y)F (y)dy1dy2,

where

D(x, y) = [Dkj(x, y)]3×5 , (4.1)

D11(x, y) =− µ
∂2

∂x2
3

1

r
− µ(1− 3α)

α+ 1

∂2

∂x2
1

1

r
+

4µα

α+ 1
x3

∂3

∂x2
1∂x3

1

r
,

D21(x, y) =− µ(1− 3α)

α+ 1

∂2

∂x1∂x2

1

r
+

4µα

α+ 1
x3

∂3

∂x1∂x2∂x3

1

r
,

D31(x, y) =
4µα

α+ 1

∂3

∂x1∂x2
3

1

r
, D12(x, y) = −µ(1− 3α)

α+ 1

∂2

∂x1∂x2

1

r
+

4µα

α+ 1
x3

∂3

∂x1∂x2∂x3

1

r
,

D22(x, y) =− µ
∂2

∂x2
3

1

r
− µ(1− 3α)

α+ 1

∂2

∂x2
2

1

r
+

4µα

α+ 1
x3

∂3

∂x2
2∂x3

1

r
,

D32(x, y) =
4µα

α+ 1
x3

∂3

∂x2∂x2
3

1

r
, D13(x, y) =

α− 1

α+ 1

∂

∂x1

1

r
+

2α

α+ 1
x3

∂2

∂x1∂x3

1

r
,

D23(x, y) =
α− 1

α+ 1

∂

∂x2

1

r
+

2α

α+ 1
x3

∂2

∂x2∂x3

1

r
, D33(x, y) = − ∂

∂x3

1

r
+

2α

α+ 1
x3

∂2

∂x2
3

1

r
,

D14(x, y) =− 2µα2

m1 +m2

∂3

∂x1∂x2
3

e−λ0 r − 1

r
− 2µm1(α1 + αγ)

m1 +m2
x3

∂2

∂x1∂x3

1

r
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− µm1(2α1 + (α− 1)γ)

m1 +m2

∂

∂x1

1

r
, D24(x, y) = − 2µα2

m1 +m2

∂3

∂x2∂x2
3

e−λ0 r − 1

r

− 2µm1(α1 + αγ)

m1 +m2
x3

∂2

∂x2∂x3

1

r
− µm1(2α1 + (α− 1)γ)

m1 +m2

∂

∂x2

1

r
,

D34(x, y) =− 2µα2

m1 +m2

∂3

∂x3
3

e−λ0 r − 1

r
+

2µα2λ
2
0

m1 +m2

∂

∂x3

e−λ0 r

r
− 2µm1(α1 + αγ)

m1 +m2
x3

∂2

∂x2
3

1

r
,

D15(x, y) =
2µα2

m1 +m2

∂3

∂x1∂x2
3

e−λ0 r − 1

r
− 2µm2(α1 + αγ)

m1 +m2
x3

∂2

∂x1∂x3

1

r

− µm2(2α1 + (α− 1)γ)

m1 +m2

∂

∂x1

1

r
, D25(x, y) =

2µα2

m1 +m2

∂3

∂x2∂x2
3

e−λ0 r − 1

r

− 2µm2(α1 + αγ)

m1 +m2
x3

∂2

∂x2∂x3

1

r
− µm2(2α1 + (α− 1)γ)

m1 +m2

∂

∂x2

1

r
,

D35(x, y) =
2µα2

m1 +m2

∂3

∂x3
3

e−λ0 r − 1

r
− 2µα2λ

2
0

m1 +m2

∂

∂x3

e−λ0 r

r
− 2µm2(α1 + αγ)

m1 +m2
x3

∂2

∂x2
3

1

r
.

It can be shown that the elements of the third row of matrix (4.1) satisfy the following conditions:

lim
Ω−∋ x→z ∈ ∂ Ω−

D3k(x, y) = 0, k = 1, 2, . . . , 5.
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