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SOME BOUNDARY VALUE PROBLEMS OF THE THEORY OF
CONSOLIDATION WITH DOUBLE POROSITY

LEVAN GIORGASHVILI! AND SHOTA ZAZASHVILI?

Abstract. In this paper, the boundary value problems of statics of consolidation theory with double
porosity for a half-space are considered. On the boundary of the half-space, the limiting values of
normal component of the displacement vector, the tangent components of the stress vector, and
the normal derivatives of the fluid pressure in the primary and secondary pores, or the limiting
values of the normal component of the stress vector, the tangent components of the displacement
vector, and the fluid pressure in the primary and secondary pores are given. Using general formulas
for representing the solution of a system of differential equations of consolidation theory and the
Fourier transform, the solutions of the boundary value problems are constructed in explicit form in
quadratures.

1. INTRODUCTION

The physical and mathematical foundations of the consolidation theory with double porosity were
proposed in [6,12,17].

In [4], the two-dimensional version of the quasi-static Aifantis equation of the consolidation theory
with double porosity is consider and the uniqueness and existence of solutions of basic boundary value
problems are studied.

In [3], the first and second boundary value problems of the consolidation theory with double porosity
for the half-space are explicitly solved by using the potential method and the theory of integral
equations.

More detailed information on the theory of porous media and the results obtained in this direction
can be found in [1,2,7,9,10,13,16].

The present paper deals with two boundary value problems of statics of the consolidation theory
with double porosity for a half-space. In the case of problem (A), the limiting values of the tan-
gent components of the stress vector, the normal component of displacement vector, and the normal
derivatives of the fluid pressure in the primary and secondary pores are specified on the boundary of
the half-space. In the case of problem (B), the tangent components of the displacement vector, the
limiting values of the normal component of the stress vector and the fluid pressure in primary and
secondary pores are specified. It should be noted that in solving these problems, the formulas for
representing the general solution of the system of homogeneous differential equations of the consoli-
dation theory play an important role. As in [8,11,15], in this work, a general solution of the system
of equations, containing four harmonic and one metaharmonic functions, is constructed. We look for
these functions in the form of certain potentials with unknown densities. Using the Fourier transform,
we obtain a system of algebraic equations with respect to the densities, and than, applying the inverse
Fourier transform, we construct explicit solutions of the problems.

2. BASIC DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEMS

Let Q= be a half-space, Q= := {x : z € R?, 23 > 0}, whose boundary Q™ is a plane 9Q~ =
{z:2€R3 23=0}. By n=(0,0,1)" we denote the unit normal vector to dQ~. The symbol (-)T
denotes transposition operation.
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The homogeneous system of partial differential equations of statics of the consolidation theory with
double porosity reads as [6,17]:

pAu(x) + (A + p) grad divu(z) — grad(B1p1 (z) + Bape(z)) = 0, (2.1)
(m1A = 5) p1(x) + s pa(z) =0,
xp1(z) + (MmeA — 5) pa(z) =0,

where A is the tree-dimensional Laplace operator, u = (uy,us,u3) ' is the displacement vector; p; is
the fluid pressure within the primary pores, and py is the fluid pressure in the secondary pores; A and
i are the Lamé constants; §;, j = 1,2, are measures of the change of porosities due to an applied
volumetric strain; m; = k;/u*, j = 1,2, where ky and ko are the permeabilities of the primary and
secondary systems of pores, p* denotes the viscosity of the pore fluid; s measures the transfer of fluid
from the secondary pores to the primary pores. The material parameter A, i, 5¢, 85, k;, 7 = 1,2, and
p* are the positive constants.

Definition 2.1. A vector-function U = (u, py, p2)' is said to be regular in a domain Q~, if U €

C?(Q7) N CYQ~) and satisfies at infinity the following conditions:
oU;
8.131‘

Uj(@) = O(la|™),

oU;
83%‘
j=1,2,...,5, i=1,2,3; |z|* =23+ 23 + 23

= O(|x|_2), x3 >0, |z] — oo,

Uj(x)zo(l)a :O(‘xrl)v x3 =0, |$| — 00,

Here, we assume that U; = u;, j = 1,2,3, Uy = p1, Us = pa.
For the system of equations (2.1)—(2.3), we consider the following boundary value problems.
)T

Problem (A). Find a regular vector-function U = (u, p1, p2) ' satisfying the system of differential

equations (2.1)—(2.3) in 2~ and the boundary conditions
{[PO,nU2)];} = fi(2), 1=12, A{us(2)} = fs(2), (2.4)

{63};1((,:)) } = fa(2); {%];2((5)) } = f5(2), 2= (21,2) €097, (2.5)

where P(0,n)U is the stress vector having the form [17]

3
P@m)U(x) = 215" + Andivu+ plo x 1ot u] —n (B pr(x) + Bapale), = Znai
n = (n1,n2,n3)" is a unit vector; the functions fi, 3 =1,2,...,5, are given on the boundary 9™,

f; €CH(007), 1 =1,2,4,5, f3€ C%(0Q7), 0 < § < 1, and satisfy at infinity the following decay
conditions:

A
‘f](z)|<7 ]:132a4,57 |f3(2)‘

, z€0Q", A=const>0.
L4 [z[?

- A

1+ 2|’
Problem (B). Find a regular vector-function U = (u, p1, pg)—r satisfying the system of differential
equations (2.1)—(2.3) in 2~ and the boundary conditions

{u;(2)}” = Fj(2), 7=1,2, {[P(O,n)U(2)]3}" = F3(2), (2.6)
{r(2)} = Fulz), {p(2)} = Fs(z), 2€0Q7, (2.7)

where the functions F}, j = 1,2,...,5, are given on the boundary 0 Q~, Fj € C%(007),j=1,2,4,5,
F3€ C19(90Q7), 0 < d < 1, and satisfying at infinity the decay conditions:

A
‘FJ(Z)I<?|Z|, j:1,2,4,5, |F3(Z)‘<T|Z‘2, ze@Q_, A = const > 0.
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Here and in what follows, the symbol [a x b] denotes the cross product of two vectors in R?, while the
central dot denotes the real scalar product a - b = Zizl arby for a,b € R3, the symbol {-}~ denotes
the limiting value on the boundary 992~ from Q~,

ow(x)

_ . ow(z) | .
= 1 = — =1,2,3.
{w(=)} Q- 50-32€0 0 w(@), { oz ; } O-50-r2€0 0 z; j=123

The uniqueness of the solution to the above-formulated problems can be easily proved using Green’s
formula for the system of differential equations of the theory of consolidation [5].

3. SOLUTION OF PROBLEM (A)
First, we prove the following assertion.

Theorem 3.1. A vector U = (uy, ug, us, p1, p2) | € C2(Q7) is a general solution of the homogeneous
system (2.1)—(2.3) in a domain Q= C R® if and only if it is representable in the form

u(z) =grad ®1(x) + axg grad Po(z) — e3 Po(x) + rot(ez P3(x))

+ aq grad(zs P4(x)) + ag grad O5(z), (3.1)
0Py (x 0Dy (z
2@ =T (o), pala) = T2 (o), (32)
where
Ad;(x) =0, j=1,2,3,4, (A—2)bs(x) =0, \2="T2TT2

mimso

(ﬂlmQ - /Ble)v €3 = (0707 l)T

o — A+ p o — B1+ B2 _ 1
A+3u” T 20020 T A2(M+2p)

Proof. Assume that a vector U = (uy, us, us, p1, p2)| € C?(Q27), is a solution of the homogeneous
system (2.1)—(2.3). Than from equations (2.2)-(2.3), we get

A(A = N)P(x) =0, P=(p1,p2)',
which means that the functions p;(x), j = 1,2, can be represented as a linear combination of harmonic
and metaharmonic functions

o) = A 0D4(x)

a(gz(;) + B®s(z), pa(z) = CT&:;; + D®s5(z).

Here, A, B,C, D are arbitrary constants. In particular, if A= C =1, B = mg, and D = —m, we
get equalities (3.1), which satisfy equations (2.2)—(2.3). Substituting the expessions of the functions
pj(z), 7 =1,2 from (3.2) into (2.1), we obtain

pAu(z) + (A + p) grad div u(z) = grad ((ﬁl + 52)&%37(:) + (Bime — 52m1))<1>5(x)> . (3.3)

Denote by u(o)(x) a particular solution of equation (3.3). Then a general solution of the homogeneous
equation (3.3) we can represent in the form u(x) = u'(z) + u(® (), where u'(z) is a general solution
of the homogeneous equation of the classical theory of elasticity for isotropic homogeneous bodies

pAu' (x) + (XA + p) grad div v’ (z) = 0. (3.4)
The particular solution of equation (3.3) we can construct explicitly:
u®(z) = oy grad (z3P4(2)) + a2 grad @5 (z).
As it is known, the general solution of equation (3.4) has the following form [8]:
u'(z) = grad @1 (z) + avwz grad Pa(z) — e3 Po(x) + rot (e3 P3(z)),

where A®;(z) =0, j=1,2,3.
The sum of the vectors (9 (x) and /() gives us the vector u(z), which is defined by formula (3.1),
and this proves the first part of the theorem.
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The second part of the theorem can be proved by substituting the vector U = (u, py, p2)' repre-
sented by (3.1)—(3.2) into the homogeneous system (2.1)—(2.3).

O
According to formulas (3.1)—(3.2), the stress vector has the form
0P 0P oD
P(0,n)U(z) = 2ugrad 61(95) +2uaxs3 gradix) —2uae 2(2)
3

D25 3 Oy + p(a — 1) grad @o(z)

0P 0P
+ prot (63 (;;?) + 2 arp x3 grad a;(j) + 2paq grad 4 (x)

0P 0
+a(B1+ P2)es az;(;:) + 210 (grad Fr M 63> O5(x), z€N™.

(3.5)
We look for the functions ®,(x), j = 1,2,3,4,5 in the following form:
1 L
®j(r) = o / et TEaslel g () dEydEs, 5 =1,2,3,4, (3.6)

Q-

1 L

®5() = o / eI TETE VIS g5 (6) d6 1 déa,

T
Q-
r€Q7, T=(r12), £=(6.6)", [ =/&+&, (3.7)

where g¢;(£), j =1,2,3,4,5 are sought for functions.
Substitute ®,(x), j =1,2,3,4,5, into (3.1) and (3.2), to obtain
1 —x
u@) =5 [ [(=erai©) = (ea+-amaer) g(6) + eaga@) + anles = myer) ga(e) e
a0~
—agege "V |£|2+/\395(§)}e—i5-£ d§i1dés, © e, (3.8)
T
where €1 = (i§17i€27 |§| )T7 €2 = (_i£277;§170)—r €4 = (ighié_Za V ‘€|2 + )‘%)
Similarly, we have
p1(z) 1 / A —iT€ (94(§)>
= , d&dés, 3.9
() = 5 [ g (%) aade (39
o0~
where

A11(.’E,§) = _|§‘6_$3‘E‘7 Al?(xag) =ma €_I3\/ma
Az (2,8) =

—|glem ™l Agy(w,§) = —my eV TN,
Analogously, substituting the function ®;(z), j = 1,2,3,4,5, defined by (3.6) and (3.7) into the
right-hand side of (3.5), we have
1
POMUE) =5 | {[2nltle101(8) + (2namsltler — pla = er +2pale] es) ga(6)

o0~
— pléle2 g3(§) + (2ua1 z3léler — 2parer — aBr + B2)|¢]es )94(5)} e kel
+ 2 (\ JI€2 + A2 eq — A2 63) gs(€) e~ VIEP+N }e*iff de dés. (3.10)
The normal derivatives of the fluid pressure in the primary and the secondary pores p; and ps in Q7
have the form

s () = | o (1) e

95(8) (311
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Taking into account the boundary conditions (2.4), (2.5) and passing to the limit in (3.10), (3.8),
(3.11) as Q™ >z — z € 0O, and using the inverse Fourier transform, for the unknown functions
g;(&), j=1,2,...,5, we obtain the following system of equations:

20 |1€] 91(6) = a1 9a(©) + a2 \/IgJ? + N3 95(6) ] i65 — €l (Bg6a — 01,€2) g (€)

— e —1)i€; g2(€) = f5(6), j = 1,2, (3.12)
1€] g1.(E) + g2(€) — a1 ga(€) + az 1/ €2 + A2 g5(€) = —F3(£), (3.13)
€% ga(€) — ma 1/ I€]2 + X3 g5 (&) = Fa(€), (3.14)
€% ga(€) +ma (JIE]2 + N3 g5(6) = f5(6), € €09, (3.15)
where
76 = S / e #fi(2)dzdz, j=1,2,....5 (3.16)
J T on J 1a422, J=1,4,...,0. .
o0~

Using the equalitis

é-e1=—[¢P €rrer=—lf €-ea=0, € -e3=0, €1-eq=—|¢

er-e1=0, e-ea=0, e1-e3=1I, 61'64:|§|(\/|§|2+)\g*|§|)7
ez e =—¢%, ez e3=0, ex-eq=0, e3-eq =/ [€]% + A3,

where &1 = (i&1,i&2,0) T, from equations (3.12)(3.15), we obtain

S S (S WSS B lzal=
(O =~ (EE RO+ 2RO + 1o g RO

+< o 1wy 1)15(5”(041"121_@21)]?5@,

my + mo @ my + mo |€| my+mg |3 my+ma ||

_ 1 S i 2 7
5l =t (RO + 270 - 2 R
_ & o & 2
__om 12 _m2 12
g4(§) _ml +m2 |£‘2 f4(£) + my +m2 |£|2 f5(§)7

1 ~ 1
95(§) = — fa(§) +
(ma +ma2) V2 + A3 (m1 +ma)V/IE + A5
Taking into account the above equalities in (3.8), we get
1 2 2 g "
uw) =5 [ {NO@ e N e VIR o fleagag,  (37)

T or
o0~

(6.

where

-~ ~ o~ N A~

CNO©=[ND© L TR B BT

3X5

NO(@,6) = [NG @8],

Sy 8 em &
Wl e+ D) TP T ula+1) e
(1) _ o &b ars  &&

M08 = a0 i F ata 1) 1P
azxy i

61 (1) _
/,L(Ol-’-l) |£|a N12 (xvg) -

N (@,6) =

a  §i& azry €16
pla+1) [EF  pla+1) €27

N (@, &) = —
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11 a & a3 &

(1)
N 08 =00 T a1l et 1) I

—1 z§1 2a:103
N (@,6) = ——2 282 N (g ) i€,
WO = g 0= g e
— 1 2ax 2ax
N (@) = Ty Ty e N @8 =1+ e
NO(gg) = 2 @ _am 16 agma s @, 3.18
(0.8 mi+ma [§] mi+me [§3 ma+ma [€]? (3.18)
N(l) _ Q2 2 army o aymyxy i€
24 (8 = e T i rm € ot ma €
(1)( )= a  oaampxz 1
Cmytme my +ma €]
N (e, ap 1§ aimg i€ apmoag ﬁ’
i3 (7:0) = mi+my €] mit+ma [EF my+my [
N _ ay i army i€ aypmaws 16
2 (8 = s Tl ks €y s JEP
(1) Qo aymazz 1
N. z, = - T
35 ( f) mi + mo mi1 + mo |§|
2 2 2 2
NP(©) = NP (&) = NP () = N (€) = N33 (&) =0,
2 2 2 2
N33 (€) = N3 (€) = N33 () = N33 () = 0,
N® (e - 2 i1 CN®(e) = Qo o )
11 (&) it R 21 (§) it IEE T8
N@ gy 2 (3.19)
D=2
N@ ey — K1 @y 02 i
15 (§) w1t ma R £ 25 (€) it IER T2
N2 2
Plo=-—2_
Further, we use the following equalities [14]:
1 1 -
il = o—z3lé—i(@—y)-€ i
o ‘§|6 d§1d£2
90
1 1 o tel—i(mea. _0®(z,y)
il _= o3 [E—i(@-y)€
o ik d&1d&s = 0
0
L[ 8k aslel-iG-v)e 02 (,y)
- T i(T— déde, =
27 \§|26 b1t Ox0xg ’
90
3.20
i ng 7w3\£\ (T—y) §d£1d£2 _ _8@($,y) ( )
2r ) €@ Oy,
90
L[ &S g —iG-v) € __9*o(xy)
27 / I€]3 derdey = Oz Oz’
a0
7)\0’)“

1 1 T2
- = e mVIEPHA @Y€ ge de, =
2”3 Q/ Y 6
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where

2® 1
=V = e 0 = ain ) TR =L
Substituting fj(f), j=1,2,...,5, from (3.16) into (3.17) and employing equalities (3.18)—(3.20),
for the displacement vector in the case of the boundary value problem (A), we get the following
expression:

1
uw) = 5= [ Ko f@)dndy (3.21)
o9~
where
K(xay):[Kkj(xay)]3><5, f:(f17f27f37f4af5)—r7
1 e 0 0?®(z,y)
K =—— 4+ —— (23— - 1) ——5*
11(1‘,:{/) wr +M(OZ+1) (x?’(?:cg ) al’% B}
o 0 0?®(x,y)
K = O (S 1)L
12(y) ula+1) (x?’ Oxs ) 01101y
01 20 0 0 1
K = —_— _— _— _—
13(2,y) orir a+1 (mg O0xs ) ox1r’
o H e M1 o my 0 0P (x,y)
K = — _— — —_— — 1 ——
14(:1:)?/) mi1 + mo 8%1 r mi + mo (aj 8.%3 ) 8.%1 ’
o 0 e Mo 1 a1 ma 0 0D(x,y)
K = — — )=
15(,9) my + ma 011 r my + mo (;z: Oxs ) ox,
e 0 0?0 (z,y)
K. =% (L 1)L Y
21(2,y) pla+1) (”33(%3 ) 0210z ’
1 a 0 0?®(x,y)
K = —-—— — - _— 1 _—
22(,y) ur  pla+1) (xg Oxs ) oz
01 2c¢ 0 0 1
Ke) =5+ st (Mg~ Vomr
Qo 9 e —1 a1 my 0®(z,y)
K. _— 2 1) Y
24(.%‘,2./) my + mo ax2 r my + mo ($3+ ) ax2 )
o O e Mr—1 a1 Mo 0 0®(z,y)
K = — — — 1) ==
2(2,Y) mq + ma Oxs r my + ma (x?’ Ox3 ) Oxy '
« 0 1 « o 1
K. =2 22 K =% 42
31(7,y) i+ 1) z3 oy 1 32(7, y) i+ 1) T3 Ozy 1
01 2a¢ 9% 1
K. T
33(-’1'3,3/) 8x3r+a+1x3 axgr’
Qo § e Mo —1 army T3
K = — - _ L3
34(,y) My + my Oz r Myt my T
9 O e Mo _1 armi T3
K - 7 _ 3
3(7,y) mi + mo Ox3 r mi+mo T
Note that
lim Ksp(z,y) =0, k=1,2,...,5. (3.22)

Q= 2>zx—z€0Q~
Quite similarly, for the fluid pressure in the primary and secondary pores in the case of problem (A),
we get the following formulas:

() = f s ()



406 L. GIORGASHVILI AND S. ZAZASHVILI

where

L(z,y) = [Lkj(2,9)]5ys

1 mo et — 1 mo et — 1
Laq(x = _ Lia(x =
n(zy) T myi+mo r 12(%,9) my + mo r
Xor Aor
mq e -1 1 me € -1
21($,y) C+ s r ) 22(557?)/) r C+ ma r

Therefore, the normal derivatives of the fluid pressure in the primary and the secondary pores p; and
p2 in 2~ have the form

0 (ml)y _ L [ 0 f1(y)
Oz <p2(x)) L _/ 8£3L(x,y) <f5(y)) dy1dys- (3.23)
0~
Note that
. 0
Q*Bzgrge a0~ T@L(x’y) =0 (3.24)

The stress vector in the case of the boundary value problem (A), according to (3.10), has the form

1
POMUG) = 5 [ M) () dyndie. (3.25)
o0~
where
M($7y) = [Mkj(xvy)]3><57
My ) 0 1 2 0% 1 Mo ) 2 0? 1
Y =—— -+ —— 23— — T,Y) = —— Tz ——— —
sy Oxsr a+1 38x% r’ Y= 3 9x,0xy 1
l—a 0 1 200 9% 1 200 0% 1
M = _ _ _ M = — _
51(@,y) a+10x, r+a+1$38x18m3 r’ 12(2,9) a—i—lx?’amlaxg r’
0 1 2a 0% 1 l—a 0 1 2a 0% 1
M. S A 7 T L A
2(7,9) Oxs r a+1m38x§ r’ 2(2,9) a+10zy r a+1$38128x3 r’
4por 0% 1 dpa o 1
M S A Y _ Mo O 2
13(2,9) a+1 3 axlaxg r’ 23(7, ) a+1 3 5‘z28x§ r’
dpa 0 9?4\ 1 2ua 0% e Mor 1
Mss(z,y) = (w95 )~ Mule,y) = -
33(2,y) a+10x; 3 ox%) r 14(2,9) mq + me 0x1023 T
_2ua1m1xi1 M. (.’E y):_ 2ua o2 e—)\or_l_QMOélmlxil
mi 4+ mo 35‘x1 r’ 244 mq + mq Ox90x3 r mi + mo 38x2 r’
20 9?2 e~Mor 1 2uaa A2 e T 2400 m 0 1
M3y (2, y) = — [ a3 + 2% - Lag— =
my + mg 03 r mi+ms T mi1+mo "“Ox3 T
Ca(BitB)ma 1 Mis(z,y) = 2pcn 0? €_A°7'—1_2M041m2xi1
mi+me T 1545 my 4+ ma 0x10z3 r mi+me 20z, T
Mas(,1)) = 200 0? e”‘“—l_?ualmgxil
251% my + me 0x2013 r mi 4+ mo 383@2 r’
Qg 0% e Mo 1 2;10@)% e T 2oy my o 1
M35 (,y) = 7 - - T35 —
mi + mgy Oz r mi+me T my+mo “Ox3 T
_a(frtBe)me 1
mi+me T
Note that

li M; = =1,2, k=1,2,...,5. 2
Q*Ba:i)glEBQ* jk(xay) 07 J y 4y ) 4y 75 (3 6)
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Taking into account formulas (3.22), (3.24), and (3.26), we can show that the tangent components of
vector (3.25), the normal component of vector (3.21), and vector (3.23) satisfy the boundary conditions
of problem(A):

[POMU@LY™ = £(2), =12, {m(2)}" = (2.
(MO iy (BN o

4. SOLUTION OF PROBLEM (B)

According to formulas (3.8), (3.9), and (3.10) in the case of BVP (B) we get the following system

of algebraic equations with respect to unknown functions g;(¢), j =1,2,...,5:
i&1 (91(8) + a2g5(8)) + ik 93(5) = —F1(¢),
i& (91(€) + a2g5(£)) — i&1 g3(§) = ~F(¢),
20 [€1* (91 (&) + a2g5(8)) + M(Of +1)[]g2(€) = (2par + a By + B2)) €] ga(€) = Fs(8),
— |€]ga(€) + mags(€) = Fa(9),
— [€l94(&) — mugs(§) = F( )-

The solution of the system is given by the formulas:

0l = L RO + (BT - —2_F9+ —2_Fe)

(&) =~ e PO~ g T B+ e )
Gl PO — e B

ga(6) = |£§| Fi(©) - |§| (),

94(€) —(mfimm Fi(€) - m F5(9),

5O = o PO~ o Fale), = P AR

Substituting the functions g;(§), j = 1,2,...,5, into formula (3.8) and applying the inverse Fourier
transform, for the displacement vector, we obtain

u() = = / Bz, y)F (y)dy:dy,
oN—

2T

where

B(.’L’,y):[Bk](fE7y>]3X5, F:(F17F27F37F4aF5)T;

B (z,y) = 323 71, + jjl 6821 7o Balny) = offlxsagj;@i

B (2,y) = %%% + az_i_alwzs(,);?;xgi, Bia(z,y) = 0[24_0619636;?;:271,7
322(55,9)_—;1))714‘#042_*_041%3;;%:, B32($ay)_z_7_1a(‘;i+a2_’_alx38;j;wgi,
Bas(,y) = — 1 1 @ 01

7_1_ €T -,
wa+1)r  pla+1) SOmg v
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Qo 9?2 e —1  my(ag +av) 0 1
B14(:E,y) = - - T3
mi +mo Ox10x3 T mi + mo 83:1 r’
9 et —1 d 1
Boa(z,y) = ——2 z _ mulon + o) T3
my + mo Or20x3 r mi + mo 8:02 r’
2 g=dor _ 1 1 —ay) 1
Bsy(z,y) = — = 8726 *ml(alJﬂW)x i, 77711(7 o) -
mi + mg Oz3 r my + mso oxsr mi+mg 7T
Bis(ay) = o 9? e_’\”—l_mg(al—l—ory)x 0 1
15T Y mi +mo 021023 r my+me  COx T
Bas(2,y) = o 9? e’)‘”fl_mg(alJrory)x 0 1
B\ Y) = my + ma Ox90x3 r mi+ma  COzyr’
Bas (a1, )) = Qi 8726_’\0T—1_m2(a1+0m)x 0 1 mg(’y—al)l
354 my + mg O3 r mi+me  COxsr mi+me T
li Bin(z,y) =0, j=1,2 k=12...,5.
Q-3001€00- i+ (@) J
For the pressure function, we get
4 (y)
C(x dy1dys,
() =5 [ cton (B2 dnase
o0~
where
C<xay) = [ij(may)]QXQa
0 1 mo d eMr—1 mo H eror —
C ) = %5 - — a_ ) C ) = a.
n(zy) Oxs r  mq+ mso dxs r 12(%,9) my + me Oxs r
my o eMr—1 0 1 mo 0 e —1
C = — C = - _ —_ .
2(@,y) my + mo Ox3 r ’ 22(2,y) Ors r mq+mo Oxs r
Note that
li C(z,y) =0.
Q*amengleaaf (@:y)
Using (3.10), for the stress vector, we have the following formula:
P(9,n) / D(x,y)F(y)dy1dys,
6(2*
where
D(l’,y) = [ij(x,y)]3><
9?1 pu(l-3a) 921  4dpa 2 1
D = — _— —_—
n(@y) “ax?,,r a+1 8x%r+a+1x38x%8x3r’
D (xy):_u(l—?)a) 02 1_’_4,uam o3 1
A at+1 Or0rar  a+1 20r,0v90z371
dpo 0% 1 w(l—3a) 0% 1 4ua 3 1
D - S D —_— - -
51(@,y) a+1 0z,0z3r’ 12(2,9) a+1 Oxi0xar + a+1 s 0x10x20z3 1’
9?1 pu(l-3a) 021 4dpa 2 1
D =y - — _— _—
22(2,y) M@x%r a+1 8x%r+a+lx38x§8m3 r’
dpa 2 1 a—1 01 200 0% 1
D = _— D = _— _— _—
52(2,y) a—i—lx?’axgamgr’ 13(2,y) a+10xr +a+1I36x16x3 r’
a—1 0 1 20 8% 1 01 20 0% 1
D = e S A ) BN
23(7,Y) a+181‘27“+a+1x38x28x3r’ 33(2,y) = 8x3r+a+1x3ax§r’
Dua(,y) = — 200 0% e Morm—1 ~ 2pma (a1 + ay) 0% 1

3 -
my + mo 3x18z§ r my -+ mo 0x10x3 T
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Cpmi (200 + (@ —1)y) 9 1 24z 93 e Mor—1

my + mso Oxy 1’ Dau(z,y) = Mg+ mo Ox90x2 r
~ 2pma (o + o) . 0? 1 pmi2ar +(a—1)y) 0 1
m1 + ma 3 0w90xs T my + mo Oxa 1’
ooy e P g 0N o ban) 0 1
’ my +mg O3 r mi +mg Oz T my + mao ozdr’
Dys(e.y) = 24100 9% e 1 _ 2pma (o +ay) , H? 1
’ my 4+ mo Ox1023 r my + mae 0x10xs 1
pme(201 +(a—1)y) 0 1 D  2p0n 0% e Mor 1
B my + ma Oxy r’ 25(2,y) = my + ma Ox2023 r
_ 2pma (a1 + ay) . 0? 1 pmeag +(a—1)y) 0 1
mi 4+ mo 38x28m3 r mi + mo Oxa 1’
2uag 0% e — 1 2uapd} 9 e 2umag(ag +ay) 9% 1
Do)~ DL el D RS
my + my Oz3 r mi+mo Oxs 71 my + mso ox3r

can be shown that the elements of the third row of matrix (4.1) satisfy the following conditions:

lim Dsi(z,y) =0, k=1,2,...,5.
Q= >z—>2€900Q~
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