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TOPOLOGICAL PHASES IN 2D TIGHT-BINDING MODEL ON A RIBBON

MERAB ELIASHVILI AND GEORGE TSITSISHVILI∗

Abstract. We analyze the formation of edge and bulk states on a lattice ribbon in the framework

of a tight-binding model. We show that three different phases may develop. These are genuine edge
states, genuine bulk states and the phase where the bulk and edge states coexist.

1. Introduction

The main imprint of topological order in two-dimensional electron systems is the occurrence of edge
states [2]. The physics of edge states has become the subject of intense studies due to the progress in
fabrication of low-dimensional electron structures where the phases of matter are described in terms
of topological concepts rather than in term of symmetries [3]. The common picture for studying such
systems is based on tight-binding models (e.g., [1]) of various geometric configurations with and/or
without boundaries. In this paper, we consider a tight-binding model of free electrons living on a two-
dimensional lattice ribbon. Electron delocalization is characterized by four nearest neighbor hopping
parameters. The simplified version of this model has been studied in [4] where the eigenvalue equation
is reduced to a three-term recurrence relation by turning off one of the four hopping parameters. In
that case, the occurrence of edge and bulk states has been described in the exact analytic form in
terms of the Chebyshev polynomials. In the present account, we keep all four parameters leading to a
five-term recurrence relation and resulting in the possibility of three different phases: 1) simultaneous
occurrence of two edge states with different length scales; 2) simultaneous occurrence of two bulk
states with different oscillation lengths; and 3) coexistence of one edge and one bulk state.

2. The Model

We study the tight-binding model on a ribbon shown in Figure 1.
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The corresponding tight-binding Hamiltonian appears as

H = t↑
∑
m

N∑
n=1

[
c†◦(n,m)c•(n,m) + h.c.

]
+ t↓

∑
m

N∑
n=1

[
c†◦(n,m− 1)c•(n,m) + h.c.

]
+ t

∑
m

N∑
n=2

[
c†◦(n− 1,m− 1)c•(n,m) + h.c.

]
+
∑
m

N−1∑
n=1

[
c†◦(n+ 1,m)c•(n,m) + h.c.

]
(2.1)

describing the hoppings of electrons between the nearest neighbouring sites. Hopping parameter in
the last term is scaled to one, while the rest of the parameters are denoted by t↑, t↓, t. Performing the
Fourier transform (µ = •, ◦)

cµ(n,m) =
1√
2π

∮
e+ikmcµn(k)dk (2.2)

and introducing the notation Cµ(k) =
(
cµ1(k), . . . , cµN (k)

)
T , we rewrite (2.1) in the following form:

H =

∮ C†
•, C

†
◦

0 T †

T 0

C•
C◦

dk, (2.3)

where

T = t↑ + t↓e
+ik + te+ikβ† + β (2.4a)

β =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0


. (2.4b)

The occurrence of edge and bulk states can be described in terms of the eigenstates of the one-
particle Hamiltonian standing in the integrand of (2.3). Therefore we study the eigenvalue problem0 T †

T 0

ψ•
ψ◦

 = E
ψ•
ψ◦

 . (2.5)

We search for the solutions to (2.5) in the form ψµ = Gϕµ, where G = diag
(
e−(i/2)k, . . . , e−N(i/2)k

)
.

Using Gβ†G† = e+(i/2)kβ† and GβG† = e−(i/2)kβ, we arrive at(t↑e−(i/2)k + t↓e+(i/2)k + β + tβ†)ϕ• = Ee−(i/2)kϕ◦,

(t↑e+(i/2)k + t↓e−(i/2)k + β† + tβ)ϕ◦ = Ee+(i/2)kϕ•.
(2.6)

Eliminating ϕ0, we obtain Ω•ϕ• = ωϕ•, where Ω• is an N ×N penta-diagonal matrix (if eliminating
ϕ•, one obtains Ω◦ϕ◦ = ωϕ◦, where Ω◦ leads to the same eigenvalue problem)

Ω• =



−t2 w̄ t 0 · · · 0 0 0 0
w 0 w̄ t · · · 0 0 0 0
t w 0 w̄ · · · 0 0 0 0
0 t w 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 0 w̄ t 0
0 0 0 0 · · · w 0 w̄ t
0 0 0 0 · · · t w 0 w̄
0 0 0 0 · · · 0 t w −1


(2.7)

with
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w = (1 + t)u+ i(1− t)v, (2.8a)

u = (t↑ + t↓) cos(k/2), (2.8b)

v = (t↑ − t↓) sin(k/2), (2.8c)

ω = E2 − u2 − v2 − 1− t2. (2.8d)

Writing out Ω•ϕ• = ωϕ• in the component form, we obtain

tϕ3 + w̄ϕ2 − (ω + t2)ϕ1 = 0, (2.9a)

tϕ4 + w̄ϕ3 − ωϕ2 + wϕ1 = 0, (2.9b)

tϕn+2 + w̄ϕn+1 − ωϕn + wϕn−1 + tϕn−2 = 0, 3 ⩽ n ⩽ N − 2, (2.9c)

w̄ϕN − ωϕN−1 + wϕN−2 + tϕN−3 = 0, (2.9d)

− (ω + 1)ϕN + wϕN−1 + tϕN−2 = 0. (2.9e)

We regard this system as the recurrence (2.9c) for general n with the rest four equations serving as the
initial conditions. Searching for the solution to (2.9c), as ϕn = zn, we come to the quartic equation

tz4 + w̄z3 − ωz2 + wz + t = 0. (2.10)

So, the general solution to (2.9c) appears as

ϕn = A1z
n
1 +A2z

n
2 +A3z

n
3 +A4z

n
4 , (2.11)

where z1,2,3,4 are the four (complex) roots of (2.10), and the constants A1,2,3,4 have to be fixed by the
initial conditions.

If z is the root of (2.10), then 1/z̄ is the root, as well. Besides, z1z2z3z4 = 1 as it follows from
(2.10). Therefore we may have the following three cases for the set of the roots

{z} =
{
r1e

+iα, r2e
−iα, (1/r1)e

+iα, (1/r2)e
−iα

}
, (2.12a)

{z} =
{
r1e

+iα, e−iα+iα2 , (1/r1)e
+iα, e−iα−iα2

}
, (2.12b)

{z} =
{
e+i(α+α1), e−i(α−α2), e+i(α−α1), e−i(α+α2)

}
, (2.12c)

where |r1,2| < 1.
In the first case we have two edge states with the length scales r1,2, i.e., the factors (r1,2)

n in (2.11)
are localized at the left edge (n = 0), while (1/r1,2)

n are localized at the right edge (n = N). In the
second case, we have one edge state set by r1 and one bulk state set by e±iα2 oscillating with respect
to n (ϕn ∼ e±inα2). In the third case, we have two bulk states set by e+iα1 and e+iα2 .

The main question we address is formulated as follows: which of the above three phases occurs
depending on the input parameters (t↑, t↓, t, k). A comprehensive analysis of this problem is technically
complicated. Therefore we present the case of v = 0 as a demonstrative example of how the three
phases (2.12) may occur for different settings.

3. The Case of v = 0

This case occurs either for t↑ = t↓ or for k = 0. We have

u =

{
2t↑ cos(k/2) for t↑ = t↓

t↑ + t↓ for k = 0
(3.1)

and the equation (2.10) breaks up into two quadratic equations

z +
1

z
= −1 + t

2t
u+

1

2t

√
(u2 − 4t)(1− t)2 + 4tE2, (3.2a)

z +
1

z
= −1 + t

2t
u− 1

2t

√
(u2 − 4t)(1− t)2 + 4tE2, (3.2b)

where (3.2a) and (3.2b) produce two solutions each for z.
For (u2 − 4t)(1− t)2 + 4tE2 < 0, the right-hand sides of (3.2) are complex, hence none of the four

roots can be located on a unit circle (otherwise the left-hand sides are real), implying the occurrence
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of two edge states (2.12a). The roots are all complex and we have labelled this phase by Ec in the
table below with E denoting “edge” and the subscript “c” indicating that the roots are complex.

For (u2− 4t)(1− t)2+4tE2 > 0, the right-hand sides of (3.2) are real, hence z+ z−1 is real, as well.
If z + z−1 < −2, then z is real negative. For −2 < z + z−1 < 2, we have z = eiα. For z + z−1 > 2,
the value of z is real positive. Therefore (3.2a) and (3.2b) each give the corresponding three options
which we label as (❶,❷,❸) and (①,②,③) respectively. Thus we have

(3.2a) ⇒


❶ z1,2 < 0 ⇒ −(1 + t)u+

√
(u2 − 4t)(1− t)2 + 4tE2 < −4t

❷ z1,2 = eiγ1,2 ⇒ −4t < −(1 + t)u+
√
(u2 − 4t)(1− t)2 + 4tE2 < +4t

❸ z1,2 > 0 ⇒ +4t < −(1 + t)u+
√
(u2 − 4t)(1− t)2 + 4tE2

 (3.3a)

(3.2b) ⇒


① z3,4 < 0 ⇒ −(1 + t)u−

√
(u2 − 4t)(1− t)2 + 4tE2 < −4t

② z3,4 = eiγ3,4 ⇒ −4t < −(1 + t)u−
√
(u2 − 4t)(1− t)2 + 4tE2 < +4t

③ z3,4 > 0 ⇒ +4t < −(1 + t)u−
√
(u2 − 4t)(1− t)2 + 4tE2,

 (3.3b)

implying 9 different combinations. The option ❶ is incompatible with ② as well as with ③, while ❷
is incompatible with ③. The rest six combinations are itemized in the following table

Combinations

¶¬

·¬

·­

¸¬

¸­

¸®

Restrictions on u and E2

1
4 t

−1(4t− u2)(1− t)2 < E2 < (1 + t− u)2

(1 + t− u)2 < E2 < (1 + t+ u)2

1
4 t

−1(4t− u2)(1− t)2 < E2 < (1 + t− |u|)2

(1 + t+ |u|)2 < E2

(1 + t+ u)2 < E2 < (1 + t− u)2
1
4 t

−1(4t− u2)(1− t)2 < E2 < (1 + t+ u)2

u > 4t(1 + t)−1

u > 0

|u| < 4t(1 + t)−1

−∞ < u < +∞
u < 0

u < −4t(1 + t)−1

Label

E

BE

B

E±

BE

E

In the case of ❶①, the four roots are all real negative numbers. Then the factors of (−1)n arising
from zn in (2.11) become irrelevant, since they can be factorized out as an overall phase. Therefore
the case of ❶① is equivalent to the one of ❸③, where the roots are all real positive. These correspond
to (2.12a) implying two edge states. We have denoted such a phase as E.

In the case of ❷①, two roots are phases (e±iα) and the rest two are real negative. Provided the two
roots are phases, the negativity/positivity of the rest two roots does not make any sense. Therefore
this is equivalent to the case of ❸②. We denote these phases as BE implying the mixture of edge and
bulk states (2.12b).

In the case of ❷②, all roots are phases meaning genuine bulk state (2.12c). We denote it as B.
In the case of ❸①, two roots are real positive, while the rest two are real negative implying the case

of two edge states (2.12a) which, however, differs from E, since the factor of (−1)n occurring only in
one pair of roots cannot be factorized out. Therefore we denote it as E±.

Collecting all the described cases, we construct the phase diagramme where the areas corresponding
to different phases are delimited by bold lines.

In summary, we have studied a tight-binding model on a square lattice ribbon with hopping
anisotropy (t↑, t↓, t). It is shown that the three different phases may develop: 1) simultaneous oc-
currence of two edge states with different length scales, 2) simultaneous occurrence of two bulk states
with different oscillation lengths; and 3) coexistence of one edge and one bulk state. Simultaneous
occurrence of two edge states may appear in three different versions denoted by Ec, E, E±. In the
first version (Ec), the roots z1,2,3,4 are complex causing the eigenstate (2.11) to be complex as well
and therefore carrying an electric current. In the rest two versions (E and E±), the roots are all
real, hence the eigenstate (2.11) is real thus implying no electric current. The detailed study of the
current-carrying states (version Ec) will be discussed elsewhere.
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−1− t −2
√
t

−4t
1 + t

0
4t

1 + t 2
√
t 1 + t
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