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DIVERGENT FOURIER SERIES WITH RESPECT TO BIORTHONORMAL
SYSTEMS IN FUNCTION SPACES NEAR L!

NIKOLOZ DEVDARIANI

Abstract. In this paper, we generalize Bochkarev’s theorem, which states that for any uniformly
bounded biorthonormal system ®, there exists a Lebesgue integrable function whose Fourier series in
the system & diverges on a set of positive measure. We find the class of variable exponent Lebesgue
spaces LP()(]0,1]™), where 1 < p(z) < oo almost everywhere on [0, 1]”, for which the aforementioned
Bochkarev’s theorem holds.

1. INTRODUCTION

After Kolmogorov [15,16] presented examples of functions in L' with almost everywhere and every-
where divergent trigonometric Fourier series, many authors have attempted to generalize these results
by providing examples of functions with almost everywhere divergent trigonometric Fourier series
from narrower Orlicz spaces. The most significant result in this direction is due to Konyagin [17], who
achieved the same result for the space Ly(L), provided that ¢ satisfies ¢(t) = o(+/Int/Inlnt).

Similar problems with respect to other orthonormal systems have been considered by various au-
thors. Omne such problem was posed by Alexits (see [1, pp. 326], [2, pp. 287]) and Olevskii [24],
concerning an analogue of Kolmogorov’s example of a divergent trigonometric Fourier series for gen-
eral uniformly bounded orthonormal systems.

The answer to this question was provided by Bochkarev [5]. He proved that for any given uniformly
bounded orthonormal system, there exists a function in L' whose Fourier series with respect to this
system diverges at every point of some set of positive measure. However, it turns out that a complete
analogue of Kolmogorov’s example for uniformly bounded orthonormal systems does not exist in
general. This conclusion is based on Kazaryan’s [13] construction of a complete orthonormal system
that is uniformly bounded and for which every Fourier series converges on some set of positive measure.

Later, Bochkarev [6] extended his aforementioned result to uniformly bounded biorthonormal sys-
tems defined on a separable metric space with a Borel regular outer measure.

The authors of the paper [10] provide a different perspective on the problem of almost everywhere
divergence of trigonometric Fourier series in the subspaces of L!, specifically in terms of variable
Lebesgue spaces LP(). They show that L' = ULP('), where the union is taken over all measurable
functions p(-) such that p(z) > 1 almost everywhere. This implies that any function whose Fourier se-
ries diverges almost everywhere must belong to some variable exponent space LP() with 1 < p(z) < oo
almost everywhere.

In [10], the authors construct a variable exponent space LP(), with 1 < p(z) < oo almost every-
where, that shares with L the property that the space of continuous functions C' is a closed linear
subspace within it. Moreover, Kolmogorov’s function, which has a Fourier series that diverges almost
everywhere, belongs to the L () space, where p'(+) is the Holder conjugate of p(-). Additional re-
sults concerning the convergence of Fourier series for functions from these spaces can be found in [18]
and [19]. Various other results related to these spaces are discussed in [7] and [9].

Later, in [20], the authors provided an analogue of Bochkarev’s theorem for uniformly bounded
orthonormal systems within a certain class of variable exponent Lebesgue spaces. They found the
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class of variable exponent Lebesgue spaces LP(), with 1 < p(z) < oo almost everywhere, for which
Bochkarev’s theorem holds.

For readers who wish to gain a deeper understanding of these subjects, we kindly recommend
exploring the following works related to the research topic [4,25].

In the first of the aforementioned works, the almost everywhere divergence effect is established for
any countable orthonormal system of characters of a compact group. In the second, the divergence
effect is demonstrated everywhere for a wide class of character systems, including all Vilenkin systems.

Our plan for this paper is to characterize the class of variable exponent Lebesgue spaces for which
an analogue of Bochkarev’s theorem on the bounded biorthonormal systems is valid. To achieve this,
we introduce some definitions and notations.

Definition 1.1. Let (X, S, ) be a measurable space, where S is a o-algebra of p-measurable sets
and u(X) =1, and let {f,, gn} be a biorthonormal system (see [14, Ch. VIII, §1]) such that f,, g, €
L% (X, ). For any function F € LY(X, ), the system {f,, gn} generates two Fourier series:

Z(Fafn)gn(x) and Z(Fagn)fn('r)a

(these series are said to be conjugate).
Bochkarev [6] proved the following

Theorem 1.2. Let X be a separable metric space with a Borel reqular outer measure p* such that
w*(X) = 1. Then for any biorthonormal system {fn,gn} satisfying the conditions

[folloo s lgnlloe < A, n €N (1.1)
and
ILm fr(x)du(z) =0 and ILm /gn(x)du(a:) =0 (1.2)
E E

for any measurable set E C X. Then there exist the functions Fy, Fy € LY(X, ) and a set E C X
such that
w(E) >0
and for all x € E, we have
N

N@@;((Fl,gn)fn(m) + (F27 .fn)gn(x)) = 0.

This theorem is valid, in particular, for the space R™, n € N and any finite Borel regular outer
measure p*. Thus, the following assertion holds (see [6, Theorem 5]).

Theorem 1.3. If u is the classical Lebesque measure on R™ and E is a measurable set with p(E) < oo,
then for any uniformly bounded biorthonormal system {fn,gn} on E satisfying condition (1.2), there
exists a Fourier series divergent on a set of positive measure.

In this paper, we are going to extend this Theorem 1.3 to the case of variable Lebesgue spaces.

Throughout the paper, let the symbol |E| define the Lebesgue measure of the measurable set E.
Also, 2 :=[0; 1], and for a given p(-), the Holder conjugate p'(+) is defined by p'(x) := p(z)/(p(z)—1).

Let (X, S, 1) be a nontrivial measure space. Given a real-valued measurable function f on X, we
define its decreasing permutation by

f (s)=inf{a>0: p({xe X :|f(x)] >a}) <s}, s>0.

Let Py, be a set of all functions p : X — [1;00) such that
. @) ()

1 >
oy In(e/t)

Let W (p) denote the set of all functions equimeasurable with p(-). Below, we will find the conditions
on the function p(+) for which there exists p(-) € W (p) such that the space C(2) of continuous functions

0. (1.3)
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is a closed subspace in Lﬁ(')(Q). In this paper, we generalize the result by Kopaliani, Samashvili and
Zviadadze obtained in [20], from the one-variable case to the several-variables case. Moreover, we
extend this generalization to uniformly bounded biorthonormal systems.

Let now state the result.

Theorem 1.4. For any biorthonormal system ® := {fn, gn tnen on Q, satisfying conditions (1.1) and
(1.2), and for any p(-) € P, there exists a measure preserving transformation w : Q — Q such that in
the corresponding Lp(w('))(Q) space there exist the functions Fy, Fy and a set E C § such that |E| > 0,
and for all x € E, we have

N

T ST (Frg0) fale) + (o, fu)ga(2)) = oo.

2. DEFINITIONS AND AUXILIARY RESULTS

Let M denote the space of all equivalence classes of the Lebesgue measurable real-valued functions
on €2, equipped with the topology of convergence in measure, relative to each set of finite measure.

Definition 2.1. A Banach subspace X of M is referred to as a Banach function space (BFS) on Q
if the following conditions hold:

1) The norm || f||x is defined for every measurable function f, and f € X if and only if || f||x < occ.
Also, ||fl|x = 0 if and only if f = 0 almost everywhere.

2) [l flllx = I7llx for all f€ X,

3) If 0 < f < g almost everywhere, then || f||x < |lg]|x-

4) If 0 < f, T f almost everywhere, then ||f,.||x 1T || f]|x-

5) If E is a measurable subset of Q with finite measure (|E| < c0), then |xg|x < oo, where xg is
the characteristic function of .

6) For every measurable set F with finite measure (|E| < 00), there exists a constant Cg < 0o such
that [, f(t)dt < Cg| flx.

Now, let us introduce various subspaces of a BFS X:

e A function f in X has an absolutely continuous norm in X if ||f - xg, ||x — 0 whenever E,
is a sequence of measurable subsets of £ such that x g, | 0 almost everywhere. The set of all
such functions is denoted by X 4;

e Xp is the closure of the set of all bounded functions in X;

e A function f € X has a continuous norm in X if for every x € Q, lim. o4 || fXB(,)llx =0,
where B(z,¢) is a ball centered at x with radius . The set of all such functions is denoted
by Xc.

The relationship between the concepts of X4 and Xp is given in [3]. Generally, the interaction
between the subspaces X 4, Xp, and X¢ may be intricate. For instance, there exists a BFS X in
which 0 = X4 € X¢ = X (for example, see [23]).

Let P through the whole paper denote the family of all measurable functions p : @ — [1;+00).
When p(-) € P, we denote by LP()(Q) the set of all measurable functions f on © such that for some

A >0, o
/ (|f()\x)> dx < oo.
Q

This set becomes a BFS when equipped with the norm

p(x)
|f||p(-)=inf{>\>0: /('f(;)'> dxgl}.
Q

The variable exponent Lebesgue spaces Lp(')(Q) and the corresponding variable exponent Sobolev
spaces W*P() are of significant interest due to their applications in fluid dynamics, partial differential
equations with non-standard growth conditions, calculus of variations, image processing, etc. (see [7,9]
for more details).
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For the specific case of a particular BFS X = Lp(')(Q), the relationship between this space and its
subspaces, namely, X4, Xp, and X¢, has been explored in [12]. We will now present some of the key
findings from that paper.

Proposition 2.2 (Edmunds, Lang, Nekvinda). Let p(-) € P and set X = LP)(Q). Then
(i) Xa = Xc;
(ii) Xp = X if and only if p(-) € L™ (Q);
(iil) X4 = Xp if and only if
1
/cp*(t)dt < oo, forall ¢>1.
0

If ¢ is an increasing convex function v : [0; +00) — [0; +00) such that ¥(0) = 0,

Jim (0(@)/2) =0, and T ((2)/z) = +oc,

then the Orlicz space Ly is defined as the set of all f € M(Q) for which:

||f||Lw:inf{>\>O : /w(w)\t)')dtgl}<+oo.

Q

Recall that a nonnegative function ¢ defined on [0;+00) is called quasiconcave if it satisfies the
following conditions: ¢(0) = 0, ¢(¢) is increasing, and ¢(t)/t is decreasing.
The Marcinkiewicz space M, is defined as the set of all f € M(£2) for which:

t

1 *
I1£11a1,, Z%ggmo/f (w)du < +o0.

It is worth noting that (M,)a = (M,)B, and (M,)a can be characterized as the set of functions
f € M (see [22]) that satisfy:

. 1 / ) _
t1—1>%1+<p(t)0/f (u)du = 0. (2.1)

Additionally, when (t) = €' — 1 and ¢(t) = tIn(e/t), the corresponding Orlicz and Marcinkiewicz
spaces coincide (see [3]), and we denote them as e® and Mj,. Furthermore, it can be observed that
(see [11, Corollary 3.4.28]):

Al =11l = sup L0 22)

<t<1 In(e/t)’

The following result was initially established in [10] for the single-variable case, and our goal now

is to extend it to the multi-variable scenario. Since the proof of this statement can be easily derived
from the one provided in [10], we will omit it here.

Theorem 2.3. Let X be a BFS on Q. The space C(Q) of continuous functions is a closed linear
subspace of X if and only if there exists a positive constant ¢ such that for every rectangle I C 2, we
have

e <|lxzllx-

Theorem 2.4. For the existence of p(-) € W(p) for which C(Q) is a closed subspace in LPC)(Q), it
is necessary and sufficient that

. p(t)

im sup

t—0+ ln(e/t)

The forthcoming proof closely follows the framework presented in [21]. However, since we encounter
some differences when extending the proof from the one-dimensional case to multiple dimensions, we
have chosen to provide the complete proof for the sake of clarity.

(2.3)
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Necessity. Since the space C'(Q) is closed in LP()(Q), by Theorem 2.3, there exists positive constant
d such that d < ||xr||p(.) for all rectangles I. This implies that X4 # Xp. Then by Proposition 2.2,
there exists ¢ > 1 such that

1
/cp*(t)dt = +o00. (2.4)
0

Consider two cases:
Case 1) p*(-) € el. Since (2.4) holds, the function p*(-) does not have absolute continuous norm,
that is p*(-) € e*\ (e*) ,. Then by (2.2), we get p*(-) € Mi,\(Mn)a and by (2.1), it is obvious that

t
lim su w)du > 0,
o4 tin(e/t) e/t / P
0

finally, using ones more (2.2), from the last estimation, we get (2.3).
Case 2) p*(+) ¢ el'. Then by (2.2)

sup p*(t)
o<t<1 In(e/t)

)

consequently, (2.3) holds. The necessity part of the theorem proved.
Sufficiency. Let (2.3) hold. For all ¢ € [0;1], we define the function h(t) = min{p*(¢),In(e/t)}.
Obviously, in this case,
h(t
lim sup ®) >0,
t—0+ In(e/t)

then there exists a sequence t; | 0 such that

M >d, keN,
In(e/ty)
for some positive number d. Now, we choose a subsequence (ty,) such that 2t < t,, for all
natural n. Since t; | 0, we can always choose such a subsequence, so without loss of generality, we
can assume that the sequence (tx) is already such.
Let the given function f be defined by

f(t) =d- ln(e/tk), te (tk+1;tk]7 ke N and f(t) =1, te (tl; ].]

It is clear that h(t) > f(t) for all t € [0;1]. Now, choosing a positive number ¢ such that ¢ > /4, we

get
1
/ MOt =
0

1
/h(t / gt > /Cd~1n(e/tk)dt
0

Indeed,

trt1
" e d-lnc
= (tg — tpy) - ednetnte/te) 5 5‘“ : (t) — 400, k — +oo.
k
Choose a decreasing sequence {ay }ren such that
ar
MOt =1.

Ak41
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By (3.1), such a sequence always can be chosen. Now, let Ay = [agt1;ax], and {rp : k € N} be a
countable dense set in [0;1]. Define by, = —ag41 + ri. Let now Ay := Ap + by = [rg; 7k + ar — Qgt1)
and gx(t) = h(t) - xa,(t), k € N. Define the functions pg(¢) by the induction:

p1(t) = g1(t — b1)xj0.) (1),

X
Pr(t) = (Pr—1(O)(1 = X2, (t = bk)) + gr(t = bx)) - Xou) (1), k> 1.
It is clear that h(t) is decreasing and, therefore, pi(t) < prp41(t ), for all t € [0;1] and all k£ € N.

Also, for all k£ € N, we have
1 1
/pk(t)dt < /h(t)dt
0 0

Define now the function ¢(-) by

In(e/t)dt (2.5)

O\H

q(t) = lim pg(t), t€[0;1].

k—+oo

By (2.5), we find that the function ¢(-) is almost everywhere finite. By the construction, it is clear

that ¢*(t) < h(t) < p*(t). Now, by the well-known result (see [3, Theorem 7.5]), there exists the

measure-preserving transformation w : [0;1] — [0;1] such that ¢(¢) = ¢*(w(t)). Define now p(-) by

p(t) = p*(w(t)), ¢t € [0;1]. Since ¢*(t) < p*(t), it is obvious that ¢*(w(t)) < p*(w(t)), then for all
€ (0;1), we get the following inequality:

q(t) < p(2). (2.6)
Now, we construct an exponential function p :  — [1,00), for which the space of continuous func-
tions will be a closed subspace inside the corresponding variable exponent Lebesgue space. To do
this, we define a measure-preserving mapping p : Q — [0;1], by the following rule: Suppose that
x = (x1,...,2,) € Q and for every ¢ € {1,...,n} index, the representation of the corresponding
coordinates follows as: z; = 0.a;1a;2a;3 . .., then

p(l‘) = 0.0,110,21 . Ap10a12092 ... Ap2 ... .

This mapping, mentioned above, is well-known from the literature. Thus, we can define the function
p(z) = p(p(x)). To complete the proof, we have to verify that the space of continuous functions is a
closed subspace in the corresponding space Lﬁ(')(ﬂ). For this purpose, we show that there exists a
positive number K such that for every rectangle I € , we have ||x;||; > K. Consider any number
¢ > 1, since, in view of the fact that the set of binary rational numbers is dense everywhere in the
set of all real numbers, for this reason we can find an n-dimensional binary rectangle I¢ for the given
n-dimensional rectangle such that I? C I. Then, by the properties of the function p, ¢ > 1, and

by (2.6), we get
/cp(x)da:>/cp(x)dx* / At > / A0t
(

Icl (Ici)/
where (I?)’ denotes one-dimensional binary interval taken from [0; 1], for which p(I¢) = (I?)’. By the
construction of g(-), there exists a number kg such that Ay, C (I?)". Then we get

/ A0y > / AOG > / Pro®) gy

(I4)y’ Ay Agg
Tko Tlhg —tho+1
- / o (1= dho) it = / P dro) Xy, (t=dko) gy
Ak Tkq
tk’(}

= / IOdr > 1.

trg+1
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Now, by the definition of the norm in the variable Lebesgue space and by the above estimations,
we get that for all n-dimensional rectangles I C €2, we have ||x7||z > 1/c. By Theorem 2.3, we get
the proof of the sufficiency of Theorem 2.4.

3. PROOF OF THEOREM 1.4

Before we proceed to constructing the functions whose Fourier series diverge over the sets of positive
measure, we establish foundational principles. These principles will serve as the basis for the further
construction of the corresponding functions. It is important to note that we will not explicitly prove the
divergence of the Fourier series at this point. Instead, our focus will be on constructing these functions,
followed by outlining a method for applying Bochkarev’s theorem to establish their divergence.

Let us start with constructing the p(-). For all ¢ € (0;1), we define the function h(t) := min{(p")*(¢),
In(e/t)}. By (1.3), it is obvious that

lims ht)
11 su
o4 In(e/t)

Then there exists a sequence t; | 0 such that

M >a, keN
In(e/ty) = ’

for some positive number a.
It is obvious that we can choose a subsequence ¢, such that 2¢;
number ¢ such that ¢ > e'/¢, then we get

wi1 < tk,. Let us choose a positive

1 239
/ch(t)dt > / cvIn(e/ten) gy
0 Y
n a-lnc
— (tkn - tkn+1) . ea-ln cIn(e/ty,,) > % . <te) — +OO, n — +o0. (3]_)
kn

According to (3.1) and the fact that ¢, | 0, we can choose the subsequence (ty, ) from (t,) such
that

tknm
Wt > 1, meN.

tk"7n+1
So, without loss of generality, we can assume that the sequence (ty) is already such that

tr
1 <aln(e/ty), 2tpi1 <tr, / AOdt >1, keN. (3.2)

tht1

Let {l; : k € N} be a fixed dense set on (0;1) (below we will choose I by using biorthonormal
system ®). Let rg, k € N be the following numeration of the table:
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L —— 1y ls — Uy

yavave
//
S

b la I3 la

It is clear that for each [, there exists the sequence (rg, ) such that I = rg,, m € N. Now, let
Ay := [tg41;tx], where t are the points possessing property (3.2). Define dy := —tg41 + 7 and
Ey = Ap +d = [rg; e + te — tey1]. Let gx(t) := h(t) - xa,(t), & € N. We introduce the functions
qr(t) by the induction:
q1(t) = g1(t — b1)xpo;1 (1),
@k (t) = [gr—1(t)(1 — xa, (t — dk)) + g (t — di)] - X011 (¢), &> 1.

It is clear that h(t) is decreasing and therefore gy (t) < qr+1(¢), for all ¢ € [0;1] and all £ € N. Also,

for all k € N, we have
1 1 1
/qk(t)dt < /h(t)dt < /ln(e/t)dt:2. (3.3)
0 0 0

Define now a function

G(t) = lim g¢g(t), te€][0;1].

k—+4o0
It is clear that

4(t) > qx(t) > aln(e/ty), t € Ey, k€ N. (3.4)

By (3.3), we get that the function ¢(-) is a.e. finite. According to the construction, it is clear that
G*(t) < h(t) < (p')*(t). Tt follows from the well-known result (see [3, Theorem 7.5]) that there exists
a measure-preserving transformation ¢ : [0;1] — [0;1] such that §(t) = ¢*(¢(¢)). Now, define ¢(-) by
q(t) = (" )*(¢(t)). Since §*(t) < (p)*(t), it is obvious that ¢*({(t)) < (p’)*(¢(¢)), then for all t € (0;1),
we get the following inequality:

q(t) < q(t). (3-5)

Now, as in the proof of (2.4), we can construct an exponential function § : Q — [1,00), for which
the space of continuous functions will be a closed subspace inside its corresponding variable exponent
Lebesgue space. Then,we get

/CQ(f)dxz/ch(I)dx: /Cf?(t)dtz /c(i(t)dt,
I

Jb (Ib)' (Ib)’
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where (I°)’ denotes one-dimensional dyadic interval taken from [0; 1], for which p(I°) = (I°)’. By the
construction of ¢(-), there exists the number ko such that Ey, C (I°)’. Then we get

/Cé(t)dtz /C‘j(t)dtz /quo(t)dt

1y By Eiy
P Hkg —tho+1
_ / (k0 (i) gy — / Plt=dig) X, (=di) gy
B, Tho
trg
= / ch(t)dtzl.
thg+1

Now, by the definition of the norm in a variable Lebesgue space and by the above estimations, we
get that for all n-dimensional rectangles I C €2, we have ||x||g.y > 1/c. By the [8, Theorem 4], we
find that the space of continuous functions is a closed subspace in L7(Q).

Consider the function p(-) which is the Holder conjugate of g(-). It is clear that p(-) is equmeasurable
to p(+). Since { is a finite nonatomic measure space and p is measurable, [3, Theorem 7.5] guarantees
that there exists a measure-preserving transformation wy : Q@ — [0;1] such that p(z) = p*(wi(z))
for almost every = € . Similarly, applying the theorem to p, there exists a measure-preserving
transformation wy :  — [0; 1] such that p(z) = p*(w2(x)) for almost every = € Q. Since any measure-
preserving transformation between non-atomic finite measure spaces is a measure space isomorphism,

. os . . . -1 . . .
wo is also a bijective(up to null sets), therefore its inverse wy is also measure-preserving. Now, if

we define w = (:J; owi, we get that p(x) = p(w(x)) for almost every = € Q. Hence, there exists a
measure-preserving transformation w :  — € such that p(z) = p(w(x)).

Let My := p~1(Ey), k € N and C > In(e/t;) - (aln(e/t;) — 1)1, then by (3.4) and (3.5), it is
obvious that

C
l<px) <1+ ——o\ x€ M.
pr) < 1+ In(e/tx) * b
Since p is measure-preserving p(My) = Ey and |Eg| < ti, then by the last estimation, we obtain
IXaz 50y =< 1Ek| = th — tregr < tg. (3.6)
Indeed, using [7, Theorem 2.45], we obtain

1
S0l < las o) < 2bxan g g =t

Finally, by (3.6), we have

oo
= E Qe X M;y,

(o)
Z Ak X My,
k=1 () k=1

Recall that for each k, there exists a sequence of natural numbers (k,,), m € N such that I = r,,
m € N. Thus, we can rewrite (3.7) in the following form:

oo o0 oo oo
E : § Ak X My, E E Qe X M,

k=1m=1 k=1m=1

(3.7)

1

(3.8)

p(-) 1

Next, we should select {l; € N} set by using the system ® in such a way that after definition
corresponding functions F; and F» and using (3.8) we will obtain the proof of a theorem. Our
construction of the functions Fy and F» is analogous to the one from the work of Bochkarev [6].

For all § € Q, consider a sequence of the binary cubes @, (0) C  such that 0 € Q,,(6), Vm € N

and diameter tends to zero. By the Lebesgue differentiation theorem, for any f € L'(Q2), we have

o -
Jim o [ p@ds = 5(0)
Q(0)
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for almost every 6 € (.
Let G?N denote the set of points #N) = (9§2N), e 7H(QN)) € 02N for which

. 1 2N)

Iim —m——— / gn(ﬂﬂ)dl’ :gn(ﬂ( _ )

m—o0 N 2
=% | Qun (657

Qm (ngNi)

and )
. p(2N)
Tr}gfloom / fu(@)dz = fn(03;7),
m\¥2q m(9<2N))
forallm € Nand i € {1,...,N}. It is clear that |G2Y| = 1. Consider the following set ©' := {GEQN) :
ie{l,...,2N}, N € N}. If this set is not dense in 2, we examine a countable set © such that © C ©
and © is dense in ). Let Iy, £ € N be some numeration of ©.

For all fixed N € N and fixed 0§2N), 1 € {l,...,2N}, there exists the sequence 7‘ N) , k € N such
that HEQN) = rgN), k € N. Then by El-(ZN) we define the binary interval such that p(9§2N)) € EZ-(2N)
and \EZ-(2N)| <t;, —ti;+1 and let Mi(2N) = p’l(Ez@N)).

For a sequence {N,, } of positive integers and a decreasing sequence {e,, } of positive numbers (which

we will specify below), we set

Now, for the proof of the existence of a set E C Q such that |E| > 0 and for all € E, we have
N

Np XM(QN)(.’L‘) > e, Nn XMZ(fN)(x)

F>
TN 2N
7MY nm1 Vo [ My,

We simply need to replicate Bochkarev’s proof step by step without making any changes. Conse-
quently, the detailed proof will not be provided in this context.

Finally, by the definitions of the functions F;, Fy, and (3.8), we have Fi, F, € LP()(Q). As men-
tioned earlier, p is equimeasurable to p, implying the existence of a measure-preserving transformation
w : Q — Qsuch that p(z) = p(w(x)). Therefore, we conclude that Fy, Fy € LP“()(Q). This completes
the proof.
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