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DIVERGENT FOURIER SERIES WITH RESPECT TO BIORTHONORMAL

SYSTEMS IN FUNCTION SPACES NEAR L1

NIKOLOZ DEVDARIANI

Abstract. In this paper, we generalize Bochkarev’s theorem, which states that for any uniformly
bounded biorthonormal system Φ, there exists a Lebesgue integrable function whose Fourier series in

the system Φ diverges on a set of positive measure. We find the class of variable exponent Lebesgue

spaces Lp(·)([0, 1]n), where 1 < p(x) < ∞ almost everywhere on [0, 1]n, for which the aforementioned
Bochkarev’s theorem holds.

1. Introduction

After Kolmogorov [15,16] presented examples of functions in L1 with almost everywhere and every-
where divergent trigonometric Fourier series, many authors have attempted to generalize these results
by providing examples of functions with almost everywhere divergent trigonometric Fourier series
from narrower Orlicz spaces. The most significant result in this direction is due to Konyagin [17], who

achieved the same result for the space Lφ(L), provided that φ satisfies φ(t) = o(
√
ln t/ ln ln t).

Similar problems with respect to other orthonormal systems have been considered by various au-
thors. One such problem was posed by Alexits (see [1, pp. 326], [2, pp. 287]) and Olevskii [24],
concerning an analogue of Kolmogorov’s example of a divergent trigonometric Fourier series for gen-
eral uniformly bounded orthonormal systems.

The answer to this question was provided by Bochkarev [5]. He proved that for any given uniformly
bounded orthonormal system, there exists a function in L1 whose Fourier series with respect to this
system diverges at every point of some set of positive measure. However, it turns out that a complete
analogue of Kolmogorov’s example for uniformly bounded orthonormal systems does not exist in
general. This conclusion is based on Kazaryan’s [13] construction of a complete orthonormal system
that is uniformly bounded and for which every Fourier series converges on some set of positive measure.

Later, Bochkarev [6] extended his aforementioned result to uniformly bounded biorthonormal sys-
tems defined on a separable metric space with a Borel regular outer measure.

The authors of the paper [10] provide a different perspective on the problem of almost everywhere
divergence of trigonometric Fourier series in the subspaces of L1, specifically in terms of variable
Lebesgue spaces Lp(·). They show that L1 =

⋃
Lp(·), where the union is taken over all measurable

functions p(·) such that p(x) > 1 almost everywhere. This implies that any function whose Fourier se-
ries diverges almost everywhere must belong to some variable exponent space Lp(·) with 1 < p(x) < ∞
almost everywhere.

In [10], the authors construct a variable exponent space Lp(·), with 1 < p(x) < ∞ almost every-
where, that shares with L∞ the property that the space of continuous functions C is a closed linear
subspace within it. Moreover, Kolmogorov’s function, which has a Fourier series that diverges almost
everywhere, belongs to the Lp

′(·) space, where p′(·) is the Hölder conjugate of p(·). Additional re-
sults concerning the convergence of Fourier series for functions from these spaces can be found in [18]
and [19]. Various other results related to these spaces are discussed in [7] and [9].

Later, in [20], the authors provided an analogue of Bochkarev’s theorem for uniformly bounded
orthonormal systems within a certain class of variable exponent Lebesgue spaces. They found the

2020 Mathematics Subject Classification. 46E30, 42A16, 42A20.
Key words and phrases. Fourier series; Uniformly bounded orthonormal system; Almost everywhere convergence;

Variable exponent Lebesgue space.



382 N. DEVDARIANI

class of variable exponent Lebesgue spaces Lp(·), with 1 < p(x) < ∞ almost everywhere, for which
Bochkarev’s theorem holds.

For readers who wish to gain a deeper understanding of these subjects, we kindly recommend
exploring the following works related to the research topic [4, 25].

In the first of the aforementioned works, the almost everywhere divergence effect is established for
any countable orthonormal system of characters of a compact group. In the second, the divergence
effect is demonstrated everywhere for a wide class of character systems, including all Vilenkin systems.

Our plan for this paper is to characterize the class of variable exponent Lebesgue spaces for which
an analogue of Bochkarev’s theorem on the bounded biorthonormal systems is valid. To achieve this,
we introduce some definitions and notations.

Definition 1.1. Let (X,S, µ) be a measurable space, where S is a σ-algebra of µ-measurable sets
and µ(X) = 1, and let {fn, gn} be a biorthonormal system (see [14, Ch. VIII, §1]) such that fn, gn ∈
L∞(X,µ). For any function F ∈ L1(X,µ), the system {fn, gn} generates two Fourier series:

∞∑
n=1

(F, fn)gn(x) and

∞∑
n=1

(F, gn)fn(x),

(these series are said to be conjugate).

Bochkarev [6] proved the following

Theorem 1.2. Let X be a separable metric space with a Borel regular outer measure µ∗ such that
µ∗(X) = 1. Then for any biorthonormal system {fn, gn} satisfying the conditions

∥fn∥∞ , ∥gn∥∞ ≤ A, n ∈ N (1.1)

and

lim
n→∞

∫
E

fn(x)dµ(x) = 0 and lim
n→∞

∫
E

gn(x)dµ(x) = 0 (1.2)

for any measurable set E ⊂ X. Then there exist the functions F1, F2 ∈ L1(X,µ) and a set E ⊂ X
such that

µ(E) > 0

and for all x ∈ E, we have

lim
N→∞

N∑
n=1

((F1, gn)fn(x) + (F2, fn)gn(x)) = ∞.

This theorem is valid, in particular, for the space Rn, n ∈ N and any finite Borel regular outer
measure µ∗. Thus, the following assertion holds (see [6, Theorem 5]).

Theorem 1.3. If µ is the classical Lebesgue measure on Rn and E is a measurable set with µ(E) <∞,
then for any uniformly bounded biorthonormal system {fn, gn} on E satisfying condition (1.2), there
exists a Fourier series divergent on a set of positive measure.

In this paper, we are going to extend this Theorem 1.3 to the case of variable Lebesgue spaces.
Throughout the paper, let the symbol |E| define the Lebesgue measure of the measurable set E.

Also, Ω := [0; 1]n, and for a given p(·), the Hölder conjugate p′(·) is defined by p′(x) := p(x)/(p(x)−1).
Let (X,S, µ) be a nontrivial measure space. Given a real-valued measurable function f on X, we

define its decreasing permutation by

f∗(s) = inf{α ≥ 0 : µ({x ∈ X : |f(x)| > α}) ≤ s}, s > 0.

Let Pln be a set of all functions p : X → [1;∞) such that

lim sup
t→0+

(p′)∗(t)

ln(e/t)
> 0. (1.3)

LetW (p) denote the set of all functions equimeasurable with p(·). Below, we will find the conditions
on the function p(·) for which there exists p̄(·) ∈W (p) such that the space C(Ω) of continuous functions
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is a closed subspace in Lp̄(·)(Ω). In this paper, we generalize the result by Kopaliani, Samashvili and
Zviadadze obtained in [20], from the one-variable case to the several-variables case. Moreover, we
extend this generalization to uniformly bounded biorthonormal systems.

Let now state the result.

Theorem 1.4. For any biorthonormal system Φ := {fn, gn}n∈N on Ω, satisfying conditions (1.1) and
(1.2), and for any p(·) ∈ Pln, there exists a measure preserving transformation ω : Ω → Ω such that in
the corresponding Lp(ω(·))(Ω) space there exist the functions F1, F2 and a set E ⊂ Ω such that |E| > 0,
and for all x ∈ E, we have

lim
N→∞

N∑
n=1

((F1, gn)fn(x) + (F2, fn)gn(x)) = ∞.

2. Definitions and Auxiliary Results

Let M denote the space of all equivalence classes of the Lebesgue measurable real-valued functions
on Ω, equipped with the topology of convergence in measure, relative to each set of finite measure.

Definition 2.1. A Banach subspace X of M is referred to as a Banach function space (BFS) on Ω
if the following conditions hold:

1) The norm ∥f∥X is defined for every measurable function f , and f ∈ X if and only if ∥f∥X <∞.
Also, ∥f∥X = 0 if and only if f = 0 almost everywhere.

2) ∥|f |∥X = ∥f∥X for all f ∈ X.
3) If 0 ≤ f ≤ g almost everywhere, then ∥f∥X ≤ ∥g∥X .
4) If 0 ≤ fn ↑ f almost everywhere, then ∥fn∥X ↑ ∥f∥X .
5) If E is a measurable subset of Ω with finite measure (|E| <∞), then ∥χE∥X <∞, where χE is

the characteristic function of E.
6) For every measurable set E with finite measure (|E| <∞), there exists a constant CE <∞ such

that
∫
E
f(t)dt ≤ CE∥f∥X .

Now, let us introduce various subspaces of a BFS X:

• A function f in X has an absolutely continuous norm in X if ∥f · χEn∥X → 0 whenever En
is a sequence of measurable subsets of Ω such that χEn ↓ 0 almost everywhere. The set of all
such functions is denoted by XA;

• XB is the closure of the set of all bounded functions in X;
• A function f ∈ X has a continuous norm in X if for every x ∈ Ω, limε→0+ ∥fχB(x,ε)∥X = 0,

where B(x, ε) is a ball centered at x with radius ε. The set of all such functions is denoted
by XC .

The relationship between the concepts of XA and XB is given in [3]. Generally, the interaction
between the subspaces XA, XB , and XC may be intricate. For instance, there exists a BFS X in
which 0 = XA ⊊ XC = X (for example, see [23]).

Let P through the whole paper denote the family of all measurable functions p : Ω → [1; +∞).
When p(·) ∈ P, we denote by Lp(·)(Ω) the set of all measurable functions f on Ω such that for some
λ > 0, ∫

Ω

(
|f(x)|
λ

)p(x)
dx <∞.

This set becomes a BFS when equipped with the norm

∥f∥p(·) = inf

{
λ > 0 :

∫
Ω

(
|f(x)|
λ

)p(x)
dx ≤ 1

}
.

The variable exponent Lebesgue spaces Lp(·)(Ω) and the corresponding variable exponent Sobolev
spaces W k,p(·) are of significant interest due to their applications in fluid dynamics, partial differential
equations with non-standard growth conditions, calculus of variations, image processing, etc. (see [7,9]
for more details).



384 N. DEVDARIANI

For the specific case of a particular BFS X = Lp(·)(Ω), the relationship between this space and its
subspaces, namely, XA, XB , and XC , has been explored in [12]. We will now present some of the key
findings from that paper.

Proposition 2.2 (Edmunds, Lang, Nekvinda). Let p(·) ∈ P and set X = Lp(·)(Ω). Then
(i) XA = XC ;
(ii) XB = X if and only if p(·) ∈ L∞(Ω);
(iii) XA = XB if and only if

1∫
0

cp
∗(t)dt <∞, for all c > 1.

If ψ is an increasing convex function ψ : [0; +∞) → [0; +∞) such that ψ(0) = 0,

lim
x→0+

(ψ(x)/x) = 0, and lim
x→+∞

(ψ(x)/x) = +∞,

then the Orlicz space Lψ is defined as the set of all f ∈ M(Ω) for which:

||f ||Lψ = inf

{
λ > 0 :

∫
Ω

ψ

(
|f(t)|
λ

)
dt ≤ 1

}
< +∞.

Recall that a nonnegative function φ defined on [0;+∞) is called quasiconcave if it satisfies the
following conditions: φ(0) = 0, φ(t) is increasing, and φ(t)/t is decreasing.

The Marcinkiewicz space Mφ is defined as the set of all f ∈ M(Ω) for which:

||f ||Mφ = sup
0<t

1

φ(t)

t∫
0

f∗(u)du < +∞.

It is worth noting that (Mφ)A = (Mφ)B , and (Mφ)A can be characterized as the set of functions
f ∈ M (see [22]) that satisfy:

lim
t→0+

1

φ(t)

t∫
0

f∗(u)du = 0. (2.1)

Additionally, when ψ(t) = et − 1 and φ(t) = t ln(e/t), the corresponding Orlicz and Marcinkiewicz
spaces coincide (see [3]), and we denote them as eL and Mln. Furthermore, it can be observed that
(see [11, Corollary 3.4.28]):

||f ||eL ≍ ||f ||Mln
≍ sup

0<t≤1

f∗(t)

ln(e/t)
. (2.2)

The following result was initially established in [10] for the single-variable case, and our goal now
is to extend it to the multi-variable scenario. Since the proof of this statement can be easily derived
from the one provided in [10], we will omit it here.

Theorem 2.3. Let X be a BFS on Ω. The space C(Ω) of continuous functions is a closed linear
subspace of X if and only if there exists a positive constant c such that for every rectangle I ⊂ Ω, we
have

c ≤ ||χI ||X .

Theorem 2.4. For the existence of p̄(·) ∈ W (p) for which C(Ω) is a closed subspace in Lp̄(·)(Ω), it
is necessary and sufficient that

lim sup
t→0+

p∗(t)

ln(e/t)
> 0. (2.3)

The forthcoming proof closely follows the framework presented in [21]. However, since we encounter
some differences when extending the proof from the one-dimensional case to multiple dimensions, we
have chosen to provide the complete proof for the sake of clarity.
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Necessity. Since the space C(Ω) is closed in Lp(·)(Ω), by Theorem 2.3, there exists positive constant
d such that d ≤ ||χI ||p(·) for all rectangles I. This implies that XA ̸= XB . Then by Proposition 2.2,
there exists c > 1 such that

1∫
0

cp
∗(t)dt = +∞. (2.4)

Consider two cases:
Case 1) p∗(·) ∈ eL. Since (2.4) holds, the function p∗(·) does not have absolute continuous norm,

that is p∗(·) ∈ eL\
(
eL

)
A
. Then by (2.2), we get p∗(·) ∈Mln\(Mln)A and by (2.1), it is obvious that

lim sup
t→0+

1

t ln(e/t)
·

t∫
0

p∗(u)du > 0,

finally, using ones more (2.2), from the last estimation, we get (2.3).
Case 2) p∗(·) /∈ eL. Then by (2.2)

sup
0<t≤1

p∗(t)

ln(e/t)
= +∞,

consequently, (2.3) holds. The necessity part of the theorem proved.
Sufficiency. Let (2.3) hold. For all t ∈ [0; 1], we define the function h(t) = min{p∗(t), ln(e/t)}.

Obviously, in this case,

lim sup
t→0+

h(t)

ln(e/t)
> 0,

then there exists a sequence tk ↓ 0 such that

h(tk)

ln(e/tk)
≥ d, k ∈ N,

for some positive number d. Now, we choose a subsequence (tkn) such that 2tkn+1
< tkn , for all

natural n. Since tk ↓ 0, we can always choose such a subsequence, so without loss of generality, we
can assume that the sequence (tk) is already such.

Let the given function f be defined by

f(t) = d · ln(e/tk), t ∈ (tk+1; tk], k ∈ N and f(t) = 1, t ∈ (t1; 1].

It is clear that h(t) ≥ f(t) for all t ∈ [0; 1]. Now, choosing a positive number c such that c > e1/d, we
get

1∫
0

ch(t)dt = +∞.

Indeed,

1∫
0

ch(t)dt ≥
1∫

0

cf(t)dt >

tk∫
tk+1

cd·ln(e/tk)dt

= (tk − tk+1) · ed·ln c·ln(e/tk) >
tk
2

·
(
e

tk

)d·ln c
→ +∞, k → +∞.

Choose a decreasing sequence {ak}k∈N such that

ak∫
ak+1

ch(t)dt = 1.
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By (3.1), such a sequence always can be chosen. Now, let ∆k = [ak+1; ak], and {rk : k ∈ N} be a
countable dense set in [0; 1]. Define bk = −ak+1 + rk. Let now Ak := ∆k + bk = [rk; rk + ak − ak+1]
and gk(t) = h(t) · χ∆k(t), k ∈ N. Define the functions pk(t) by the induction:

p1(t) = g1(t− b1)χ[0;1](t),

pk(t) = (pk−1(t)(1− χ∆k(t− bk)) + gk(t− bk)) · χ[0;1](t), k > 1.

It is clear that h(t) is decreasing and, therefore, pk(t) ≤ pk+1(t), for all t ∈ [0; 1] and all k ∈ N.
Also, for all k ∈ N, we have

1∫
0

pk(t)dt ≤
1∫

0

h(t)dt ≤
1∫

0

ln(e/t)dt = 2. (2.5)

Define now the function q(·) by

q(t) = lim
k→+∞

pk(t), t ∈ [0; 1].

By (2.5), we find that the function q(·) is almost everywhere finite. By the construction, it is clear
that q∗(t) ≤ h(t) ≤ p∗(t). Now, by the well-known result (see [3, Theorem 7.5]), there exists the
measure-preserving transformation ω : [0; 1] → [0; 1] such that q(t) = q∗(ω(t)). Define now p̂(·) by
p̂(t) := p∗(ω(t)), t ∈ [0; 1]. Since q∗(t) ≤ p∗(t), it is obvious that q∗(ω(t)) ≤ p∗(ω(t)), then for all
t ∈ (0; 1), we get the following inequality:

q(t) ≤ p̂(t). (2.6)

Now, we construct an exponential function p̄ : Ω → [1,∞), for which the space of continuous func-
tions will be a closed subspace inside the corresponding variable exponent Lebesgue space. To do
this, we define a measure-preserving mapping ρ : Ω → [0; 1], by the following rule: Suppose that
x = (x1, . . . , xn) ∈ Ω and for every i ∈ {1, . . . , n} index, the representation of the corresponding
coordinates follows as: xi = 0.ai1ai2ai3 . . . , then

ρ(x) = 0.a11a21 . . . an1a12a22 . . . an2 . . . .

This mapping, mentioned above, is well-known from the literature. Thus, we can define the function
p̄(x) = p̂(ρ(x)). To complete the proof, we have to verify that the space of continuous functions is a
closed subspace in the corresponding space Lp̄(·)(Ω). For this purpose, we show that there exists a
positive number K such that for every rectangle I ∈ Ω, we have ||χI ||p̄ ≥ K. Consider any number
c > 1, since, in view of the fact that the set of binary rational numbers is dense everywhere in the
set of all real numbers, for this reason we can find an n-dimensional binary rectangle Id for the given
n-dimensional rectangle such that Id ⊂ I. Then, by the properties of the function ρ, c > 1, and
by (2.6), we get ∫

I

cp̄(x)dx ≥
∫
Id

cp̄(x)dx =

∫
(Id)′

cp̂(t)dt ≥
∫

(Id)′

cq(t)dt,

where (Id)′ denotes one-dimensional binary interval taken from [0; 1], for which ρ(Id) = (Id)′. By the
construction of q(·), there exists a number k0 such that Ak0 ⊂ (Id)′. Then we get∫

(Id)′

cq(t)dt ≥
∫
Ak0

cq(t)dt ≥
∫
Ak0

cpk0 (t)dt

=

∫
Ak0

cgk0 (t−dk0 )dt =

rk0+tk0−tk0+1∫
rk0

c
h(t−dk0 )·χ∆k0

(t−dk0 )dt

=

tk0∫
tk0+1

ch(t)dt ≥ 1.
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Now, by the definition of the norm in the variable Lebesgue space and by the above estimations,
we get that for all n-dimensional rectangles I ⊂ Ω, we have ||χI ||p̄ > 1/c. By Theorem 2.3, we get
the proof of the sufficiency of Theorem 2.4.

3. Proof of Theorem 1.4

Before we proceed to constructing the functions whose Fourier series diverge over the sets of positive
measure, we establish foundational principles. These principles will serve as the basis for the further
construction of the corresponding functions. It is important to note that we will not explicitly prove the
divergence of the Fourier series at this point. Instead, our focus will be on constructing these functions,
followed by outlining a method for applying Bochkarev’s theorem to establish their divergence.

Let us start with constructing the p(·). For all t ∈ (0; 1), we define the function h(t) := min{(p′)∗(t),
ln(e/t)}. By (1.3), it is obvious that

lim sup
t→0+

h(t)

ln(e/t)
> 0.

Then there exists a sequence tk ↓ 0 such that

h(tk)

ln(e/tk)
≥ a, k ∈ N,

for some positive number a.
It is obvious that we can choose a subsequence tkn such that 2tkn+1 < tkn . Let us choose a positive

number c such that c > e1/a, then we get

1∫
0

ch(t)dt >

tkn∫
tkn+1

ca·ln(e/tkn )dt

= (tkn − tkn+1) · ea·ln c·ln(e/tkn ) >
tkn
2

·
(
e

tkn

)a·ln c
→ +∞, n→ +∞. (3.1)

According to (3.1) and the fact that tk ↓ 0, we can choose the subsequence (tknm ) from (tkn) such
that

tknm∫
tknm+1

ch(t)dt ≥ 1, m ∈ N.

So, without loss of generality, we can assume that the sequence (tk) is already such that

1 < a ln(e/t1), 2tk+1 < tk,

tk∫
tk+1

ch(t)dt ≥ 1, k ∈ N. (3.2)

Let {lk : k ∈ N} be a fixed dense set on (0; 1) (below we will choose lk by using biorthonormal
system Φ). Let rk, k ∈ N be the following numeration of the table:
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l1 l2 l3 l4 · · ·

l1 l2 l3 l4 · · ·

l1 l2 l3 l4 · · ·

l1 l2 l3 l4 · · ·

· · · · · · · · · · · · · · ·

It is clear that for each lk, there exists the sequence (rkm) such that lk = rkm , m ∈ N. Now, let
∆k := [tk+1; tk], where tk are the points possessing property (3.2). Define dk := −tk+1 + rk and
Ek := ∆k + dk = [rk; rk + tk − tk+1]. Let gk(t) := h(t) · χ∆k(t), k ∈ N. We introduce the functions
qk(t) by the induction:

q1(t) := g1(t− b1)χ[0;1](t),

qk(t) := [qk−1(t)(1− χ∆k(t− dk)) + gk(t− dk)] · χ[0;1](t), k > 1.

It is clear that h(t) is decreasing and therefore qk(t) ≤ qk+1(t), for all t ∈ [0; 1] and all k ∈ N. Also,
for all k ∈ N, we have

1∫
0

qk(t)dt ≤
1∫

0

h(t)dt ≤
1∫

0

ln(e/t)dt = 2. (3.3)

Define now a function

q̂(t) = lim
k→+∞

qk(t), t ∈ [0; 1].

It is clear that

q̂(t) ≥ qk(t) ≥ a ln(e/tk), t ∈ Ek, k ∈ N. (3.4)

By (3.3), we get that the function q̂(·) is a.e. finite. According to the construction, it is clear that
q̂∗(t) ≤ h(t) ≤ (p′)∗(t). It follows from the well-known result (see [3, Theorem 7.5]) that there exists
a measure-preserving transformation ζ : [0; 1] → [0; 1] such that q̂(t) = q̂∗(ζ(t)). Now, define q̃(·) by
q̃(t) = (p′)∗(ζ(t)). Since q̂∗(t) ≤ (p′)∗(t), it is obvious that q̂∗(ζ(t)) ≤ (p′)∗(ζ(t)), then for all t ∈ (0; 1),
we get the following inequality:

q̂(t) ≤ q̃(t). (3.5)

Now, as in the proof of (2.4), we can construct an exponential function q̄ : Ω → [1,∞), for which
the space of continuous functions will be a closed subspace inside its corresponding variable exponent
Lebesgue space. Then,we get∫

I

cq̄(x)dx ≥
∫
Ib

cq̄(x)dx =

∫
(Ib)′

cq̃(t)dt ≥
∫

(Ib)′

cq̂(t)dt,
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where (Ib)′ denotes one-dimensional dyadic interval taken from [0; 1], for which ρ(Ib) = (Ib)′. By the
construction of q̂(·), there exists the number k0 such that Ek0 ⊂ (Ib)′. Then we get∫

(Id)′

cq̂(t)dt ≥
∫
Ek0

cq̂(t)dt ≥
∫
Ek0

cqk0 (t)dt

=

∫
Ek0

cgk0 (t−dk0 )dt =

rk0+tk0−tk0+1∫
rk0

c
h(t−dk0 )·χ∆k0

(t−dk0 )dt

=

tk0∫
tk0+1

ch(t)dt ≥ 1.

Now, by the definition of the norm in a variable Lebesgue space and by the above estimations, we
get that for all n-dimensional rectangles I ⊂ Ω, we have ||χI ||q̄(·) > 1/c. By the [8, Theorem 4], we
find that the space of continuous functions is a closed subspace in Lq̄(Ω).

Consider the function p̄(·) which is the Hölder conjugate of q̄(·). It is clear that p̄(·) is equmeasurable
to p(·). Since Ω is a finite nonatomic measure space and p̄ is measurable, [3, Theorem 7.5] guarantees
that there exists a measure-preserving transformation ω1 : Ω → [0; 1] such that p̄(x) = p̄∗(ω1(x))
for almost every x ∈ Ω. Similarly, applying the theorem to p, there exists a measure-preserving
transformation ω2 : Ω → [0; 1] such that p(x) = p∗(ω2(x)) for almost every x ∈ Ω. Since any measure-
preserving transformation between non-atomic finite measure spaces is a measure space isomorphism,

ω2 is also a bijective(up to null sets), therefore its inverse
−1
ω2 is also measure-preserving. Now, if

we define ω =
−1
ω2 ◦ ω1, we get that p̄(x) = p(ω(x)) for almost every x ∈ Ω. Hence, there exists a

measure-preserving transformation ω : Ω → Ω such that p̄(x) = p(ω(x)).
Let Mk := ρ−1(Ek), k ∈ N and C > ln(e/t1) · (a ln(e/t1) − 1)−1, then by (3.4) and (3.5), it is

obvious that

1 < p̄(x) ≤ 1 +
C

ln(e/tk)
, x ∈Mk.

Since ρ is measure-preserving ρ(Mk) = Ek and |Ek| ≍ tk, then by the last estimation, we obtain

||χMk
||p̄(·) ≍ |Ek| = tk − tk+1 ≍ tk. (3.6)

Indeed, using [7, Theorem 2.45], we obtain

1

2
||χMk

||1 ≤ ||χMk
||p̄(·) ≤ 2||χMk

||1+ C
ln(e/tk)

≍ tk.

Finally, by (3.6), we have ∥∥∥∥ ∞∑
k=1

akχMk

∥∥∥∥
p̄(·)

≍
∥∥∥∥ ∞∑
k=1

akχMk

∥∥∥∥
1

. (3.7)

Recall that for each k, there exists a sequence of natural numbers (km), m ∈ N such that lk = rkm ,
m ∈ N. Thus, we can rewrite (3.7) in the following form:∥∥∥∥ ∞∑

k=1

∞∑
m=1

akmχMkm

∥∥∥∥
p̄(·)

≍
∥∥∥∥ ∞∑
k=1

∞∑
m=1

akmχMkm

∥∥∥∥
1

. (3.8)

Next, we should select {lk ∈ N} set by using the system Φ in such a way that after definition
corresponding functions F1 and F2 and using (3.8) we will obtain the proof of a theorem. Our
construction of the functions F1 and F2 is analogous to the one from the work of Bochkarev [6].

For all θ ∈ Ω, consider a sequence of the binary cubes Qm(θ) ⊂ Ω such that θ ∈ Qm(θ), ∀m ∈ N
and diameter tends to zero. By the Lebesgue differentiation theorem, for any f ∈ L1(Ω), we have

lim
m→∞

1

|Q(θ)|

∫
Q(θ)

f(x)dx = f(θ),
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for almost every θ ∈ Ω.

Let G2N denote the set of points θ(2N) = (θ
(2N)
1 , . . . , θ

(2N)
2N ) ∈ Ω2N for which

lim
m→∞

1

|Qm(θ
(2N)
2i−1)|

∫
Qm(θ

(2N)
2i−1)

gn(x)dx = gn(θ
(2N)
2i−1)

and

lim
m→∞

1

|Qm(θ
(2N)
2i )|

∫
Qm(θ

(2N)
2i )

fn(x)dx = fn(θ
(2N)
2i ),

for all n ∈ N and i ∈ {1, . . . , N}. It is clear that |G2N | = 1. Consider the following set Θ′ := {θ(2N)
i :

i ∈ {1, . . . , 2N}, N ∈ N}. If this set is not dense in Ω, we examine a countable set Θ such that Θ′ ⊂ Θ
and Θ is dense in Ω. Let lk, k ∈ N be some numeration of Θ.

For all fixed N ∈ N and fixed θ
(2N)
i , i ∈ {1, . . . , 2N}, there exists the sequence r

(2N)
ik

, k ∈ N such

that θ
(2N)
i = r

(2N)
ik

, k ∈ N. Then by E
(2N)
i we define the binary interval such that ρ(θ

(2N)
i ) ∈ E

(2N)
i

and |E(2N)
i | ≤ ti1 − ti1+1 and let M

(2N)
i := ρ−1(E

(2N)
i ).

For a sequence {Nn} of positive integers and a decreasing sequence {εn} of positive numbers (which
we will specify below), we set

F1(x) =

∞∑
n=1

εn
Nn

Nn∑
i=1

χ
M

(2N)
2i−1

(x)

|M (2N)
2i−1 |

, F2(x) =

∞∑
n=1

εn
Nn

Nn∑
i=1

χ
M

(2N)
2i

(x)

|M (2N)
2i |

.

Now, for the proof of the existence of a set E ⊂ Ω such that |E| > 0 and for all x ∈ E, we have

lim
N→∞

N∑
n=1

((F1, gn)fn(x) + (F2, fn)gn(x)) = ∞.

We simply need to replicate Bochkarev’s proof step by step without making any changes. Conse-
quently, the detailed proof will not be provided in this context.

Finally, by the definitions of the functions F1, F2, and (3.8), we have F1, F2 ∈ Lp̄(·)(Ω). As men-
tioned earlier, p̄ is equimeasurable to p, implying the existence of a measure-preserving transformation
ω : Ω → Ω such that p̄(x) = p(ω(x)). Therefore, we conclude that F1, F2 ∈ Lp(ω(·))(Ω). This completes
the proof.
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24. A. M. Olevskĭı, On complete systems of convergence. (Russian) Dokl. Akad. Nauk SSSR 159 (1964), 21–24.

25. G. G. Oniani, On the divergence sets of Fourier series in systems of characters of compact abelian groups. (Russian)
translated from Mat. Zametki 112 (2022), no. 1, 95–105 Math. Notes 112 (2022), no. 1-2, 100–108.

(Received 14.09.2024)

Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 13 University Str., Tbilisi,
0143, Georgia

Email address: nikoloz.devdariani275@ens.tsu.edu.ge


