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ON THE DEFORMATION OF CHIRAL POROUS CYLINDERS IN A STRAIN

GRADIENT THERMOELASTIC THEORY

SIMONA DE CICCO

Abstract. The paper presents the first form of the strain gradient theory of elasticity proposed
by Mindlin and Eshel [21]. The theory was generalized by Papanicolopulos [25] to include non-

centrosymmetric behaviours and make them suitable to investigate the problems related to size

effects and nanotechnology. We study the thermoelastic deformation of a chiral porous cylinder
subjected to a thermal field that is polynomial in the axial coordinate where, the coefficients of the

polynomial are the functions of the two remaining coordinates. The problem is investigated by the

method of induction and, as in the classical elasticity, is decomposed in terms of some generalized
plane strain problems. Using the results established in [9], we obtain a closed-form solution of the

starting problem P (0) of the inductive process, i.e., the deformation of a cylinder subjected to a

thermal field independent of the axial coordinate. Then, we present a method for constructing the
solution of the problem P (n+1) when the solution of the problem P (n) is known.

1. Introduction

This paper is aimed to extend the results established in an earlier study [9] on the deformation of
chiral porous beams in the strain gradient thermoelasticity. In the previous paper, the cylinder was
supposed to be loaded by forces acting on its bases and subjected to a thermal field, linear in the axial
coordinate. The solution was obtained in closed form and, as in the classical thermoelasticity, was
represented in terms of solutions of some plane strain problems. In the present paper we consider a
cylinder free from mechanical loads and subjected to a temperature distribution that is polynomial in
the axial coordinate, where the coefficients of the polynomial are the functions of the two remaining
coordinates. The solution is obtained by the induction method. It is shown that, if we denote by P (n)

the problem corresponding to the temperature Tn = Tn(x1, x2)x
n
3 , then the solution of the problem

P (n+1) depends on the solution of the problem P (n).
The elastic theory of chiral porous solids is a topic of growing theoretical and practical interest.

The theory provides an efficient tool for modelling non-traditional media such as bones and other
biological substances, crystalline solids and geomaterials. The theory has been also proved suitable
for studying the behaviour of nanomaterials. For a long time nanoparticles have been pictured as
spherical objects, but at atomic and even larger scale, they have complex features that display mirror
asymmetry. Moreover nanotubes, nanospheres and other nanoparticles are porous due to the presence
of their internal cavities. Chirality and porosity are intrinsic characteristic of nanomaterials and their
effects on the behaviour of structural elements such as shells, plates and beams cannot be ignored. An
accurate description of the unique physical and mechanical properties of nanomaterials is provided
by Wu et al.in [35]. For a brief historical sketch on nanomaterials and technology see Guz and
Dushchitskii [12]. For an overview of chirality in mechanics see Lakes [19,20].

There are a number of theories which have been considered to introduce chirality in the mechanical
behaviour of materials [18, 23, 24, 33]. In [25], Papanicolopulos generalized the Mindlin–Eshel strain
gradient theory for centrosymmetric materials to the case of non-centrosymmetric solids. In his
approach, the chiral behaviour is controlled by a single material parameter and the sign of parameter
allows to distinguish between the right and left chirality. This theory has received widespread attention
and many studies on theoretical developments and applications have been published [2,11,15,17,22].
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Following the model of materials with voids proposed by Cowin and Nunziato [3], the effects of
porosity are described by means of a scalar function taken as an independent kinematic variable.
Since his formulation, the theory of materials with voids attracted much interest and has been the
object of intensive investigations (see e.g., [5, 7, 26, 27, 31, 34]). The basic results and a review on
the theory of materials with voids can be found in the book by Iesan [14]. Recently, the theory has
been generalized to the case of materials with multi-porosity structure (see e.g., [4, 8, 28, 30, 32]). For
extensive references and an overview on the theories of multi-porosity materials, see Svanadze [29].

The strain gradient theory is constructed by adding the second-order partial derivative of the
components of displacement and the first-order partial derivative of the microdilatation function in
the classical set of independent constitutive variables [1, 16]. The paper is structured as follows. In
Section 2, we present the basic equations of chiral porous elastic solids and formulate the problem of
thermoelastic deformation of a right cylinder. In Section 3, we investigate the equilibrium problem of
a cylinder free from mechanical loads and subjected to a temperature field independent of the axial
coordinate. The solution is expressed in terms of plane strain problems. In Section 4, we establish
the solution of the problem corresponding to a temperature distribution that is polynomial in the
axial coordinate. We present a method of constructing the solution to the problem P (n+1) when the
solution of problem P (n) is known. The solutions of chiral (non-porous) cylinders and porous (achiral)
cylinders can be derived as special cases.

2. Basic Equations

In this section, we formulate the equilibrium problem of a porous chiral cylinder subjected to a
temperature change polynomial of degree n in the axial coordinate. The cylinder is supposed to be
homogeneous and isotropic. We denote by Π the lateral boundary, Σα(α = 1, 2) is the terminal cross-
sections, Σ is a generic cross-section, Γα is the boundary of Σα, Γ is the boundary of Σ,and h is the
lenght of the cylinders. We choose a system of rectangular axes such that the x3 − axis is parallel to
the cylinder generator and the x1Ox2 − plane contains the basis Σ1 at x3 = 0. In what follows, we
assume that the thermal field has the form

T =

n∑
k=1

Tk(x1, x2)x
k
3 , (2.1)

where the functions Tk are prescribed. The cylinder is supposed to be free of mechanical loads. Let
ui be the components of the displacement vector and φ the microdilatation function. The problem of
equilibrium, of the cylinder consists in finding the functions ui and φ satisfying the following systems
of equations:

• geometrical equations

eij =
1

2
(ui,j + uj,i), κijk = uk,ij , (2.2)

where eij is the strain tensor and κijk is the strain gradient tensor.

• Constitutive equations

τij = λerrδij + 2µeij + dφδij + f(εikmκjkm + εjkmκikm)− bTδij ,

µijk =
1

2
α1(κrriδjk + 2κkrrδij + κrrjδik) + α2(κirrδjk + κjrrδik)

+ 2α3κrrkδij + β1δijφ,k + β2(δikφ,j + δjkφ,i)

+ 2α4κijk + α5(κkji + κkij) + f(εiksejs + εjkseis), (2.3)

σi = β1κrri + 2β2κirr + a0φ,i, g = derr + ξφ− βT,

where τij is the stress tensor, µijk is the dipolar stress tensor, σi is the equilibrated stress vector, g
is the intrinsic body force, T is the temperature, δij is the Kronecker delta, εijk is the alternating
symbol, λ, µ and b are the constitutive constants of the classical theory of elasticity; αi(i = 1, 2, . . . , 5)
and βj(j = 1, 2) are the constitutive constants associated with the gradient terms; d, a0, ξ and β are
the constitutive constants linked to porosity, and f is a constant associated with the chiral behaviour.
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• Equilibrium equations

τji,j − µkji,kj = 0, σj,j − g = 0. (2.4)

In the equilibrium problems, the boundary conditions for a body B with boundary ∂B are given
by [10,21]

Pi = P̃i, Ri = R̃i, σini = σ̃ on ∂B\C,Qi = Q̃i on C, (2.5)

where P̃i, R̃i, σ̃ and Q̃i are the prescribed functions, C is the union of the edges, and nj are the
components of the outward unit normal of ∂B and

Pi = (τki − µski,s)nk −Dj(nrµrji) + nsnpµspi(Dknk),

Ri = µrsinrns, Qi =< µpjinpnq > εjrqsr on ∂B.
(2.6)

Here, Di are the components of the surface gradient, Di = (δik − nink)∂/∂xk, si are the components
of the unit vector, tangent to C, and < g > denotes the difference of limits of g from both sides of C.

In the case of cylinder free of loading on its boundary, we have [9]

Pi = 0, Ri = 0, Qi = 0, σαnα = 0, α = 1, 2 on Π (2.7)

and
Pi = −τ3i + 2µα3i,α + µ33i,3, Ri = µ33i on Σ1,

Qi = −2µα3inα, on Γ1.
(2.8)

Further, we have to satisfy on the plane end Σ1 the following conditions:∫
Σ1

Pαda+

∫
Γ1

Qαds = 0, (2.9)

∫
Σ1

P3da+

∫
Γ1

Q3ds = 0, (2.10)

∫
Σ1

(xαP3 +Rα)da+

∫
Γ1

xαQ3ds = 0, (2.11)

∫
Σ1

εαβ3xαPβda+

∫
Γ1

εaβ3xαQβds = 0. (2.12)

In the next sections, we seek a solution of the problem defined by equations (2.2), (2.3), (2.4) and the
boundary conditions (2.7), (2.9)–(2.12) when temperature T is assigned.

3. Problem P (0)

In what follows, we use the method of induction to solve the problem formulated in Section 2. Let
us denote by P (k) the thermoelastic problem corresponding to the case where the temperature has
the form

T = Tk(x1, x2)x
k
3 ,

where Tk is a given function and k is a positive integer. We have to find a solution of problem P (k+1)

once a solution of the problem P (k) is known. The solution of problem P (0) corresponding to the
thermal field

T = T0(x1, x2), (3.1)

is the starting point of the inductive process. Problem P (0) with different boundary conditions has
been investigated in [9]. We look for a solution of the problem in the form

uα = −1

2
aαx

2
3 + ε3βαa4xβx3 +

4∑
k=1

aku
(k)
α + wα(x1, x2),

u3 = (a1x1 + a2x2 + a3)x3 +

4∑
k=1

aku
(k)
3 + w3(x1, x2),
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φ =

4∑
k=1

akφ
(k) + ψ,

where u
(k)
j , φ(k), wj and ψ are unknown functions which are independent of x3, and ak are unknown

constants. We denote by τ
(k)
αj , µ

(k)
αβi, σ

(k)
α , and g(k), (k = 1, 2, 3, 4) the stress tensor, the dipolar

stress tensor, the microstretch stress vector and the intrinsic body force associated with u
(k)
i and φ(k),

respectively. Moreover, we denote by tαj , mαβi, πα and γ the stress tensor, the dipolar stress tensor,
the microstretch stress vector and the intrinsic body force corresponding to wi and ψ, respectively.
The equilibrium equation (2.4) takes the form

τ
(k)
αj,α − µ

(k)
αβj,αβ + F

(k)
j = 0, σ(k)

α,α − g(κ) + l(k) = 0 on Σ1, (3.2)

tαi,α −mαβi,α = 0, πα,α − γ = 0.

where

F
(ρ)
j = λδjρ, F

(3)
j = 0, F

(4)
j = 0, l(ρ) = −dxρ, l(3) = −d, l(4) = 0. (3.3)

The boundary conditions (2.5) become

P
(k)
i = P̃

(k)
i , R

(k)
i = R̃

(k)
i , σ(k)

α nα = σ̃(k) on Γ1, (3.4)

where

P
(k)
i = (τ

(k)
βi − µ

(k)
ρβi,ρ)nβ −Dρ(nβµ

(k)
βρi) + nβnαµ

(k)
βαi(Dρnρ),

R
(k)
i = µ

(k)
ραinρnα,

(3.5)

and

P̃
(1)
1 = −λx1n1 + (α1 − 2α2)ε3αν(n1n2),νnα,

P̃
(1)
2 = −λx1n2 +

1

2
(α1 − 2α2)ε3αρ(n

2
1 − n2

2),αnρ, P̃
(1)
3 = 2fn2,

R̃
(1)
1 = 2α3 − α1 + (α1 − 2α2)n

2
1, R̃

(1)
2 = (α1 − 2α2)n1n2,

R̃
(1)
3 = 0, σ̃(1) = (β1 − 2β2)n1,

P̃
(2)
1 = −λx2n1 +

1

2
(α1 − 2α2)ε3αν(n

2
1 − n2

2),αnν ,

P̃
(2)
2 = −λx2n2 + (α1 − 2α2)ε3αν(n1n2),νnα, P̃

(2)
3 = −2fn1,

R̃
(2)
1 = (α1 − 2α2)n1n2, R̃

(2)
2 = 2α3 − α1 + (α1 − 2α2)n

2
2,

R̃
(2)
3 = 0, σ̃(2) = (β1 − 2β2)n2,

P̃ (3)
α = −λnα, P̃

(3)
3 = 0, R̃

(3)
j = 0, σ̃(3) = 0,

P̃
(4)
1 =

1

2
f [5n1 +D1(x2n2) +D2(x2n1 − 2x1n2)− 2(x2n1n2 − x1n

2
2)(Dρnρ)],

P̃
(4)
2 =

1

2
f [5n2 +D1(x1n2 − 2x2n1) +D2(x1n1)− 2(x1n1n2 − x2n

2
1)(Dρnρ)],

P̃
(4)
3 = µε3βνxνnβ , R̃

(4)
1 = f(x1n

2
2 − x2n1n2),

R̃
(4)
2 = f(x2n

2
1 − x1n1n2), R̃

(4)
3 = 0, σ̃(4) = 0.

(3.6)

The functions tαj , mαβi and πi must satisfy the boundary conditions

P ∗
i = 0, R∗

i = 0, παnα = 0 on Γ1.

where
P ∗
i = (tβi −mρβi,ρ)nβ −Dρ(nβmβρi) + nβnαmβαi(Dρnρ),

R∗
i = mραinρnα, on Γ1.
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The constants ak are determined by the boundary conditions (2.9)–(2.12) on the end Σ1. Condition
(2.9) is identically satisfied and conditions (2.10)–(2.12) reduce to the following system:

4∑
k=1

D3kak = −F ∗
3 ,

4∑
k=1

Dαkak = ε3αβM
∗
β ,

4∑
k=1

D4kak = −M∗
3 ,

where

Dαk =

∫
Σ1

(xαS
(k)
33 + 2N

(k)
α33 −N

(k)
33α)da,

D3k =

∫
Σ1

S
(k)
33 da,D4k =

∫
Σ1

ε3αβ(xαS
(k)
3β + 2N

(k)
α3β)da,

F ∗
3 =

∫
Σ1

t33da,M
∗
α = ε3αβ

∫
Σ1

(xβt33 + 2mβ33 −m33β)da,

M∗
3 =

∫
Σ1

ε3αβ(xαt3β + 2mα3β)da.

(3.7)

In (3.7), we have used the notations

S
(ρ)
33 = (λ+ 2µ)xρ + τ

(ρ)
33 , S

(3)
33 = λ+ 2µ+ τ

(3)
33 ,

S
(4)
33 = 4f + τ

(4)
33 , S

(ρ)
3α = 2fεαρ3 + τ

(ρ)
α3 ,

S
(3)
3α = τ

(3)
α3 , S

(4)
3α = µε3βαxβ + τ

(4)
α3 ,

N
(i)
α33 =

1

2
(2α2 − α1 + 4α4)δiα + µ

(i)
α33, (i = 1, 2, 3),

N
(4)
α33 = −1

2
fxα + µ

(4)
α33, N

(i)
33α = (α1 − 2α3 − 2α4 + α5)δiα + µ

(i)
33α,

N
(4)
33α = fxα + µ

(4)
33α, N

(ρ)
α3β = ε3αβfxρ + µ

(ρ)
α3β ,

N
(3)
α3β = ε3αβf + µ

(3)
α3β , N

(4)
α3β = ε3αβ(2α4 − α5) + µ

(4)
α3β

and

τ
(k)
33 = λe(k)ρρ + dφ(k), µ

(k)
3αβ =

1

2
α1κ

(k)
ρρ3δαβ + α5κ

(k)
βα3 + fεβρ3e

(k)
αρ ,

µ
(k)
3α3 =

1

2
α1κ

(k)
ρρα + α2κ

(k)
αρρ + fερα3e

(k)
3ρ + β2φ

(k)
,α ,

µ
(k)
33α = α1κ

(k)
αρρ + 2α3κ

(k)
ρρα + β1φ

(k)
,α + 2fε3αρe

(k)
3ρ ,

µ
(k)
333 = (α1 + 2α3)κ

(k)
ρρ3, σ

(k)
3 = β1κ

(k)
ρρ3,

t33 = ληρρ + dψ − bT0,

m3αβ =
1

2
α1ξρρ3δαβ + α5ξβα3 + fξβρ3ηαρ,

m3α3 =
1

2
α1ξρρα + α2ξαρρ + fξρα3η3ρ + β2ψ,α,

m33α = α1ξαρρ + 2α3ξρρα + β1ψ,α + 2fε3αρη3ρ,

m333 = (α1 + 2α3)ξρρ3ξρρ3, π3 = β1ξρρ3.

(3.8)
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By the solution of problem P (0) we conclude that the thermal field (3.1) produces axial extension,
bending and torsion. The results of this Section were applied to study the deformation of a chiral
porous circular cylinder [6].

4. Deformation Produced by Thermal field that is a Polynomial in the Axial
Coordinate

In this section, we study the problem when the thermal field is given by (2.1). The solution of
problem P (n) is assumed to be known for any function Tn so that we know the solution of the problem
when T = Tn+1(x1, x2)x

n
3 . Thus, the problem reduces to finding the functions ui, φ, eij , κijk, τij ,

µijk, σi, and g that satisfy equations (2.2)–(2.4) on B and the boundary conditions (2.5)–(2.9), when

T = Tn+1(x1, x2)x
n+1
3 , assuming that we know the functions u∗i , φ

∗, e∗ij , κ
∗
ijk, τ

∗
ij , µ

∗
ijk, and g

∗ that

satisfy equations (2.2)–(2.4) on B and conditions (2.7), (2.9)–(2.12) with null mechanical data and
temperature T = Tn+1(x1, x2)x

n
3 . Following the method used in the theory of loaded cylinders [14],

we seek a solution in the form

uα = (n+ 1)

[ x3∫
0

u∗αdx3 −
1

2
dαx

2
3 + ϵ3βαd4xβx3 +

4∑
k=1

dku
(k)
α + Vα(x1, x2)

]
,

u3 = (n+ 1)

[ x3∫
0

u∗3dx3 + (d1x1 + d2x2 + d3)x3 +

4∑
k=1

dku
(k)
3 + V3(x1, x2)

]
, (4.1)

φ = (n+ 1)

[ x3∫
0

φ∗dx3 +

4∑
k=1

dkφ
(k) +Ψ(x1, x2)

]
,

where (u
(k)
j , φ(k)) are the solutions of problems A(k), (k = 1, 2, 3, 4), Vj and Ψ are unknown functions,

and dj (j = 1, 2, 3, 4) are unknown constants. From (2.2) and (4.1), we find that

eαβ = (n+ 1)

[ x3∫
0

e∗αβdx3 +

4∑
k=1

dke
(k)
αβ + gαβ

]
,

e33 = (n+ 1)

[ x3∫
0

e∗33dx3 + d1x1 + d2x2 + d3 + u∗3(x1, x2, 0)

]
,

eα3 = (n+ 1)

[ x3∫
0

e∗α3dx3 +
1

2
ϵ3βαd4xβ +

4∑
k=1

dke
(k)
α3 + gα3 +

1

2
u∗α(x1, x2, 0)

]
,

φ,α = (n+ 1)

[ x3∫
0

φ∗
,αdx3 +

4∑
k=1

dkφ
(k)
,α +Ψ,α

]
,

φ,3 = (n+ 1)

[ x3∫
0

φ∗
,3dx3 + φ∗(x1, x2, 0)

]
,

καβj = (n+ 1)

[ x3∫
0

κ∗αβjdx3 +

4∑
k=1

dkκ
(k)
αβj + yαβj

]
,

κα33 = (n+ 1)

[ x3∫
0

κ∗α33dx3 + u∗3,α(x1, x2, 0) + dα

]
,
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κ3αβ = (n+ 1)

[ x3∫
0

κ∗3αβdx3 + u∗β,α(x1, x2, 0) + ε3αβd4

]
, (4.2)

κ33α = (n+ 1)

[ x3∫
0

κ∗33αdx3 + u∗α,3(x1, x2, 0)− dα

]
,

κ333 = (n+ 1)

[ x3∫
0

κ∗333dx3 + u∗3,3(x1, x2, 0)

]
,

where

gαβ =
1

2
(Vα,β + Vβ,α), 2gα3 = V3,α, yαβj = Vj,αβ . (4.3)

We consider the isothermal plane problem corresponding to the displacements Vj and microdilatation
function Ψ. In this problem, we denote the stress tensor, the dipolar stress tensor, the microstretch
stress vector and the intrinsic body force by pij , qijk, νj and ρ, respectively. Then from the constitutive
equations and (4.1)–(4.3), we get

ταβ = (n+ 1)

{ x3∫
0

τ∗αβdx3 +

4∑
k=1

dkτ
(k)
αβ + pαβ + [λ(d1x1 + d2x2 + d3)− 2fd4] δαβ +Kαβ

}
,

τα3 = (n+ 1)

[ x3∫
0

τ∗α3dx3 +

4∑
k=1

dkτ
(k)
α3 + pα3 + ε3βα(µd4xβ − 2fdβ) +Kα3

]
,

τ33 = (n+ 1)

[ x3∫
0

τ∗33dx3 +

4∑
k=1

dkτ
(k)
33 + p33 + (λ+ 2µ)(d1x1 + d2x2 + d3) + 4fd4 +K33

]
,

σα = (n+ 1)

[ x3∫
0

σ∗
αdx3 +

4∑
k=1

dkσ
(k)
α + να + (β2 − β1)dα + Iα

]
,

σ3 = (n+ 1)

[ x3∫
0

σ∗
3dx3 +

4∑
k=1

dkσ
(k)
3 + ν3 + I3

]
,

g = (n+ 1)

[ x3∫
0

g∗3dx3 +

4∑
k=1

dkg
(k) + ρ+ (d1x1 + d2x2 + d3)d+ G

]
.

(4.4)

The dipolar stress tensor is given by

µ111 = (n+ 1)

[ x3∫
0

µ∗
111dx3 +

4∑
k=1

dkµ
(k)
111 + q111 + 2d1(α2 − α3) +H111

]
,

µ222 = (n+ 1)

[ x3∫
0

µ∗
222dx3 +

4∑
k=1

dkµ
(k)
222 + q222 + 2d2(α2 − α3) +H222

]
,

µ221 = (n+ 1)

[ x3∫
0

µ∗
221dx3 +

4∑
k=1

dkµ
(k)
221 + q221 + (α1 − 2α3)d1 − fd4x1 +H221

]
,

µ112 = (n+ 1)

[ x3∫
0

µ∗
112dx3 +

4∑
k=1

dkµ
(k)
112 + q112 + (α1 − 2α3)d2 − fd4x2 +H112

]
,
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µ121 = (n+ 1)

[ x3∫
0

µ∗
121dx3 +

4∑
k=1

dkµ
(k)
121 + q121 + (α2 −

1

2
α1)d2 +

1

2
fd4x2 +H121

]
,

µ122 = (n+ 1)

[ x3∫
0

µ∗
122dx3 +

4∑
k=1

dkµ
(k)
112 + q122 + (α2 −

1

2
α1)d1 +

1

2
fd4x1 +H122

]
,

µ3αβ = (n+ 1)

{ x3∫
0

µ∗
3αβdx3 +

4∑
k=1

dkµ
(k)
3αβ + q3αβ

(4.5)

+ ε3αβ [(2α4 − α3)d4 + f(d1x1 + d2x2 + d3)] +H3αβ

}
,

µαβ3 = (n+ 1)

{ x3∫
0

µ∗
αβ3dx3 +

4∑
k=1

dkµ
(k)
αβ3 + qαβ3 +Hαβ3

}
,

µα33 = (n+ 1)

[ x3∫
0

µ∗
α33dx3 +

4∑
k=1

dkµ
(k)
α33 + qα33 + (α2 −

1

2
α1 + 2α4)dα − 1

2
fd4xα +Hα33

]
,

µ333 = (n+ 1)

[ x3∫
0

µ∗
333dx3 +

4∑
k=1

dkκ
(k)
ρρ3 + q333 +H333

]
,

µ33α = (n+ 1)

[ x3∫
0

µ∗
33αdx3 +

4∑
k=1

dkµ
(k)
33α + q33α + (α1 − 2α3 − 2α4 + 2α5)dα + fd4xα +H33α

]
.

In (4.4) and (4.5), we have used the notations

Kαβ = [λδαβu
∗
3 + f(ε3ραu

∗
ρ,β + ε3ρβu

∗
ρ,α)](x1, x2, 0),

Kα3 = [µu∗3 + fε3αρ(u
∗
3,ρ − u∗ρ,3)](x1, x2, 0),

K33 = [(λ+ 2µ)u∗3 + 2fε3βαu
∗
α,β ](x1, x2, 0),

Iα = [β1u
∗
α,3 + β2u

∗
3,α](x1, x2, 0),

I3 = [β1u
∗
3,3 + β2u

∗
r,r](x1, x2, 0),

G = du∗3(x1, x2, 0)

and

H111 = [(α1 + 2α3)u
∗
1,3 + (α1 + 2α2)u

∗
3,1](x1, x2, 0),

H222 = [(α1 + 2α3)u
∗
2,3 + (α1 + 2α2)u

∗
3,2](x1, x2, 0),

H112 = [α1u
∗
3,2 + 2α3u

∗
2,3 + fu∗1](x1, x2, 0),

H121 = [
1

2
α1u

∗
2,3 + α2u

∗
3,2 −

1

2
fu∗1](x1, x2, 0),

H122 = [
1

2
α1u

∗
1,3 + α2u

∗
3,1 +

1

2
fu∗2](x1, x2, 0),

H221 = [α1u
∗
3,1 + 2α3u

∗
1,3 − fu∗2](x1, x2, 0), (4.6)

H3αβ = [(
1

2
α1u

∗
3,3 + α2u

∗
j,j + β2φ

∗)δαβ + 2α4u
∗
β,α + α5u

∗
α,β + fεαβ3u

∗
3](x1, x2, 0),

Hα33 = [(α2 + 2α4 + α5)u
∗
3,α +

1

2
(α1 + 2α5)u

∗
a,3 +

1

2
fε3ραu

∗
ρ](x1, x2, 0),

Hαβ3 = [(α1u
∗
j,j + 2α3u

∗
3,3 + β1φ

∗)δαβ + α5(u
∗
α,β + u∗β,α)](x1, x2, 0),

H333 = [(α1 + 2α2)u
∗
j,j + (α1 + 2α3 + 2α4 + 2α5)u

∗
3,3 + (β1 + 2β2)φ

∗](x1, x2, 0),

H33α = [(α1 + 2α5)u
∗
3,α + 2(α3 + α4)u

∗
α,3 + fε∗3αρu

∗
ρ](x1, x2, 0).
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With help of (3.2), (3.3), (4.4) and (4.5), we find that equations (2.4) become

pαj,α − qαβj,αβ + Fj = 0, να,α − ρ+ L = 0, (4.7)

on Σ1, where

Fj = Kρj,ρ −Kαβj,αβ + [τ∗3j − µ∗
33j,3 − 2µ∗

3αj,α](x1, x2, 0),

L = σ∗
3(x1, x2, 0) + Iα,α − G.

(4.8)

In view of (3.4), (3.5), (3.6), (4.4) and (4.5), conditions (2.7) reduce to

Pi = P0
i , Ri = R0

i , ναnα = ν0 on Γ, (4.9)

where

Pi = (pαi − qjαi,j)nα −Dj(nρqρji) + (Dρnρ)nβnαµβαi,

Ri = qραinρnα, P0
i = (Hρβi,ρ −Kβi)nβ +Dr(nρHργi)

− (Dρnρ)Hαβinanβ + 2nβµ
∗
3βi(x1, x2, 0),

R0
i = −Hαβinαnβ , ν0 = −Iana.

(4.10)

Thus, the functions Vj and Ψ are components of the displacement vector and and microstretch function
in a generalized plane strain problem defined by the equilibrium equations (4.7) and the boundary
conditions (4.9). Using (4.8), (4.10) and the method from Section 3, we obtain∫

Σ1

Fjda+

∫
Γ1

P0
j ds = −

∫
Σ1

P∗
j da−

∫
Γ1

Q∗
jds,∫

Σ1

ε3αβxαFβda+

∫
Γ1

ε3αβ(xαP0
β + nαR0

β)ds = −
∫
Σ1

εαβ3xαP∗
βda−

∫
Γ1

εαβ3xαQ∗
βds.

(4.11)

In problem P (n), the functions P∗
j and Q∗

j are equal to zero, so the necessary and sufficient conditions
for the existence of the functions Vj and Ψ are satisfied. As in Section 3, we can show that conditions
(2.9) are identically satisfied. Conditions (2.10)–(2.12) reduce for the unknown constants dk (k =
1, 2, 3, 4) to the following system:

4∑
j=1

Dijdj = −θi, (4.12)

where

θα =

∫
Σ1

{2(qα33 +Hα33)− q33α −H33α + xα[(λ+ 2µ)u∗3

+ 2fε3βρu
∗
ρ,β ](x1, x2, 0) + xα(p33 − µ∗

333)}da,

θ3 =

∫
Σ1

{p33 − µ∗
333 + [(λ+ 2µ)u∗3 + 2fε3βρu

∗
ρ,β ](x1, x2, 0)}da,

θ4 =

∫
Σ1

εαβ3{xα(p3β +K3β − µ∗
33β) + 2qα3β + 2Hα3β}da.

As in the classical elasticity, the positive definiteness of the potential energy implies that [13]

det(Dmn) ̸= 0. (4.13)

Relation (4.13) shows that system (4.12) determines the constants dj (j = 1, 2, 3, 4).
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5. Conclusions

The results presented in this paper can be summarized as follows:

• The basic equations of the strain gradient theory of chiral porous thermoelastic solids are
presented and the equilibrium problem of a homogeneous and isotropic cylinder is formulated.
The cylinder is subjected to a temperature field that is polynomial in the axial coordinate.

• The porosity and chirality are introduced in the constitutive equations by means of a scalar
function and a material constant, respectively.

• The strain gradient theory of chiral porous materials is constructed by adding the second-
order partial derivative of the displacement components and the first-order partial derivative
of the microdilatation function to the set of independent constitutive variable.

• First, the problem of a cylinder subjected to a temperature field independent of the axial
coordinate is solved and then the case of a cylinder deformed by a temperature field that is
polynomial in the axial coordinate is considered.

• The analytical solution is obtained by the method of induction and is expressed in terms of
solutions of the same plane strain problems.
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