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RESEARCH OF A NONLINEAR DYNAMIC SYSTEM DESCRIBING THE
PROCESS OF INTERACTION BETWEEN COLCHIAN, GEORGIAN AND SVAN
POPULATIONS

TEMUR CHILACHAVA, GIA KVASHILAVA AND GEORGE POCHKHUA

Abstract. This paper investigates a three-dimensional nonlinear dynamic system describing the
interaction of three populations speaking Colchian, Georgian and Svan languages. The period when
the Colchian population prevailed over two others is considered. In the absence of quadratic terms
characterizing the self-restriction of population growth and some relationships between the constant
coefficients of a nonlinear three-dimensional dynamic system, the first integral in the form of a
hyperbolic paraboloid is found. Using the first integral, the three-dimensional nonlinear dynamic
system is reduced to a two-dimensional system. For some relations between the constant coefficients
of a two-dimensional dynamical system, the theorems on the existence of a closed trajectory in a
simply connected domain of the first quarter of the phase plane of solutions are proved using the
Berdixson principle.

In the case of quadratic terms characterizing the self-restriction of population growth and certain
relationships between the constant coefficients of a nonlinear three-dimensional dynamic system, the
first integrals are found. In one case, the integral is a cone, and in the other, a hyperbolic paraboloid.
In both cases, using the first integral, the general three-dimensional nonlinear dynamic system is
reduced to a two-dimensional system. For some relations between the constant coefficients of a
two-dimensional dynamical system, the theorems on the existence of a closed trajectory in certain
simply connected domain of the first quarter of the phase plane of solutions are proved using the
Bendixson principle.

Thus, in all these cases, it is proved that all three populations living in the same region and
speaking three different languages coexist and do not completely assimilate them.

INDRODUCTION

Synergetics has given a powerful impetus to the use of mathematical models in the social sciences.
Mathematical modeling of social processes compared to modeling in natural science is more original
due to the complexity of model justifications [2—4,9-14].

From a historical point of view, we consider mathematical modeling as an innovative approach to
describing the distribution domain of the Proto-Kartvelian speaking population and the process of fur-
ther language transformation, determining the number of the population speaking the corresponding
language in each time period.

To describe the process of transformation of the Proto—Kartvelian population into four populations
speaking four different languages, Georgian, Mengrelian, Laz and Svan, we divided mathematical
modeling into four separate stages: the first stage (L-XXV BC), at the end of which there is a
division of the Proto—Kartvelian population into three parts: - the first part emigrated to Europe and
gradually completely or partially assimilated, the second part speaking the Svan language, the third
part speaking the Colchian and-Georgian languages; the second stage (XXV—X centuries BC), at the
end of which the Colchian and Georgian populations split into two parts, the Colchian and Georgian
populations; the third stage (X-I centuries BC. e.), at the end of which the Colchian population
splits into the Mengrelian and Laz populations. Moreover, in the X-III centuries BC, the Colchian
population predominated over others, and in the ITI-I centuries BC. e. it was the Georgian population
that predominated over others; the fourth stage (from the Ist century BC — to the present days), when
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four multilingual populations Georgian, Mengrelian, Laz and Svan live peacefully in a small territory
in the Caucasus and Western Asia.

Mathematical modeling of the first stage is considered in [5].

Mathematical and computer modeling of the second stage is considered in [6-8].

1. GENERAL MATHEMATICAL MODEL. SYSTEM OF EQUATIONS

Let us consider a general mathematical model describing the interactions between three populations
speaking different Inguages Colchian, Georgian and Svan, taking into account the existence of self-
limiting conditions for population growth terms.

The mathematical model is described by a three-dimensional nonlinear system of differential equa-
tions with variable coefficients:

B0 — s au(t) = 1 (0002(0) + Bo(tu(t)w(t) + B (o (Do(t) = pa(Dyw(s).
dt;it) = ay(t)ut) — v (B)u?(t) + Ba(B)ut)w(t) + Bs(t)u(t)v(t) — p2(t)u(t), (1.1)
dv(t)

o = a((0) = 2 ()03() = Bs(tyult)o(t) = Bo(w(t)o(d)

with the initial conditions:

’w(tz) = W2y, ’LL(tQ) = U2, U(tg) = V2, (12)
w(t),u(t),v(t) € Cllta, ta], t € (ta,t4),
Bi(t) € Clta, ta], i € {4,5,6,7,8,9},
(), 72(8), 33 (8). p2(t), Po(t) € Clts, ta),

2

10, a5(t), ag(t) € Cla, ta,
w(t) is the number of Colchian speaking population at time ¢;
u(t) is the number of Georgian speaking population at time ¢;

v(t) is the number of the population speaking the Svan language at the ¢ time;
to is the Xth century BC, t3 is the IIIrd Century BC, ¢4 is the Ist Century BC;
ay(t), as(t), ag(t) are natural demographic factors, of the Georgian, Colchian and Svan populations,
respectively;
v1(t),v2(t),v3(t) are co-factors of self-limiting growth, respectively, of the Colchian, Georgian and
Svan populations, non-negative functions, moreover, they are identically equal to zero, in case of non-
accounting for self-limiting population growth;
Bs(t), Bs(t), B7(t), Bo(t) are co-factors of assimilation of the Svan population by the Georgian, Colchian
population;
Ba(t), Bs(t) are sign-variable functions describing assimilation of the population speaking Colchian by
the population speaking Georgian, or vice versa,
B4(t) is negative to the segment [to, t3] and positive to the segment [t3, t4];
Be(t) is positive to the segment [t2,t3] and negative to the segment [t3, t4];
p2(t) > 0 are co-factors of unnatural reduction of the Georgian population due to forced hostilities
with neighboring peoples;
p3(t) > 0 are co-factors of unnatural reduction of the Colchian population due to forced hostilities
with neighboring peoples.

An analytical study of a three-dimensional dynamic system of differential equations (1.1) with
variable coefficients is impossible.

Therefore, in order to qualitatively describe the process of interaction and mutual influence of
populations speaking three different languages (Colchian, Georgian, Svan), we consider some particular
cases that are amenable to analytical research.
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2. A SPEcCIAL CASE OF A MATHEMATICAL MODEL WITHOUT TERMS OF SELF-LIMITING
PoruLATION GROWTH

As a first mathematical model, we consider the case without nonlinear terms of self-limitating
population growth during the period of Colchian language dominance.
We also assume that all coefficients of the system of equations are constant:

71(t) = 72(t) =93(t) =0, au(t) = a4, as(t) = a5, ag(t) = as,
Ba(t) = —Ba, Bs(t) = Bs, Bs(t) = Bo, Br(t) = Br, Ps(t) = Bs, Po(t) = Bo, (2.1)
pa(t) = p2, ps3(t) = ps = const.
Then, taking into account (2.1) and considering the Cauchy problem on the interval ¢ € (¢2;t3),
where the coefficients 54 > 0, B > 0 are of a certain sign and the Colchian population spreads its

language among two other populations, the system of equations (1.1) can be rewritten in the following
form:

dw(t)

o = asw(t) + Beu(t)w(t) + Brw(t)v(t) — psw(t),
PO (1) — Baultyott) + Butt)ols) — pauct), (2:2)
dz(tt) = au(t) — Bsu(t)v(t) — Bow(t)u(?),
with the initial conditions
w(tg) = w2, ’U,(tg) = U9, ’U(tg) =1v9, tE€ (tQ; t3). (23)

The system of equations (2.2) is considered in the interval ¢ € (¢2;t3) and assumes that the Colchian
language is dominant, i.e., the population speaking this language assimilates the population speaking
Georgian and Svan languages.

A qualitative analysis of the system of equations (2.2), taking into account the adequacy and non-
triviality of the mathematical model, leads to a system of restrictions on the variable coefficients of
the dynamic system

g > Oa 66 > 07
Bz >0, B4 >0,
Bs >0, Bs >0, t € (ta;ts), (2.4)
By >0, p3 >0,
p2 >0, as —p3 <0,
ay, as are the coefficients that can take different values and be alternating or equal to zero.
In the system of equations (2.2), we make some transformations:

d;l)ic(lz) = (a5 — p3) + Bou(t) + Bro(t),

du(t) 95
TR (g — p2) — Baw(t) + Bsv(t), (2.5)
dgc(l? = ap — Bsu(t) — Powl(t).

Now, let us assume that the constant coeflicients of the system of equations (2.2) satisfy additional
conditions that do not contradict (2.4)

Be = B8, Bo = Ba,
{55 = B7, ag = (a4 — p2) — (a5 — p3). (2.6)

Let us add the first and third equations of system (2.5) and subtract the second equation of this
system. Then, taking into account (2.6), we obtain the relation
dw(t) do(t) du(t)

wdt vdt wdt 0- (2.7)
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From (2.7), we obtain the first integral of the system of equations (2.2), (2.3) under the assumption

(2.6)
L (2.8)
u (15)
The first integral (2.8) in the solution space (O, w(t),u(t),v(t)) of the system of equations (2.2),
(2.3) is a hyperbolic paraboloid.

Introduce the notation

U2
= . 2.9
p WV ( )
Then,taking into account (2.8), (2.9), the three-dimensional dynamic system (2.2) can be reduced

to a two-dimensional dynamic system

dw(t) )
—— = (a5 — ps)w + Bepw*v + Prwv,

dt (2.10)
du(t) 5

dat = a6V — PBowv — Bepvw,

with the initial conditions
w(tg) = W2, U(tz) = V3.
A qualitative analysis of the system of equations (2.2), taking into account the adequacy and non-
triviality of the mathematical model, leads to a system of restrictions on the coefficients of the dynamic
system
ag = (ag —p2) — (a5 — p3) > 0. (2.11)
Let us introduce the notation
{F1 (w,v) = (a5 — ps)w + Bspw?v + Brww,

, (2.12)
Fy(w,v) = agv — Bywv — Pgpvw.

Taking into account (2.12), the nonlinear dynamic system (2.10) can be rewritten in a vector form
av 2 (R w(t) w
—= t) = Vi) = ("2). 2.13
= (n) Yo=(30). Ve-(1) (213)
We calculate the divergence of a vector field ?(Fl7 Fy),

. OF, 0F;
divF =1+ 22
a ow * ov
Using (2.6) and (2.11), equation (2.14) can be rewritten as follows:

: OF, OF:
divF = a—wl + 371)2 = (oiq — p2) + Brv — Bow. (2.15)

= (a5 — p3) + 2Bspwv + Prv + ag — Bow — 2Psprw. (2.14)

Introduce the notation
div? = G(v,w) = g — pa + Brv — Bow. (2.16)
In the phase plane (O, v(t), w(t)) of solutions of the two-dimensional dynamic system (2.12), (2.13),
we consider the line on which the divergence of the vector field F'(F1, Fy) vanishes,

Qg — P2 Br
w & ta (2.17)

Consider a few cases.
Case 1:

Q4 = Po. (2.18)
In the case of (2.18), (2.17) has the form

Br
w Bgv. (2.19)

Theorem 2.1. Problem (2.12), (2.13), (2.18) in some simply connected domain D € (O,v(t), w(t)) of
the first quarter of the phase plane (O,v(t),w(t)) has the solution in the form of the closed trajectory
that lies entirely in this domain.
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Proof. Consider a line on the phase plane (O, v, w) on which the divergence of vector field vanishes.
According to (2.17), (2.18), this curve will be a line (2.19).

Thus, the divergence of the vector field in the physically meaningful first quarter of the phase plane
of solutions turns to zero on a half-line (2.19) with the left endpoint O(0,0). Suppose that the starting
point M (v, ws) also belongs to the half-line (2.19), when v > 0.

It is clear that the G(v(t),w(t)) divergence (2.16) of the vector field F(Fl,FQ) in some domain
D € (0,v(t),w(t)), containing the point M (ve, ws), changes its sign (Figure 1).

wlG <0
G=0
D
M(vg) wy)
tana=—7 ¢G>0
a By .
0 v
FIGURE 1

According to the Bendixson criterion, there is a closed integral trajectory of the dynamic system
(2.12), (2.13), (2.18), that lies entirely in this domain [1]. O

Case 2:
Qg > po. (2.20)

Theorem 2.2. Problem (2.12), (2.13), (2.20) in some simply connected domain D € (O, v(t), w(t)) of
the first quarter of the phase plane (O, v(t),w(t)) has the solution in the form of the closed trajectory
which completely lies in this domain.

Proof. Consider a line on the phase plane (O, v, w) on which the divergence of the vector field becomes
equal to zero. According to (2.17), (2.20), this curve will be a line (2.17).

G>0
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FIGURE 2
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The divergence of the vector field in the physically meaningful first quarter of the phase plane of
solutions turns to zero on a half-line with the left endpoint M; (07 %) Suppose that the starting
point Mz (va, ws) also belongs to the half-line (2.19), when v > 0.

It is clear that the G(v(t),w(t)) divergence (2.16) of the vector field ?(Fl, F3), in some domain
D € (O,v(t), w(t)), containing the point Ma(ve, ws), changes its sign (Figure 2).

According to the Bendixson criterion, there is a closed integral trajectory of the dynamic system
(2.12), (2.13), (2.20), that lies entirely in this domain [1]. O

Case 3:
oy < p2. (221)

Theorem 2.3. Problem (2.12), (2.13), (2.21) in some simply connected domain D € (O, v(t), w(t)) of
the first quarter of the phase plane (O, v(t), w(t)), has the solution in the form of the closed trajectory
lying completely in this domain.
Proof. Consider a line on the phase plane (O, v,w) where the vector field divergence becomes equal
to zero. According to (2.17), (2.21), this curve will be a line (2.17).

The divergence of the vector field in the physically meaningful first quarter of the phase plane of
solutions turns to zero on a half-line with the left endpoint Mg(mﬁ_if“, 0). Suppose that the starting
point My(va, ws) also belongs to the half-line (2.17), when v > ”2[;7;"4.

It is clear that the G(v(t),w(t)) divergence (2.16) of the vector field ?(Fl, F), in some domain
D € (0,v(t),w(t)), containing the point My(vy, ws), changes its sign (Figure 3).

wlG <0
tana = & G>0
o ﬁ9 >
0 —a v
M, (Pz 41 O)
r By
FIGURE 3

According to the Bendixson criterion, there is a closed integral trajectory of the dynamic system
(2.12), (2.13), (2.21), that lies entirely in this domain [1]. O

3. MATHEMATICAL MODEL WITH TERMS SELF-LIMITING POPULATION GROWTH

Let us consider a system of nonlinear differential equations (1.1) in the case of constant coefficients

d%t) = asw(t) — 1w (t) + Beu(t)w(t) + Brw(t)v(t) — paw(t),
dZ§t) = aqu(t) — 1u?(t) — Bau(t)w(t) + Bsu(t)v(t) — pau(t), (3.1)
dz;it) = agu(t) — 3v°(t) — Bsu(t)o(t) — Bow(t)o(t),

with the initial conditions
w(tg) = w2, ’U,(tg) = U2, ’U(tz) =119, tE€ (tg;tg). (32)



RESEARCH OF A NONLINEAR DYNAMIC SYSTEM DESCRIBING THE PROCESS OF INTERACTION 361

This suggests the case
71 7é 07 V2 7é Oa V3 7é 0. (33)

After some mathematical transformations of the system of equations (3.1), we obtain the following
system:

d%c(l? = (a5 —p3) — nw(t) + Beu(t) + Bro(t),
deg) = 2(as4 — p2) — 272u(t) — 2Bsw(t) + 2B5v(t), (3.4)
dﬁé? = ag — 30(t) = Bsult) — Pow(t).

Adding the first and third equations of system (3.4) and subtracting the second equation of this
system, we obtain the relation

du(t) | dv(t)  dw(t) . wu,
udt vdt wdt (In ﬁ) = (a5 — p3) + ag — 2(aq — p2)

+2(Bs — 71 — Bo)w(t) + (Br — v3 — 2B5)v(t) + (B — P + 272)u(t). (3.5)

Consider a special case

-2

284 —71 — B =0,
Br — 3 — 285 =0,

(3.6)
Bs — Bs + 272 =0,
(a5 — p3) + ag — 2(aq — p2) = 0.
Then, taking into account (3.6), we rewrite (3.5) in the following form:
du(t) dv(t) dw(t) N
-9 =(ln—) =0 3.7
udt vdt wdt (In u? ) ’ (3.7)
whence we obtain the first integral of the system of nonlinear differential equations (3.1),
wv wWa Vg
= " = const = ¢. (3.8)

Now, (3.8) in the solutions space (O, w(t),u(t),v(t)) of the system of differential equations (3.1) is
a cone

wu = qu. (3.9)

We express the function v(¢) from (3.9) and substitute it into (3.1), which in this case reduces to
a system of two differential equations

dw(t)

— = (a5 — pa)w(t) — mw?(t) + Beu(t)w(t) + Brqu(t),
) 3 (3.10)
= (0 = p2)u(t) = 7>() — Bau(thw(t) + e’ -
with the initial conditions
’U}(tg) = Wwa, u(t2) = Uz, te (t27t3) (311)
Introduce the notation
Fi(w,u) = (a5 — p3)w(t) — yiw?(t) + Beu(t)w(t) + Brqu(t), (312

Fi(w,u) = (aq — pa)u(t) — y2u?(t) — Bau(t)w(t) + 55(]15((;)) .

Taking into account (3.12), the nonlinear dynamic system (3.10), (3.11) can be rewritten in a vector

form
T vo-() ve-() e
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We calculate the divergence of a vector field ?(Fl, Fy),

. OF; OF: u?
divF = 21 + 22 = (a5 —p3) — 2w + Beu + (g — p2) — 272u — Baw + 3050 —,
) .
. U
div F = (s — p3) + (aq — p2) + (Bs — 272)u — (271 + Ba)w + 3ﬂ5q$
and introduce the notation
u?
Gi(u,w) = (a5 — p3) + (s — p2) + (B — 272)u — (271 + Ba)w + 355Q; . (3.15)

On the phase plane of solutions of a two-dimensional nonlinear dynamic system (3.10), we study
the curves on which the divergence of the vector field vanishes,

2
(a5 —p3) + (4 — p2) + (Bs — 27v2)u — (271 + Pa)w + 35561% =0. (3.16)

Assume that the constant coefficients of the system of equations (3.13), except for (3.6), satisfy
additional conditions that do not contradict the adequacy of the mathematical model

(s —p3) + (ag — p2) =0,

56 = 2’}/2

(3.17)

Then, taking into account (3.17), in the first quarter of the phase plane of solutions, which has a
physical meaning, (3.16) is a half-line passing through the origin of coordinates (the left boundary of
the half-line is not included in the consideration).

Thus, on the half-line the divergence of the vector field becomes zero, in the left angular sector it
is negative, and in the right angular sector it is positive,

— /_3Bsq
w= 271“’54 u’ (3.18)

u > 0.

Theorem 3.1. Problem (3.12), (3.13), (3.6), (3.17) in some simply connected domain DE(O, u(t), w(t))
of the first quarter of the phase plane (O,u(t), w(t)) has the solution in the form of the closed trajectory
lying completely in this domain.

Proof. Consider a line on the phase plane (O, u, w) where the vector field divergence becomes equal to
zero. According to (3.14), (3.17) this curve will be a half-line (3.18). The divergence of the vector field
in the physically meaningful first quarter of the phase plane of solutions turns to zero on a half-line
(3.18). Suppose that the starting point Ms(uz, ws) also belongs to half-line (3.18), when u > 0.

It is clear that the Gy (u(t),w(t)) divergence (3.14) of the vector field ?(Fl, F3), in some domain
D € (O,u(t),w(t)), containing the point Ms(us, ws), changes its sign (Figure 4).
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wl G <0
G, =0
D
Ms(up, ws)
tana = 335‘1
a 2y1+pB G >0
0 u
FIGURE 4

According to the Bendixson criterion, there is a closed integral trajectory of the dynamic system
(3.12), (3.13), (3.6), (3.17) that lies entirely in this domain [1]. O

Now, let us consider the case when in (3.15) only the equality
(a5 —p3) + (s —p2) =0 (3.19)

holds. Then, taking into account (3.19), after some mathematical transformations in (3.15), the
divergence of the vector field in this case vanishes on the curve

(271 + Ba)w? — (Bs — 27y2)uw — 3Bsqu’ = 0. (3.20)

Now, (3.20) in the physically meaningful phase plane of solutions (3.13), is a half-line passing
through the origin of coordinates (without it)

w = au,

— (Bs—272)+/12¢B5(271+B4)+(Bs—272)2
. e -0, (321
u > 0.

Theorem 3.2. Problem (3.12), (3.13), (3.6), (3.19) in some simply connected domain DE(O, u(t), w(t))
of the first quarter of the phase plane (O, u(t), w(t)) has the solution in the form of the closed trajectory
lying completely in this domain.

Proof. Consider a line on the phase plane (O, u,w) where the vector field divergence becomes equal
to zero. According to (3.14), (3.19), (3.20), this curve will be a line (3.21).

The divergence of the vector field in the physically meaningful first quarter of the phase plane of
solutions turns to zero on a half-line (3.21). Suppose that the starting point Mg (uz,ws) also belongs
to half-line (3.21), when u > 0.

It is clear that the G;(u(t),w(t)) divergence (3.14) of the vector field ?(Fl, F5), in some domain
D € (O,u(t),w(t)), containing the point Mg(us, ws), changes its sign (Figure 5).
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wl G, <0
G, =0
D
M (up, ws)
o tana = a G >0
0 u
FIGURE 5

According to the Bendixson criterion, there is a closed integral trajectory of the dynamic system
(3.12), (3.13), (3.6), (3.19) that lies entirely in this domain [1]. O

After some mathematical transformations of the system of equations (3.1), we can get the following
system:

df%? = (a5 — p3) — mw(t) + Beu(t) + Bro(t),
ch(l? = (e = p2) —2ult) — Bsw(?) + Bsv(t), (3.22)
ch(t? = as = 730(t) = Asult) — Bow(?).

Adding the first and third equations of system (3.22) and subtracting the second equation of this
system, we obtain the relation

Cdu(t) | du(t) | dw(?)

udt vdt wdt (In %), = (a5 — p3) + ag — (g — po
+(Bs = m = Bo)w(t) + (Br — 3 — B5)v(t) + (B — Bs + y2)ult). (3.23)

Now, let us assume that the constant coefficients of the system of equations (3.1) satisfy the
additional conditions
Be — Bs +72 =0,
- — M5 = 07
Br—s— B (3.24)
B1—y1 — By =0,
a6 — (s — p2) + (a5 —p3) = 0.
From (3.23), under the assumption (3.24), we obtain the first integral of the system of equations
(3.1), (3.2),

we _ Wt (3.25)
o Uy ’

The first integral (3.25) in the solution space (O, w(t),u(t),v(t)) of the system of equations (3.1),
(3.2) is a hyperbolic paraboloid.

Introduce the notation

WV
pr=—"r. (3.26)
U2
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Then, taking into account (3.25), (3.26), the three-dimensional dynamic system (3.1) can be reduced
to a two-dimensional dynamic system

d%it) = (a5 — p3)w(t) — yiw?(t) + Beu(t)w(t) + Brpru(t),
du(t) . (3.27)
— = (0 = pa)u(t) — 1203(t) — Bru(t)w(t) + fspr 8,

with the initial conditions
U)(tg) = W2, u(tg) = Uus.

Introduce the notation

Fi(w,u) = (a5 — p3)w(t) — yiw?(t) + Beu(t)w(t) + Brpru(t),
- 5 o (3.28)
Fy(w,u) = (aq — p2)u(t) — v2u(t) — Baut)w(t) + Bsp1 4y -

Taking into account (3.24), the nonlinear dynamic system (3.27), (3.28) can be rewritten in a vector

form
dX: F <§;) L V= (2‘;8) . V() = <w2> : (3.29)

U2

We calculate the divergence of a vector field ?(Fl, Fy),

div ? = OF: %

u
- T = (a5 — p3) = 21w + Bou + (g — p2) — 272u — Baw + 2P5p1 —,
(911/ 3u w

v (3.30)
divE = (a5 —p3) + (o4 — p2) + (Bs — 272)u — (271 + Ba)w + 2»35]?15
and introduce the notation
u
Ga(u,w) = (a5 — p3) + (g — p2) + (B — 272)u — (271 + Ba)w + 2ﬂ5p16 ) (3.31)

On the phase plane of solutions of a two-dimensional nonlinear dynamic system (3.27), we study
the curves on which the divergence of the vector field vanishes,

(a5 —p3) + (o — p2) + (Bs — 272)u — (271 + Pa)w + 2ﬂ5p1% =0. (3.32)

Assume that the constant coefficients of the system of equations (3.1), except for (3.24), satisfy
additional conditions (3.17) that do not contradict the adequacy of the mathematical model.

Constraints (3.17), (3.24) on the constant coefficients of the nonlinear dynamic system (3.1) lead
to the following constraint system, which does not contradict the adequacy and nontriviality of the
mathematical model,

Be = 272,
Bg = 372,
Br —v3 —Bs =0,

(3.33)
Bas—71— Bo =0,
ag = 2(aq —p2) >0,
(a5 — p3) = —(aa — p2) <O0.
Taking into account (3.33), equality (3.32) can be rewritten as follows:
u= %w? (3.34)

Now, (3.34) in the physical value of the first quarter of the phase plane of solutions of the resulting
system (3.27) is a parabola passing through the origin of coordinates.

Theorem 3.3. Problem (3.28), (3.29), (3.33) in some simply connected domain D € (O, u(t),w(t)) of
the first quarter of the phase plane (O,u(t), w(t)) has the solution in the form of the closed trajectory
which completely lies in this domain.
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Proof. Consider a curve on the phase plane (O, u, w) where the vector field divergence becomes equal
to zero. According to (3.34) this curve will be a parabola.

The divergence of the vector field in the physically miningful first quarter of the phase plane of

solutions turns to zero on a parabola. Suppose that the starting point M7 (usz,ws) also belongs to
parabola (3.34), when u > 0. It is clear that the Go(u(t), w(t)) divergence (3.30), (3.33) of the vector

wlG, <0

2W2)

Gy, >0

FIGURE 6

field ?(Fl, F), in some domain D € (O, u(t), w(t)), containing the point M7 (uz,ws), changes its sign

(Figure 6).
According to the Bendixson criterion, there is a closed integral trajectory of the dynamic system
(3.28), (3.29), (3.33) that lies entirely in this domain [1]. O
Now, consider the case where the coefficients of the dynamic system (3.1) satisfy the system
Bs = 272,
Bs = 372,
— 3 — B5 =0,
Br— 3 — Bs (3.35)
Br—m — By =0,
ag = (a4 — p2) — (a5 — p3),
(a5 — p3) + (ca — p2) # 0.
Taking into account (3.32), system (3.35) can be rewritten as follows:
2 _ _

28sp1 205p1

Now, (3.36) in the physical meaning of the first quarter of the phase plane of solutions of system
(3.27) is a branch of the parabola in the case of (a5 — p3) + (@4 — p2) > 0 when passing through the
point Mg (O, W’;?f#) (Figure 7), and in the case of (a5 — p3) + (g — p2) < 0 when passing
through the origin of coordinates (Figure 8).

Theorem 3.4. Problem (3.28), (3.29), (3.35) in some simply connected domain D € (O, u(t), w(t))
the first quarter of the phase plane (O, u(t), w(t)) has the solution in the form of the closed trajectory
which completely lies in this domain.

Proof. Consider a curve on the phase plane (O, u,w) where the vector field divergence becomes equal
to zero. According to (3.32), (3.35) this curve will be a parabola (3.36).

The divergence of the vector field in the physically meaningful first quarter of the phase plane
of solutions turns to zero on a parabola. Suppose that the starting point Mg(us,ws) (Figure 7) or
Mo (ug,ws) (Figure 8) also belongs to parabola (3.36), when u > 0, w > 0.
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w Gz<0

M, (0, (as —p3) + (aq _Pz))

2y, + B,
G, >0
0 u
FIGURE 7
w Gz <0
Gz =0
2, W)
G, >0
0 u
FIGURE 8

It is clear that the Go(u(t),w(t)) divergence (3.30), (3.33) of the vector field ?(Fl,Fg), in some
domain D € (O,u(t), w(t)), containing the point Mg (ug,ws) (Figure 7), or the point Mig(us,ws)
(Figure 8), changes its sign.

According to the Bendixson criterion, there is a closed integral trajectory of the dynamic system
(3.28), (3.29), (3.35) that lies entirely in this domain [1]. O

CONCLUSION

Thus, the paper examines a three-dimensional nonlinear dynamic system describing the interaction
of three populations speaking three different Colchian, Georgian and Svan languages. The period when
the Colchian population predominated over the other two is considered. In the absence of quadratic
terms characterizing the self-restriction of population growth and certain relationships between the
constant coefficients of a nonlinear three-dimensional dynamic system, the first integral in the form
of a hyperbolic paraboloid is found. Using the first integral, the three-dimensional nonlinear dynamic
system is reduced to a two-dimensional system. For some relations between the constant coefficients of
a two-dimensional dynamical system, the theorems on the existence of a closed trajectory in a simply
connected domain of the first quarter of the phase plane of solutions are proved using the Bendixson
principle.
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In the case of quadratic terms characterizing the self-restriction of population growth and certain

relationships between the constant coefficients of a nonlinear three-dimensional dynamic system, the
first integrals are found. In one case, a system is a cone, and in the other, a hyperbolic paraboloid. In
both cases, using the first integral, the general three-dimensional nonlinear dynamic system is reduced

to

a two-dimensional system. For some relations between the constant coefficients of a two-dimensional

dynamical system, the theorems on the existence of a closed trajectory in a simply connected domain

of

the first quarter of the phase plane of solutions are proved using the Bendixson principle.
Thus, in all these cases, it is proved that all three populations living in the same region and speaking

three different languages, coexist and do not completely assimilate them.
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