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DYNAMIC CONTACT PROBLEM FOR VOLTERRA VISCOELASTIC MODEL

NUGZAR SHAVLAKADZE

Abstract. The dynaic boundary value contact problem for a half-space with an elastic inclusion is

considered under the conditions of the Volterra viscoelastic model. Using the methods of contour
integration and integral transformations, the contact problem is reduced to an integro-differential

equation with respect to a tangential stress jump. Employing also the properties and method of

orthogonal polynomials, the integro-differential equation is reduced to an infinite system of linear al-
gebraic equations. The quasi-complete regularity of the obtained system is proven, and the reduction

method for an approximate solution is developed.

1. Introduction

The problem under considered refers to a wide class of contact and mixed problems in viscoelasticity
theory. There are many previously studied problems dealing with various domains reinforced with a
thin elastic inclusion or a patch of variable stiffness, for which both the exact and approximate solutions
have been obtained. In particular, effective solutions were obtained in [6,16] for a contact problem of
a piecewise-homogeneous orthotropic plate and two-dimensional integro-differential equations related
to contact problems for a viscoelastic plate with finite (semi-infinite) inclusions of variable stiffness.
Approximate solutions of static and dynamic contact problems for elastic and viscoelastic (Kelvin-
Voigt material) half-space with rigid or elastic inclusion are considered in [14,15,18].

In [17], the dynamic boundary value problem for a half-space with a cut is considered under the
condition of the Volterra viscoelastic model. The problems are reduced to a quasiregular infinite
system of linear algebraic equations, which allow us to obtain an approximate solution with any
accuracy.

The present paper considers the dynamical contact problem for a viscoelastic half-space under the
Volterra model conditions. The half-space is reinforced by an elastic inclusion of variable rigidity.
The Volterra integral model describes much more accurately the behavior of the material, making
the problem under consideration more relevant from applied and mathematical points of view. The
problem is reduced to the Carleman-type problem of the theory of analytic functions, and the effective
solution of this boundary value problem is constructed using the method of factorization. Based on
the contact condition along the contact surface, the integro-differential equation for the shear stress
jump is derived. The quasi-regularity of the equivalent infinite system of linear algebraic equations is
proved.

2. Statement of the Problem

The paper studies the dynamical contact problem for a viscoelastic body in the form of a half-
space (−∞ < x, z < ∞, y > 0), reinforced by an elastic inclusion in the form of a strip (0 ≤
y ≤ b, −∞ < z < ∞) lying in the plane x = 0. The outer border of the inclusion is under the
action of uniformly distributed shearing (acting along the Oz axis) load of intensity τ0δ(y)H(t− t0),
H(t− t0) is the Heaviside function, δ(y) is the Dirac Delta function, t is the time parameter, and t0 is
the ageing of the material at the beginning of the loading. Under the so-called anti-plane deformation
conditions, only the displacement component ω = ω(x, y, t) and the shear stress components τxz, τyz
are other than zero.
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The basic equations of the linear theory of creep for the Volterra materials, expressing the relation
between the components of strain and stress, have the form

∂ω(x, y, t)

∂x
=
τxz(x, y, t)

G(t)
−

t∫
t0

τxz(x, y, τ)K(t, τ)dτ

∂ω(x, y, t)

∂y
=
τyz(x, y, t)

G(t)
−

t∫
t0

τyz(x, y, τ)K(t, τ)dτ,

(1)

where G(t) is the instantaneous shear modulus, K(t, τ) = ∂
∂τ

(
1

G(t) +µ(t, τ)
)
is the shear strain kernel,

µ(t, τ) = φ(τ)ψ(t−τ) is the creep size of shear strain, φ(τ) is the so-called ageing function and ψ(t−τ)
characterizes the heredity properties of a material.

We approximate the function µ(t, τ) by the relation: µ(t, τ) = (A + Be−λτ )[1 − e−γ(t−τ)] and
suppose that G(t) = G = const, A, B, λ, γ are the positive constants [2, 3, 8–10].

Considering the equilibrium equations of dynamical viscoelasticity, we obtain from (1) the following
boundary value problem:

∆ω(x, y, t) = ρ

(
1

G

∂2ω

∂t2
−

t∫
0

∂

∂τ

[
(A+Be−1τ )(1− e−γ(t−τ)

] ∂2ω
∂τ2

dτ

)
, |x| <∞, y > 0,

∂ω(x, 0, t)

∂y
= 0,

(2)

∆ is the two-dimensional Laplace operator, and ρ is the material density of the half-space. Along the
contact surface, the shear stress is discontinuous and the displacement is continuous,

⟨τxx(0, y, t)⟩ = µ(y, t), 0 < y < b; µ(y, t) = 0, y ≥ b,

ω(−0, y, t) = ω(+0, y, t) = ω(1)(y, t), ⟨f(0, y, t)⟩ ≡ f(−0, y, t)− f(+0, y, t),
(3)

the displacement of the inclusion points ω(1)(y, t) satisfies the condition

∂

∂y
h(y)

∂ω(1)(y, t)

∂y
− ρ0h(y)

E0

∂2ω(1)(y, t)

∂t2
= − 1

E0
µ(y, t)− 1

E0
τ0H(t− t0)δ(y), (4)

where µ(y, t) is an unknown contact stress at the point y at time moment t, acting onto the inclusion
along the surface of its contact with a half-space, ρ0 is a density and E0 is the elasticity modulus of
the inclusion material, h(y) is its thickness. It is required to find the stresses and displacements fields
in the half-space.

3. Solution of the Problems

The contour integration, the integral Fourier transform with respect to the variables x, y and the
Laplace integral transform with respect to the variables t from (2), (3) yield [19]

−ωα,β(p) + g(p)ωα,β(p+ λ) =
−µβ(p)

G [β2 + α2 + k(p)]
, p = iζ + ε,

ω′
α(0, p) = 0,

(5)

where ωα,β(p) is the Fourier integral transform (with respect to the variables x, y) and the Laplace

integral transform (with respect to the variables t) of the function ω(x, y, t), ω′
α(y, p) =

ωα(y,p)
∂y is the

Fourier transform (with respect to the variables x) and the Laplace integral transform (with respect

to the variables t) of the function ω(x,y,t)
∂y , µβ(p) is the integral Fourier transform (with respect to the

variable y) and the Laplace integral transform (with respect to the variables t) of the function µ(y, t),

g(p) =
q(p)

β2 + α2 + k(p)
, q(p) =

Bργ(p+ λ)3

p(p+ γ)
, k(p) ≡ ρ

G
p2 +

Aργp2

p+ γ
, ε is a positive number.
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Introducing the notation

ω̄α,β(iζ + ε) ≡ ψα,β(ζ), ω̄α,β(iζ + ε+ λ) = ψα,β(ζ − iλ), (6)

we obtain the following condition of the Carlemman-type boundary value problem for a strip:

ψα,β(ζ) + µ
g0(ζ)

ε+ λ− iζ
ψα,β(ζ − iλ) =

µβ(iζ + ε)

G [β2 + α2 + k(iζ + ε)]
2 , |ζ| <∞, (7)

where

g0(ζ) =
−ρ(iζ + ε+ λ)2

[
ζ2 + (λ+ ε)2

]
G(iζ + ε)(iζ + γ + ε)(α2 + β2 + k(iζ + ε))

, µ = BGγ.

The boundary value problem is formulated as follows:
Find a function ψα,β(z) which is analytic in the strip −λ < Im z < 0, continuously extendable to the
strip boundary, bounded at infinity and satisfies condition (7) [4, 5].

It is easy to show that g0(ζ) → 1, ζ → ±∞, Ind g0(ζ) = 0 (index of the function on the real axis is
equal to zero) and lg0(ζ) ∈ L1(−∞,∞) (is integrable on the real axis ), therefore, this function can
be represented as follows:

g0(ζ) =
X0(ζ − iλ)

X0(ζ)
, |ζ| <∞, X0(z) = exp

(
− 1

2iλ

∞∫
−∞

ln g0(ζ) cth
π

λ
(ζ − z)dζ

)
.

The function ε+ λ− iζ has the form

ε+ λ− iζ =
X2(ζ)

X2(ζ − iλ)
, X2(z) = λ−

iz
λ Γ

(ε+ 2λ− iz

λ

)
.

Moreover,

µ =
X1(ζ − iλ)

X1(ζ)
, X1(z) = exp

( iz
λ

lnµ
)
.

The functions X0(z) and X1(z) are holomorphic in the strip −λ < Im z < 0, continuous at the border
of this strip and bounded in a closed strip −λ ≤ Im z ≤ 0.

Using Stirling’s formula about the Γ(z) function [1], for a sufficiently large |z|, the function X2(z)
satisfies the estimate

X2(z) = O
(
|x|

3
2+

y+5
λ e−

π
2λ |x|

)
, z = x+ iy, |x| → ∞, −λ ≤ y ≤ 0. (8)

Therefore, condition (7) can be rewritten as follows:

H(ζ) +H(ζ − iλ) =
µ̄β(iζ + ε)

G [β2 + α2 + k(iζ + ε)]
X(ζ), |ζ| <∞, (9)

where

H(z) = X(z)ψα,β(z), X(z) = X0(z)X1(z)X2(z), −λ < Imz < 0.

The solution of the boundary value problem (9) can be represented in the following form:

ψα,β(z) =
1

2iλGX(z)

∞∫
−∞

µ̄β(iζ + ε)X(ζ)dζ

[β2 + α2 + k(iζ + ε)] sh(π/λ)(ζ − z)
, −λ < Imz < 0. (10)

Since the function X(z) exponentially vanishes at infinity, the last integral also has this property and
the function ψα,β(z), determined by formula (10), is holomorphic in the strip −λ < Im z < 0 and is
bounded at infinity.

Taking into account the notation (6), the solution to problem (5) has the form

Gω̄α,β(p0) = − µ̄β(p0)

2 [β2 + α2 + k(p0)]

− 1

2λX(−ip0 + iε)

∫
µp(iζ + ε)X(ζ)dζ

[β2 + α2 + k(iζ + ε)] sh(π/λ)(ζ + ip0 − iε)
, p0 = iζ0 + ε.
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The inverse Fourier integral transform with respect to the variables β and α results in

Gω̄(x, y, p0) = −
b∫

−b

µ̄(η, p0)dη
1

2π

∞∫
0

e−
√

α2+k(p0)|η−η|√
α2 + k(p0)

cosαxdα

− 1

iλ

b∫
−b

µ̄(η, p0)dη
1

2π

∞∫
0

Ha(|y − η| , ζ0) cosαxdα, (11)

where

Hα(|y − η| , ζ0) =
1

X(ζ0)

∞∫
−∞

e−
√

α2+k(i5+ε)|ν−η|√
α2 + k(iζ + ε)

X(ζ)dζ

sh(π/λ)(ζ − ζ0)
.

Using the formula GR 3.951 (8) (see [11]), the right-hand side of formula (11) can be represented as
a sum of integrals with principal and regular kernels:

Gω̄(x, y, p0) = − 1

2π
A(ζ0)

b∫
−b

ln
1

x2 + (y − η)
2µ(η, p0)dη

− 1

2π

b∫
−b

R(x, |y − η| , p0)µ(η, p0)dη, (12)

where

R(x, |y − η| , p0) =
∞∫
0

[
e−

√
α2+k(p0)|y−η|√
α2 + k(p0)

− e−α|y−η|

α

]
cosαxdα

+
1

iλ

∞∫
0

[
Hα (y − η, ζ0)−A(ζ0)

e−α|y−η|

α

]
cosαxdα,

A(ζ0) = 1 +
1

λiX(ζ0)

∞∫
−∞

X(ζ)dζ

sh(π/λ)(ζ − ζ0)
, p0 = iζ0 + ε.

Taking into account the condition of contact between the inclusion and the half-space ω(0, y, p0) =
ω(1)(y, p0) and formula (12), performing then the Laplace integral transform (L{·}) on the both parts
of equation (4), we obtain the following integro-differential equation:(

d

dy
h(y)

d

dy
+
ρ0p

2
0h(y)

E0

)(
1

2π

1∫
−1

ln
1

|y − η|
µ(η, p0)dη +

1∫
−1

Q(|y − η| , p0)µ(η, p0)dη
)

=
G

A(ζ0)E0
µ(y, p0) +

Gτ0e
−p0t0

A(ζ0)E0p0
δ(y) (13)

under the condition that
1∫

−1

µ̄(η, p0)dη = 2τ0
e−t0p0

p0
, (14)

where Q(|y − η|, p0) = 1
2π

R(0,|y−η|,p0)
A(ζ0)

, µ̄(η, p0) = L{µ(η, t)}.
Therefore, the problem is reduced to the integro-differential equation (13) with condition (14).

A solution to problem (13), (14) is sought in the form

µ(η, p0) =
a0(p0)√
1− η2

+
1√

1− η2

∞∑
m=1

am(p0)Tm(η), (15)
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where Tm(η) is the first kind Chebyshev orthogonal polynomial, {an(p0)}n≥1 an unknown functional
sequence. By virtue of the inclusion equilibrium conditions (14), we obtain

a0(p0) = 2τ0
e−t0p0

πp0
. (16)

Let us assume that the thickness of the inclusion varies according to the following law: h(x) =

h0
√
1− x2, |x| < 1, h0 = const. Using the Rodrigues formula for the Jacoby orthogonal polynomials

[20] and the following spectral relation

1

π

1∫
−1

ln
1

|x− y|
Tm(y)dy√
1− y2

= µmTm(x), µm =

{
ln 2, m = 0
1
m , m ̸= 0

and also the conditions of orthogonality of the first kind Chebyshev polynomials, from (13–15), we
obtain the infinite system of linear algebraic equations (n ≥ 1)

δn(p0)an(p0) +

∞∑
m−1

Lmn(p0)am(p0) = a0(p0)gn(p0), n = 1, 2, 3, . . . , (17)

where

Lmn(p0) =
ρ0p0

2h0
2E0

L(1)
mn + L(2)

mn(p0), L(1)
mn =

1

m

1∫
−1

√
1− y2Tm(y)Tm(y)dy,

L(2)
mn(p0) =

1∫
−1

Tn(y)

( 1∫
−1

K(|y − η|, p0)
Tm(η)dη√

1− η2

)
dy,

gn(p0) = −Gγ(p0)
2E0

1∫
−1

Tn(y)δ(y)dy

−ρ0p
2
0h0

πE0
ln2

1∫
−1

√
1− y2Tn(y)dy −

2

π

1∫
−1

Tn(y)

( 1∫
−1

K(|y − η| , p0)dη√
1− η2

)
dy,

δn(p0) =
πh0
4
n+

πγ(p0)G

2E0
,

K(|y − η| , p0) =
∂

∂y

√
1− y2

∂Q(|y − η| , p0)
∂y

+
ρ0p

2
0

E0

√
1− y2Q(|y − η| , p0), γ(p0) =

1

A(−ip0 + iε)
.

Using the properties of the first kind Chebyshev orthogonal polynomials and Gamma function, we
get [1, 20]

L(1)
mn =

1

m


π/4, m = n ̸= 1,

π/8, m = n = 1,

−π/8, m = n± 2,

0, m ̸= n, m ̸= n± 2,

L(2)
mn(p0) =

√
πΓ(m+ 1)

8Γ(m+ 0.5)m(m− 1)

1∫
−1

Tn(y)×
( 1∫
−1

(1− η2)3/2P
(3/2,3/2)
m−2 (η)

∂2K(|y − η| , p6)
∂η2

dη

)
dy,

gn(p0) = −Gγ(p0)
2E0

cos
πn

2
− 2

π

1∫
−1

Tn(y)

( 1∫
−1

K(|y − η| , p0)dη√
1− η2

)
dy, n ̸= 2,
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g2(p0) =
Gγ(p0)

E0
+
ρ0p0

2h0
4E0

ln 2− 2

π

1∫
−1

T2(y)

( 1∫
−1

K(|y − η| , p0)dη√
1− η2

)
dy,

δn(p0) = O(n), n→ ∞.

We rewrite system (17) in the following form:

an(p0) +

∞∑
m−1

L̃m(p0)am(p0) = a0(p0)g̃n(p0), n = 1, 2, 3, . . . , (18)

where

g̃n(p0) =
gn(p0)

δn(p0)
, L̃nn(p0) =

Lnn(p0)

δn(p0)
.

Based on the previous representations, for system (18), we obtain the conditions

∞∑
n−1,m−1,

∣∣L̃nm(p0)
∣∣2 <∞,

∞∑
n−1

∣∣g̃n(p0)∣∣ <∞. (19)

The above conditions (19) prove that the infinite system (18) is quasi-completely regular in the space l2,
that is, their solutions satisfy the condition

∑∞
n−1 a

2
n(p0) <∞.

The results of [12, p. 534] are applicable to the infinite system (18). Relying on this fact, the
system

aNn (p0) +

N∑
m=1

L̃mn(p0)a
N
m(p0) = a0(p0)g̃n(p0), n = 1, 2, . . . , N, (20)

is solvable for sufficiently large N, and the convergence of approximate solutions {aNn (p0)}n=1,...,N to
exact solution {an(p0)}n≥1 is valid in the sense of the norm of the space l2.

The convergence rate is determined by the inequality

∥∥a(p0)− φ−1
0 āN (p0)

∥∥
l2
≤ C1(p0)

[ ∞∑
n=N+1

∞∑
m=1

|L̃mn(p0)|2
]1/2

+ C2(p0)


∞∑

n=N+1

|g̃n(p0)|2

∞∑
n=1

|g̃n(p0)|2


1/2

,

where a(p0) = {an(p0)}n≥1 = (a1(p0), a2(p0), . . . , an(p0), . . .) is the solution of system (17), aN (p0) =

(aN1 (p0), a
N
2 (p0), . . . , a

N
N (p0)) is the solution of system (20), φ−1

0 aN (p0) = (aN1 (p0), a
N
2 (p0), . . . ,

aNN (p0), 0, 0, . . .).

Considering the expressions for L̃nm(p0) and g̃n(p0), we have

C1(p0)

[ ∞∑
n=N+1

∞∑
m=1

|L̃nm(p0)|2
]1/2

≤ C∗(p0)

[ ∞∑
n=1

1

(n+N)
4

]1/2

= C∗(p0) [ζ(4, N)]
1/2

,

C2(p0)


∞∑

n=N+1

|g̃n(p0)|2

∞∑
n=1

|g̃n(p0)|2


1/2

= C∗∗(p0)

[ ∞∑
n=1

1

(n+N)
2

]1/2

= C∗∗(p0) [ζ(2, N)]
1/2

,

where ζ(s,N) is the known generalized Zeta function.
Using the asymptotic formula of the generalized Zeta function [7], we obtain the following inequality:∥∥a(p0)− φ−1

0 aN (p0)
∥∥
l2
≤ C(p0)N

−1/2. (21)

Thus, the solutions of system (18) can be constructed by the reduction method with any accuracy
[12,13], and the rate of convergence is determined by inequality (21).

From the properties of the functions K(|y − η|, p0) and gn(p0), with respect to the variable p0,
and from formula (16), it follows that the solution of system (18) (hence the function µ̄(η, p0)) is
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an analytic function in the half-plane Re p0, tending to zero, so exp(−t0p0), |p0| → ∞, (t0 > 0).
Therefore, an inverse Laplace integral transform exists:

µ(y, t) =
1

2πi

σ0+i∞∫
σ0−i∞

µ̄(η, p0)e
p0tdp0, σ0 > 0.

The problem can be solved under the assumptions where the inclusion thickness varies according to a
different law, including when it is constant.
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