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A NUMERICAL ALGORITHM OF SOLVING A NONLINEAR

INTEGRO–DIFFERENTIAL STRING EQUATION AND ITS ERROR

JEMAL PERADZE

Abstract. The paper considers an initial-boundary value problem for the Kirchhoff equation wtt =
φ
( ∫ π

0 w2
xdx

)
wxx describing the oscillation of a string. It is assumed that φ(z) ∈ Cp[0,∞), φ(z) ≥

α > 0, where p is either 1 or 2, and the coefficients a
(l)
i of expansions into a Fourier sine-series,

i = 1, 2, . . . , of the initial functions wl(x), l = 0, 1, satisfy the inequality |a(l)i | ≤ ωil−(p+s+2.5),
where ω and s are the positive numbers. As S. Bernstein showed, this requirement guarantees the

existence of a local solution to the problem posed. To find it, the numerical algorithm is constructed,

consisting of three parts: the Galerkin method, a modified Crank-Nicolson difference scheme, and a
Picard type iterative process. The algorithm error is estimated.

1. The Problem

1.1. Formulation of the problem and its background. In 1876 [19], G. Kirchhoff, when refining
D’Alembert’s linear model, derived an equation for a string of the form

wtt(x, t)−
(
α0 + α1

π∫
0

w2
x(x, t) dx

)
wxx(x, t) = 0, (1.1)

0 < x < π, 0 < t ≤ T,

where αl = const > 0, l = 0, 1.
In the present paper, we consider the following initial boundary value problem for the generalized

Kirchhoff equation

wtt(x, t) = φ

( π∫
0

w2
x(x, t) dx

)
wxx(x, t), 0 < x < π, 0 < t ≤ T, (1.2)

w(x, 0) = w0(x), wt(x, 0) = w1(x), w(0, t) = w(π, t) = 0,

0 ≤ x ≤ π, 0 ≤ t ≤ T,
(1.3)

with the aim to construct for it an approximate method and estimate the method accuracy. In (1.2),
(1.3), the functions φ(z) and wl(x) are known, l = 0, 1, and

φ(z) ≥ α, 0 ≤ z <∞, α = const > 0. (1.4)

The mechanical meaning of equation (1.2) [2] is to describe a dynamic string under conditions of
nonlinear stress-strain dependence, while equation (1.1), being a particular form of equation (1.2)
with φ(z) = α0 + α1z, is applicable in the case of the linear Hooke’s law.

Many experts have studied equations (1.1), (1.2) and their various versions and generalizations,

including the equation wtt(t) + a(∥A 1
2w(t)∥2)Aw(t) = f(t), a(s) ≥ a0 > 0, A = A∗ > 0. We mention

only some of the works [1–3,5–8,10,12–15,20–23,25,26,28–34,38,39] and especially accentuate paper [8]
as a pioneering mathematical study of equation (1.2). Most frequently, the authors were interested in
such questions as the solvability and uniqueness of a solution, its continuous dependence on the initial
data, as well as control and stability. As for the problem of constructing and finding the properties of
numerical methods for the above equations, it should be noted that there are relatively few published
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works in this direction. Various aspects of the algorithm construction for the Kirchhoff type equation
(1.1) are considered in the works of Attigui [4], Bilbao [9], Chaudhary et al. [11], Kachakhidze et
al. [18], Mbehou et al. [27], Liu and Rincon [24], Oplinger [35], Rogava and Vashakidze [40], Truong
et al. [41]. In our papers, an approximate algorithm was constructed and its total error was estimated
for equation (1.1) in [36] and for equation (1.2) in [37], which for these equations was done for the first
time. Approximate methods for solution a certain class of parabolic integro-differential equations are
investigated by Jangveladze et al. [17].

In this paper, we return to equation (1.2) considered in [37] under initial boundary conditions
of the form (1.3). The difference between these two papers is that in [37] it is assumed that the
initial functions wl(x), l = 0, 1, are analytic, whereas in the present paper the requirement on these
functions is relaxed so much that it becomes sufficient for these functions to have derivatives up to a
certain finite order. The latter assumption, expanding the class of possible functions wl(x), l = 0, 1,
however,affects the properties of an exact solution of the problem, as well as the rate of error reduction
of the numerical algorithm under consideration. As follows from [8], in this case the upper bound of
the time interval on which the solvability of problem (1.2), (1.3) is guaranteed, may be less than T .
Therefore the solution will already be local. It is proposed to find it by the same computational
algorithm that was applied by us in [37]. The main objective of the paper is to estimate the total
error of the result. This is achieved by including into the algorithm the parts related to the energy
preserving property (Lemma 5.2, Lemma 6.1), inherent in the Kirchhoff equation (1.2). Owing to
such an approach, we obtain a priori inequalities allowing us to estimate finally the total error of the
algorithm. The upper bound of the total error can be calculated. The formulas needed for this and
also for estimating T are written.

1.2. Restrictions. Let the function φ(z) from equation (1.2) satisfy, in addition to (1.4), the require-
ment

φ(z) ∈ Cp[0,∞), (1.5)

where p can be equal both to 1 and to 2.
Let in conditions (1.3), the functions

w0(x) and w1(x) be of the form wl(x) =

∞∑
i=1

a
(l)
i sin ix, l = 0, 1, (1.6)

and

|a(0)i | ≤ ω

ip+s+2,5
, |a(1)i | ≤ ω

ip+s+1,5
, i = 1, 2, . . . , (1.7)

where ω and s are some positive constants.

2. The Algorithm

2.1. Space discretization – Galerkin’s method. An approximate solution of problem (1.2), (1.3)
is written in the form

wn(x, t) =

n∑
i=1

wni(t) sin ix, 0 ≤ x ≤ π, 0 ≤ t ≤ T, (2.1)

where the coefficients wni(t) are defined by Galerkin’s method from the system of nonlinear differential
equations and the conditions

w′′
ni(t) + φ

(
π

2

n∑
j=1

j2w2
nj(t)

)
i2wni(t) = 0, i = 1, 2, . . . , n, 0 < t ≤ T, (2.2)

wni(0) = a
(0)
i , w′

ni(0) = a
(1)
i , i = 1, 2, . . . , n.

We introduce the functions

uni(t) = w′
ni(t), vni(t) = iwni(t), i = 1, 2, . . . , n, (2.3)
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and replace system (2.2) by an equivalent system

u′ni(t) + φ

(
π

2

n∑
j=1

v2nj(t)

)
ivni(t) = 0,

v′ni(t) = iuni(t), 0 < t ≤ T, i = 1, 2, . . . , n,

(2.4)

uni(0) = a
(1)
i , vni(0) = ia

(0)
i , i = 1, 2, . . . , n.

Let us write system (2.4) in a different form. For this we need some definitions. First of all, we
define respectively the scalar product and the norm

(u, v)n =
π

2

n∑
i=1

uivi, ∥u∥n = (u, u)
1
2
n (2.5)

for the vectors u, v ∈ Rn, u = (ui)
n
i=1, v = (vi)

n
i=1. Next, by functions (2.3), 0 ≤ t ≤ T , and the

coefficients a
(j)
i , i = 1, 2, . . . , n, j = 0, 1, from (1.6), we form the vectors

un(t) = (uni(t))
n
i=1, vn(t) = (vni(t))

n
i=1, aj

n = (a
(j)
i )ni=1, j = 0, 1. (2.6)

We also define the matrix
Kn = diag(1, 2, . . . , n). (2.7)

Following these definitions, system (2.4) can be rewritten as

u′
n(t) + φ

(
∥vn(t)∥2n

)
Knvn(t) = 0, v′n(t) = Knun(t), 0 < t ≤ T,

un(0) = a
1
n, vn(0) = Kna

0
n.

(2.8)

Using the vectors in (2.6), we define the block vectors

sn(t) = (un(t),vn(t)), an = (a1
n,Kna

0
n). (2.9)

Here and in what follows, the transposition sign of the vectors is omitted. Definitions (2.9) allow us
to write system (2.8) in the form

s′n(t) =

(
0 −φ(∥vn(t)∥2n)Kn

Kn 0

)
sn(t),

sn(0) = an.

(2.10)

2.2. Time discretization – the difference scheme. Using the function φ(z) from equation (1.2),
we introduce two new functions Φ(z) and Φ(z1, z2), 0 ≤ z, z1, z2 < ∞. Let the first of them mean
the primitive function of φ(z), and the second one be the divided difference of the function Φ(z) for
z1 ̸= z2 and be equal to φ(z) for z1 = z2. Therefore

ϕ(z) =

z∫
0

φ(ζ) dζ,

ϕ(z1, z2) =
ϕ(z2)− ϕ(z1)

z2 − z1
, z1 ̸= z2, Φ(z, z) = φ(z), (2.11)

0 ≤ z, z1, z2 <∞.

To a pair of block vectors s1, s2, si = (ui, vi), ui, vi ∈ Rn, i = 1, 2, we put into correspondence the
block vector Nn(s1, s2) defined by the formula

Nn(s1, s2) =

(
0 −ϕ(∥v1∥2n, ∥v2∥2n)Kn

Kn 0

)
s2 + s1

2
. (2.12)

Now, let us proceed to solving problem (2.10) by using the difference method. On the time interval
[0, T ], we introduce the grid {tm | 0 = t0 < t1 < · · · < tM = T} with a generally variable step
τm = tm − tm−1 > 0, m = 1, 2, . . . ,M . An approximate value of sn(t) on the mth time level, i.e., for
t = tm, m = 0, 1, . . . ,M , denoted by the vector

smn = (um
n ,v

m
n ), (2.13)
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um
n ,v

m
n ∈ Rn, is defined by the implicit symmetric scheme

smn − sm−1
n

τm
= Nn(s

m−1
n , smn ), m = 1, 2, . . . ,M,

s0n = an.

(2.14)

2.3. Solution of a discrete system – the iteration process. The last part of the algorithm is
aimed in solving the system of nonlinear equations (2.14).

Note that equation in (2.14) contains the vectors sm−l
n , l = 0, 1, from two time levels. It is assumed

that the counting is performed levelwise and the iteration process is applied to each mth level, m ≥ 1.
In the equation from (2.14), the vector sm−1

n is replaced by the vector sm−1,L
n = (um−1,L

n ,vm−1,L
n ),

um−1,L
n ,vm−1,L

n ∈ Rn, which is the last (L) approximation for sm−1
n obtained on the (m− 1)th level.

Therefore the vector smn cannot be found exactly. Instead of smn , it is the vector smn,R = (um
n,R,v

m
n,R),

um
n,R,v

m
n,R ∈ Rn, which is a real (R) solution of the resulting equation. Thus the equation

sm
n,R−sm−1,L

n

τm

= Nn(s
m−1,L
n , smn,R) corresponds to the mth level, m > 1.

Since, starting from the second level, one and the same situation occurs on every level, it is natural
to replace sm−1,L

n in the latter equation by

sm−1,L
n,R = (um−1,L

n,R ,vm−1,L
n,R ), (2.15)

um−1,L
n,R ,vm−1,L

n,R ∈ Rn. As a result, for smn,R, we obtain the equation

smn,R − sm−1,L
n,R

τm
= Nn(s

m−1,L
n,R , smn,R). (2.16)

Not to introduce a special equation for the case m = 1, let us assume that (2.16) holds likewise for
m = 1, provided that

s0,Ln,R = s0n,R = s0n. (2.17)

The nonlinear equation (2.16) is solved by a Picard type iteration process

sm,k
n,R = sm−1,L

n,R + τmNn(s
m−1,L
n,R , sm,k−1

n,R ), k = 1, 2, . . . , (2.18)

where
sm,k−l
n,R = (um,k−l

n,R ,vm,k−l
n,R ), (2.19)

um,k−l
n,R ,vm,k−l

n,R ∈ Rn, is an approximation of the vector smn,R on the (k − l)th, l = 0, 1, iteration step.

Thus the approximation to smn is performed by using the vectors sm,k
n,R , k = 0, 1, . . . . For a slight

simplification of our further reasoning it will be assumed that as the initial approximation on the mth
level, m = 1, 2, . . . ,M , we take the last iteration approximation on the preceding layer, i.e.,

sm,0
n,R = sm−1,L

n,R . (2.20)

Let us write the iteration process (2.18) componentwise. Toward this end, we first represent the
vectors from (2.15) and (2.19) as

um−1,L
n,R = (um−1,L

ni,R )ni=1, vm−1,L
n,R = (vm−1,L

ni,R )ni=1,

um,k−l
n,R = (um,k−l

ni,R )ni=1, vm,k−l
n,R = (vm,k−l

ni,R )ni=1.
(2.21)

Using also (2.5) and (2.12), we eventually obtain two simple recurrent formulas

um,k
ni,R = um−1,L

ni,R − τmi ϕ

(
π

2

n∑
j=1

(vm−1,L
nj,R )2,

π

2

n∑
j=1

(vm,k−1
nj,R )2

)

×
vm,k−1
ni,R + vm−1,L

ni,R

2
, vm,k

ni,R = vm−1,L
ni,R +

τmi

2
(um,k−1

ni,R + um−1,L
ni,R ),

(2.22)

m = 1, 2, . . . ,M, k = 1, 2, . . . , i = 1, 2, . . . , n.

Thus the algorithm proposed for the solution of problem (1.2), (1.3) should be understood as
performing the counting by formulas (2.22).
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3. Preliminaries

3.1. Some results of S. Bernstein. In [8], the solvability of problem (1.2), (1.3) is studied under
the conditions somewhat different from (1.4)–(1.7). The difference is that the particular case p = 2 is

not considered in that work and, besides, it is assumed that the coefficients a
(0)
i and a

(1)
i of expansions

in (1.6) are such that the series
∑∞

i=1 i
5+εa

(0) 2
i and

∑∞
i=1 i

3+εa
(1) 2
i converge, where ε is an arbitrary

positive constant. As compared with the latter requirement, condition (1.7) for p = 2 is more restric-
tive. After making the corresponding minor correction in order to make the results of [8] applicable
to our case, we present some statements therefrom on the solvability of problem (1.2), (1.3) and the
fulfillment of certain inequalities. To do this, we introduce some values. We apply the functions φ(z),
wl(x), l = 0, 1, ϕ(z) from equalities (1.2), (1.3), (2.11), the number α from condition (1.4) and the

coefficients a
(l)
i , l = 1, 2 from expansion in (1.6). Using also assumptions (1.5)–(1.7), we define

z∗ =
1

α

[ π∫
0

(w1(x))2dx+ ϕ

( π∫
0

(
w0′(x)

)2

dx

)]
,

N =
π

2
max

0≤z≤z∗

∣∣∣∣ φ′(z)√
φ(z)

∣∣∣∣
(3.1)

and

ρ1(0) =

∞∑
i=1

i

[
i2a

(0) 2
i +

(
φ

(
π

2

∞∑
j=1

j2a
(0) 2
j

))−1

a
(1) 2
i

]
.

It is proved that problem (1.2), (1.3) is solvable on the time interval, which can be expressed by
using the parameters given herein. Namely, the existence of a solution is guaranteed for

0 < T < (Nρ1(0))
−1
. (3.2)

This solution w(x, t), which we call local, is representable in the form of a series

w(x, t) =

∞∑
i=1

wi(t) sin ix, 0 ≤ x ≤ π, 0 ≤ t ≤ T, (3.3)

whose coefficients satisfy the system of equations with the initial conditions

w′′
i (t) + φ

(
π

2

∞∑
j=1

j2w2
j (t)

)
i2 wi(t) = 0, i = 1, 2, . . . , 0 < t ≤ T,

wi(0) = a
(0)
i , w′

i(0) = a
(1)
i , i = 1, 2, . . . .

(3.4)

For l ≥ 0, using the coefficients wni(t) and wi(t) from expansions (2.1) and (3.3), we define the
functions

ρln(t) =

n∑
i=1

il
[
i2w2

ni(t) +

(
φ

(
π

2

n∑
j=1

j2w2
nj(t)

))−1

w′2
ni(t)

]
,

ρl(t) =

∞∑
i=1

il
[
i2w2

i (t) +

(
φ

(
π

2

∞∑
j=1

j2w2
j (t)

))−1

w′2
i (t)

]
.

(3.5)

It is proved that

ρln(t), ρl(t) ≤ ρl(0)(1−Nρ1(0)t)
−1. (3.6)

It will be further assumed that condition (3.2) is fulfilled. Otherwise, we may shorten the time
interval and T will be understood as the value satisfying this condition.
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3.2. Auxiliary inequalities. Like in the case of (2.3), using the coefficients of expansion (3.3) of an
exact solution of problem (1.2), (1.3), we introduce the functions

ui(t) = w′
i(t), vi(t) = iwi(t), i = 1, 2, . . . , (3.7)

by which, analogously to (2.6), we construct the vectors

pnu(t) = (ui(t))
n
i=1, pnv(t) = (vi(t))

n
i=1. (3.8)

Lemma 3.1. The following inequality:

∥pnv(t)∥2n ≤ z∗, n = 1, 2, . . . , 0 ≤ t ≤ T, (3.9)

holds.

Proof. We multiply equation (1.2) by 2wt(x, t) and integrate the resulting relation with respect to x

from 0 to π. By (1.3), (1.6), (1.7) and (2.11), (3.3), we come first to
(∫ π

0
w2

t (x, t)dx+ ϕ
(∫ π

0
w2

x(x, t)dx
))′

= 0 and then to
∫ π

0
w2

t (x, t)dx +ϕ
(∫ π

0
w2

x(x, t)dx
)
=

∫ π

0

(
w1(x)

)2
dx+ ϕ

( ∫ π

0
(w0′(x))2dx

)
. Let us use

the latter equality and the relation

∥pnv(t)∥2n =
π

2

n∑
i=1

v2i (t) =
π

2

n∑
i=1

i2w2
i (t) ≤

π

2

∞∑
i=1

i2w2
i (t) =

π∫
0

w2
x(x, t)dx

≤ 1

α
ϕ

( π∫
0

w2
x(x, t)dx

)
, n = 1, 2, . . . , 0 < t ≤ T, (3.10)

obtained from (2.5), (3.3), (3.7), (3.8) and from the inequality

ϕ(z) ≥ αz, (3.11)

which is a consequence of (1.4) and (2.11). This and (3.1) give (3.9) for n = 1, 2, . . . , 0 < t ≤ T .
Using (1.3) and (3.1) in (3.10), we conclude that (3.9) is true for t = 0, as well. □

Applying the vectors from (2.6) and matrix (2.7), the number α and the function ϕ(z) from (1.4)
and (2.11), we define the value

zn∗ =
1

α

(
∥a1

n∥2n + ϕ(∥Kna
0
n∥2n)

)
, n = 1, 2, . . . . (3.12)

Comparing (3.1) and (3.12), by virtue of (1.4), (1.6), (2.5)–(2.7) and (2.11), we find that

zn∗ ≤ z∗, n = 1, 2, . . . . (3.13)

Lemma 3.2. Problem (2.10) has a solution and the estimate

∥vn(t)∥2n ≤ zn∗, n = 1, 2, . . . , 0 ≤ t ≤ T, (3.14)

is true.

Proof. Consider system (2.8) whose operator form is (2.10). Note that the validity of (3.14) for t = 0
is a consequence of (2.8) and (3.11), (3.12). Further, multiplying scalarly the first equation in (2.8)
by 2un(t) and taking into account the second equation and definition (2.7), we obtain (∥un(t)∥2n)′ +
φ(∥vn(t)∥2n)(∥vn(t)∥2n)′ = 0. From this and (2.11) follows the equality (∥un(t)∥2n + ϕ(∥vn(t)∥2n))′ = 0,
which, together with (2.8), gives ∥un(t)∥2n + ϕ(∥vn(t)∥2n) = ∥a1

n∥2n + ϕ(∥Kna
0
n∥2n). The latter relation

and (3.11), (3.12) imply inequality (3.14) for vn(t), 0 < t ≤ T , and an analogous estimate for un(t),
namely, ∥un(t)∥2n ≤ αzn∗. From this and (3.14), by virtue of (1.6), (1.7), (3.1) and (3.13), we obtain
the uniform boundedness of the norms un(t) and vn(t) with respect to n and t, which guarantees the
solvability of problem (2.10). □
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Below, we will use the estimates

π

2

∞∑
i=1

v2i (t) =
π

2

∞∑
i=1

i2w2
i (t) ≤ z∗, 0 ≤ t ≤ T, (3.15)

∥vn(t)∥2n =
π

2

n∑
i=1

v2ni(t) =
π

2

n∑
i=1

i2w2
ni(t) ≤ z∗, (3.16)

n = 1, 2, . . . , 0 ≤ t ≤ T,

obtained respectively from (3.1), (3.7), (3.9), (3.10) and (2.3), (2.5), (2.6), (3.13), (3.14).
Further, we will need some inequalities for the coefficients in (2.1) and (3.3).

Lemma 3.3. The estimates∣∣∣∣ n∑
i=1

i2wni(t)w
′
ni(t)

∣∣∣∣ ≤ µ1(t),

∣∣∣∣ n∑
i=1

i2wi(t)w
′
i(t)

∣∣∣∣ ≤ µ1(t), (3.17)

n∑
i=1

i4w2
ni(t) ≤ µ2(t),

n∑
i=1

i4w2
i (t) ≤ µ2(t), (3.18)

n∑
i=1

i2j−2
(
i2w2

ni(t) + w′2
ni(t)

)
≤ µj(t), j = 3, . . . , p+ 2, (3.19)

n = 1, 2, . . . , 0 ≤ t ≤ T,

are valid, where the values µj(t), j = 1, 2, . . . , p+ 2, do not depend on n.

Proof. To simplify the notation, we introduce the values

φl = max
0≤z≤z∗

∣∣∣∣dlφdzl (z)
∣∣∣∣ , l = 0, 1, . . . , p , φ1

0 = max(1, φ0). (3.20)

In expression (3.6), let us represent ρl(0) and ρ1(0) in terms of a
(0)
i and a

(1)
i , i = 1, 2, . . . , for which

we use the initial conditions in (3.4) and (3.5). We also take into account relations (1.4) and (1.7).
As a result, if l < 2(p+ s+ 1), we obtain

ρln(t), ρl(t) ≤ ζ (2(p+ s) + 3− l)H(t), 0 ≤ t ≤ T, (3.21)

where H(t) is a positive-valued function of the form

H(t) =

(
1

2ω2
min(1, α)− ζ (2(p+ s+ 1))Nt

)−1

(3.22)

and ζ(z) is the Riemann zeta-function

ζ(z) =

∞∑
i=1

1

iz
, z > 1, (3.23)

whose numerical values are obtained, for example, in [16].
From (3.22) and (3.23), it follows that H(t) is a monotonically increasing function

H(t1) < H(t2), 0 ≤ t1 < t2 ≤ T. (3.24)

Further, by virtue of (1.5), (3.5), (3.16) and (3.20), we have∣∣∣∣ n∑
i=1

i2wni(t)w
′
ni(t)

∣∣∣∣ ≤ 1

2
φ1
0ρ1n(t)

and therefore, after applying (3.21), we conclude that the first inequality in (3.17) is fulfilled with

µ1(t) =
1

2
φ1
0ζ (2(p+ s+ 1))H(t). (3.25)

Analogously, after replacing (3.16) by (3.15), we prove the second inequality in (3.17).
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The fulfillment of inequalities (3.18) follows from relations (3.5) and (3.21). Obviously,

µ2(t) = ζ (2(p+ s) + 1)H(t). (3.26)

Finally, by virtue of (1.5), (3.5), (3.16) and (3.20), the left-hand side of inequality (3.19) is estimated
through φ1

0ρ2j−2,n(t). For ρ2j−2,n(t), we have estimate (3.21). Therefore in (3.19) it can be assumed
that for j = 3, . . . , p+ 2,

µj(t) = φ1
0ζ (2(p+ s− j) + 5)H(t). (3.27)

The lemma is proved. □

Lemma 3.4. The inequality(
π

2

∞∑
i=n+1

(
i2w2

i (t) + lw′
i
2
(t)

)) 1
2

≤ cl(t)
1

np+s+1
, (3.28)

l = 0, 1, n = 1, 2, . . . , 0 ≤ t ≤ T,

where

cl(t) =
1

2

(
π(2(p+ s+ 1))−1(φ1

0)
lH(t)

) 1
2

, l = 0, 1, (3.29)

is valid.

Proof. We introduce into our consideration the function

yn(t) =

∞∑
i=n+1

(
i2w2

i (t) +

(
φ

(
π

2

∞∑
j=1

j2w2
j (t)

))−1

w′2
i (t)

)
. (3.30)

After multiplying the differential equation in (3.4) by 2w′
i(t) and performing summation over

i = n+ 1, n+ 2, . . . , we write

y′n(t) = −π
∞∑

i=n+1

w′2
i (t)

∞∑
j=1

j2wj(t)w
′
j(t)

1∏
r=0

(
d1−rφ

dt1−r

(
π

2

∞∑
j=1

j2w2
j (t)

))1−3r

.

This and (3.1), (3.5) and (3.30) imply |y′n(t)| ≤ Nρ1(t)yn(t). Now, recalling (3.6), we obtain yn(t) ≤
yn(0)(1 − Nρ1(0)t)

−1. From the latter relation and (3.15), (3.20), (3.30), we have the inequality∑∞
i=n+1

(
i2w2

i (t) + lw′
i
2
(t)

)
≤ (φ1

0)
lyn(0)(1 − Nρ1(0)t)

−1. We apply to it (1.4), (1.7), (3.4), (3.21),

(3.22) and (3.30). Besides, we use the estimate

∞∑
i=n+1

1

i2(p+s)+3
≤ 1

2(p+ s+ 1)n2(p+s+1)
, (3.31)

which follows from the integral test of the series convergence. Hence we conclude that inequality
(3.28) for 0 < t ≤ T is fulfilled with cl(t) calculated by formula (3.29). Expression (3.29) for cl(t)
is applicable in (3.28) in the case t = 0 as well, which can be verified by (1.7), (3.4), (3.20), (3.22)
and (3.31). □

We will need the following form of formula (3.29) separately for the case l = 1. He is following

c1(t) =
1

2

(
π

p+ s+ 1
φ1
0H(t)

) 1
2

. (3.32)



A NUMERICAL ALGORITHM OF SOLVING A STRING EQUATION 427

4. The Error of Galerkin’s Method

4.1. Error relations. Applying the vectors (3.8), let us construct the block vector

pns(t) = (pnu(t), pnv(t)) (4.1)

which will be an exact solution of problem (1.2), (1.3). The error of Galerkin’s method is understood
as a difference between the vectors from (4.1) and (2.9),

∆sn(t) = pns(t)− sn(t). (4.2)

The above formulas imply

∆sn(t) =
(
∆un(t),∆vn(t)

)
, (4.3)

where

∆un(t) = pnu(t)− un(t), ∆vn(t) = pnv(t)− vn(t). (4.4)

Let us derive the equations needed to estimate the norm of the error ∆sn(t). To this end, using
functions (3.7), we take n first equalities in each relation of (3.4) and replace the resulting system by
an equivalent system

u′i(t) + φ
(π
2

∞∑
j=1

v2j (t)
)
ivi(t) = 0, v′i(t) = iui(t), i = 1, 2, . . . , n, 0 < t ≤ T,

ui(0) = a
(1)
i , vi(0) = ia

(0)
i , i = 1, 2, . . . , n,

which, recalling notation (2.5)–(2.7) and (3.8), can be rewritten as

pnu
′(t) + φ

(
∥pnv(t)∥2n

)
Knpnv(t) +ψn(t) = 0, pnv

′(t) = Knpnu(t),

pnu(0) = a
1
n, pnv(0) = Kna

0
n,

(4.5)

where ψn(t) is the truncation error of the method equal to

ψn(t) =

(
φ

(
π

2

∞∑
j=1

v2j (t)

)
− φ

(π
2

n∑
j=1

v2j (t)
))

Knpnv(t). (4.6)

Now, subtracting (2.8) from (4.5) and using (4.4), we obtain the desired equations and the condi-
tions

∆u′
n(t) + φ

(
∥pnv(t)∥2n

)
Kn∆vn(t) +

(
φ(∥pnv(t)∥2n)− φ(∥vn(t)∥2n)

)
×Knvn(t) +ψn(t) = 0, ∆v′n(t) = Kn∆un(t),

∆un(0) = 0, ∆vn(0) = 0.

(4.7)

4.2. The estimate of the method error. This subsection deals with error (4.2). To begin with,
we extend the definition of the norm ∥ · ∥n given by (2.5) for the vectors from Rn to the block vectors.
Let s = (u, v), u, v ∈ Rn. Assume that

∥s∥n =
(
∥u∥2n + ∥v∥2n

) 1
2 . (4.8)

Lemma 4.1. The error of Galerkin’s method is estimated by

∥∆sn(tm)∥n ≤ c2(t)
1

n2(p+s+1)
, n = 1, 2, . . . , 0 < t ≤ T, (4.9)
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where

c2(t) =
πω

4(p+ s+ 1)
max

(
1,

1

α

)( 1

2a
φ1TH(T )

) 1
2

×max
i=0,1

eiν0

( 1

2ω2
min(1, α)H(t)

)νi+1

, (4.10)

ν0 =
1

2αb
φ1z∗t, ν1 =

1

N
π(a+ b)φ1

2∏
j=1

(ζ(2(p+ s) + j))
3−2j

,

ν2 =
1

4αN
πφ1

0φ1

and a, b are arbitrary positive constants.

Proof. After multiplying scalarly the first equation in (4.7) by 2∆un(t) and recalling the second
equation and (1.5), (2.7), we obtain

F ′
n(t) = ∥∆vn(t)∥2n

d

dt
φ(∥pnv(t)∥2n) + 2

(
φ(∥vn(t)∥2n)− φ(∥pnv(t)∥2n)

)
× (Knvn(t),∆un(t))n − 2(ψn(t),∆un(t))n, (4.11)

where we use the notation

Fn(t) = ∥∆un(t)∥2n + φ(∥pnv(t)∥2n)∥∆vn(t)∥2n. (4.12)

We are to estimate the terms on the right-hand side of (4.11) for 0 < t ≤ T . Formulas (1.5), (2.5)
and (3.20) will be used repeatedly.

Applying (3.9), (3.10) and (3.17), we get∣∣∣∣ ddt φ(∥pnv(t)∥2n)
∣∣∣∣ ≤ π

∣∣φ′(∥pnv(t)∥2n)
∣∣ ∣∣∣∣ n∑

i=1

i2wi(t)w
′
i(t)

∣∣∣∣ ≤ πφ1µ1(t). (4.13)

By (3.9), (3.16) and (4.4), we conclude that∣∣φ(∥vn(t)∥2n)− φ(∥pnv(t)∥2n)
∣∣ ≤ 2z

1
2
∗ φ1 ∥∆vn(t)∥n. (4.14)

By (2.3), (2.6) and (2.7), we write ∥Knvn(t)∥2n = π
2

∑n
i=1 i

4w2
ni(t) and, taking additionally into

account (3.18), we have

∥Knvn(t)∥2n ≤ π

2
µ2(t). (4.15)

Now, let us estimate the norm of the truncation error ψn(t) defined by equality (4.6). Using (2.7),
(3.7), (3.8) and (3.18), we get ∥Knpnv(t)∥2n ≤ π

2

∑n
i=1 i

4w2
i (t) ≤ π

2 µ2(t). Moreover, by (3.7) and
(3.15), we infer

∥ψn(t)∥n ≤
(π
2

) 3
2

φ1µ
1
2
2 (t)

∞∑
i=n+1

i2w2
i (t). (4.16)

Further, from (4.7) and (4.12) follows

Fn(0) = 0. (4.17)

By (1.4) and (4.11)–(4.17), using arbitrary positive constants a and b, we write the relation Fn(t) ≤
πφ1

[
1

16a π
∫ T

0

(∑∞
i=n+1 i

2w2
i (t)

)2
dt+

∫ t

0
max

(
1
α

(
z∗
πb +µ1(τ)

)
, 2(a+b)×µ2(τ)

)
Fn(τ) dτ

]
. Let us apply

to it the Gronwall inequality together with (1.4), (3.22), (3.25), (3.26), and relations (3.28), (3.29) for
the case l = 0. Lastly, using (4.3), (4.8) and (4.12), we obtain estimate (4.9) and formula (4.10). □
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5. The Difference Scheme Error

5.1. The error equation. The difference scheme (2.14) enables us to solve approximately problem
(2.10). Let us define the error of scheme (2.14) on the mth time level, i.e., for t = tm,

∆smn = (∆um
n ,∆v

m
n ),

as a difference of the vectors from (2.9) and (2.13)

∆smn = sn(tm)− smn , m = 0, 1, . . . ,M. (5.1)

If now we write smn = sn(tm)−∆smn and use this equality together with (2.10) in scheme (2.14), then
we obtain

∆smn −∆sm−1
n

τm
= fm,m−1

n +ψm,m−1
n , m = 1, 2, . . . ,M,

∆s0n = 0.

(5.2)

In (5.2), denote by fm,m−1
n the vector defined by the formula

fm,m−1
n = Nn(sn(tm−1), sn(tm))−Nn(s

m−1
n , smn ) (5.3)

and by ψm,m−1
n the truncation error of scheme (2.14) equal to

ψm,m−1
n =

sn(tm)− sn(tm−1)

τm
−Nn (sn(tm−1), sn(tm)) . (5.4)

5.2. Auxiliary propositions. In this subsection, several lemmas will be proved.

Lemma 5.1. If the vectors s1 and s2, where si = (ui, vi), ui, vi ∈ Rn, i = 1, 2, satisfy the equation

s2 − s1
τ

= Nn(s1, s2), (5.5)

τ > 0, then
2∑

i=1

(−1)i
(
∥ui∥2n + ϕ(∥vi∥2n)

)
= 0. (5.6)

Proof. The combination of (2.12) and (5.5) yields u2−u1

τ + ϕ(∥v1∥2n, ∥v2∥2n) ×Kn
v2+v1

2 = 0,
v2−v1

τ = Kn
u2+u1

2 . Multiplying scalarly the first equation of this system by u2 + u1 and using the
second equation, we come to (5.6). □

Let us estimate the term that forms the nonlinearity in the difference scheme (2.14).

Lemma 5.2. System (2.14) has a solution and the estimate

∥vmn ∥2n ≤ zn∗, (5.7)

n = 1, 2, . . . , m = 0, 1, . . . ,M,

is valid.

Proof. Inequality (5.7) is fulfilled for m = 0, which can be verified by means of (2.9), (2.13), (2.14)
and (3.11), (3.12). As to (5.7) for m > 0, note that the first equality in (2.14) is inscribed in scheme
(5.5) for every m = 1, 2, . . . ,M . Following (2.9), (2.13), (2.14) and (5.6), we find ∥um

n ∥2n+ ϕ(∥vmn ∥2n)
= ∥a1

n∥2n +ϕ(∥Kna
0
n∥2n). This equality and (3.11), (3.12) give (5.7) for m = 1, 2, . . . ,M . Moreover, we

obtain ∥um
n ∥2n ≤ αzn∗. (5.7) and the latter estimate together with (3.1) and (3.13) imply the uniform

boundedness of the norms of um
n and vmn , and therefore of smn too, which guarantees the solvability

of system (2.14). □

From (3.13) and (5.7) follows

∥vmn ∥2n ≤ z∗, n = 1, 2, . . . , m = 0, 1, . . . ,M. (5.8)

We will need the following property of the block vector (2.12).
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Lemma 5.3. For the vectors si=(ui, vi), ui, vi∈Rn, i=1, 2, 3, 4, the inequality

∥Nn(s1, s2)−Nn(s3, s4)∥n ≤ 1

2
nmax(1, η) (∥s1 − s3∥n + ∥s2 − s4∥n) , (5.9)

holds, where

η =
1

2

2∑
i=1

Γ2i−1,2i
0 +

1

2

(
1√
2
+

1

2

)
Γ1,4
1

4∑
i=1

∥vi∥2n,

Γl1,l2
j = max

z

∣∣∣∣djφdzj (z)

∣∣∣∣ , 0 ≤ z ≤ max
(
∥vl1∥2n, . . . , ∥vl2∥2n

)
,

j = 0, 1, l1 = 1, 3, l2 = 2, 4, l1 < l2.

(5.10)

Proof. By (2.12), we have
Nn(s1, s2)−Nn(s3, s4) = (A,B), (5.11)

where

A =
1

2

[
ϕ
(
∥v1∥2n, ∥v2∥2n

)
Kn(v1 + v2)−ϕ

(
∥v3∥2n, ∥v4∥2n

)
Kn(v3+v4)

]
,

B =
1

2
Kn [(u1 − u3) + (u2 − u4)] .

(5.12)

To derive (5.9), (5.10), we use the equality

∥Nn(s1, s2)−Nn(s3, s4)∥n =
(
∥A∥2n + ∥B∥2n

) 1
2 (5.13)

arising from definitions (4.8) and (5.11). Let us estimate ∥A∥n and ∥B∥n. By (5.12),

A =
1

4

{ 2∑
i=1

ϕ(∥v2 i−1∥2n, ∥v2i∥2n)Kn[(v1 − v3) + (v2 − v4)]

+(ϕ(∥v1∥2n, ∥v2∥2n)− ϕ(∥v3∥2n, ∥v4∥2n))Kn

4∑
i=1

vi

}
.

We here transform the expressions ϕ(∥v2 i−1∥2n, ∥v2i∥2n), i = 1, 2, and ϕ(∥v1∥2n, ∥v2∥2n)−ϕ(∥v3∥2n, ∥v4∥2n)
by the Taylor formula and (1.5), (2.11). We also use the relations

∥Kn∥n ≤ n,∣∣∥vi∥2n − ∥vi+2∥2n
∣∣ ≤ (∥vi∥n + ∥vi+2∥n) ∥vi − vi+2∥n, i = 1, 2,

(5.14)

which are a consequence of (2.5) and (2.7). Thus, using notation (5.10), we get

∥A∥n ≤ 1

4
n
[
(Γ1,2

0 + Γ3,4
0 ) (∥v1 − v3∥n + ∥v2 − v4∥n)

+
1

2
Γ1,4
1

( ∣∣∥v1∥2n − ∥v3∥2n
∣∣+ ∣∣∥v2∥2n − ∥v4∥2n

∣∣ ) 4∑
i=1

∥vi∥n
]

≤ 1

4
n

2∑
i=1

[
Γ1,2
0 + Γ3,4

0 +
1

2
Γ1,4
1 (∥vi∥n + ∥vi+2∥n)

×
4∑

j=1

∥vj∥n
]
∥vi − vi+2∥n. (5.15)

As to the estimate of ∥B∥n, it is obtained from (5.12) and (5.14) as

∥B∥n ≤ 1

2
n (∥u1 − u3∥n + ∥u2 − u4∥n) . (5.16)

To complete proving the lemma, it remains to use (5.15), (5.16) in (5.13) and to take into account
the estimate

(∥vi∥n+∥vi+2∥n)
4∑

j=1

∥vj∥n ≤ (1+
√
2)

4∑
j=1

∥vj∥2n, i = 1, 2,
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as well as the equality

∥si − si+2∥n =
(
∥ui − ui+2∥2n + ∥vi − vi+2∥2n

) 1
2 , i = 1, 2,

arising from definition (4.8). □

Now, we will estimate the norm of the truncation error of the difference scheme ψm,m−1
n defined

by (5.4).

Lemma 5.4. The estimate

∥ψm,m−1
n ∥n ≤ κm,m−1τpm, n = 1, 2, . . . , m = 1, 2, . . . ,M, (5.17)

is valid, where κm,m−1 is a positive value not depending on τm and n.

Proof. Let us write ψm,m−1
n as the block vector ψm,m−1

n = (ψm,m−1
n1 ,ψm,m−1

n2 ), ψm,m−1
nl ∈ Rn, l = 1, 2.

By virtue of (5.4), we obtain the formulas for the ith components ψm,m−1
n1i and ψm,m−1

n2i of the vectors

ψm,m−1
n1 and ψm,m−1

n2 , i = 1, 2, . . . , n. Taking into account (2.6), (2.7), (2.9) and (2.12), we write

ψm,m−1
n1i =

uni(tm)− uni(tm−1)

τm

+ ϕ(∥vn(tm−1)∥2n, ∥vn(tm)∥2n) i
vni(tm) + vni(tm−1)

2
,

ψm,m−1
n2i =

vni(tm)− vni(tm−1)

τm
− i

uni(tm) + uni(tm−1)

2
.

Performing here the Taylor expansion at the point t = tm−1, using condition (1.5), relations (2.3),
(2.4), (2.11) and, in the case p = 2, also the relations obtained from (2.3), (2.4) by differentiation, we

get for ψm,m−1
n1i the following equality:

ψm,m−1
n1i =

(
1− p

2

)
τm

[
w′′′

ni + φ

(
π

2

n∑
j=1

j2w2
nj

)
i2w′

ni

+φ′
(
π

2

n∑
j=1

j2w2
nj

)(
π

2

n∑
j=1

j2w2
nj

)′

i2wni

]

+(p− 1)τ2m

{
1

6
w′v

ni +
1

4
i2
[
φ

(
π

2

n∑
j=1

j2w2
nj

)
w′′

ni

+φ′
(
π

2

n∑
j=1

j2w2
nj

)((
π

2

n∑
j=1

j2w2
nj

)′

w′
ni +

(
π

2

n∑
j=1

j2w2
nj

)′′

wni

)

+
2

3
φ′′

(
π

2

n∑
j=1

j2w2
nj

)((
π

2

n∑
j=1

j2w2
nj

)′)2

wni

]}
, (5.18)

where, for brevity, the values of the argument of the functions dlwni

dtl
(t), l = 0, 1, . . . , 4, are omitted.

These values belong to the interval [tm−1, tm]. As to the formula for ψm,m−1
n2i , it can be written as

ψm,m−1
n2i =

(
1− p

2

)
τmi (w

′′
ni(θ1i)− w′′

ni(θ2i)) + (p− 1)τ2mi

×
(
1

6
w′′′

ni(θ3i)−
1

4
w′′′

ni(θ4i)

)
, tm−1 ≤ θli ≤ tm, l = 1, 2, 3, 4. (5.19)

Note that formulas (5.18) and (5.19) are valid provided the inclusion wni(t)∈Cp+2[0, T ], i = 1, 2, . . . , n,
holds. Lemma 3.2 states that (2.10), i.e., system (2.2), is solvable. This result together with the form
of the equation in (2.2) and condition (1.5) imply that this requirement is fulfilled.
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Now, to obtain estimate (5.17), using (5.18) and (5.19), we need to verify that the series
n∑

i=1

i4w2
ni(t),

n∑
i=1

i4w′2
ni(t),

n∑
i=1

i2pw′′2
ni (t),

n∑
i=1

i2(p−1)w′′′2
ni (t), (p− 1)

n∑
i=1

i4w′v 2
ni (t) are uniformly bounded with respect

to n = 1, 2, . . . and 0 < t ≤ T. Toward this end, it suffices for (3.19) to be fulfilled. Indeed, by virtue
of (2.2), we write

n∑
i=1

i2(p−l)
(dl+2wni

dtl+2
(t)

)2

=

n∑
i=1

i2(p−l+2)

{
dl

dtl

[
φ

(
π

2

n∑
j=1

j2w2
nj(t)

)
wni(t)

]}2

and then, keeping in mind (1.5), consider successively the cases l = 0, 1, . . . , p. □

Further, it will be useful to define concretely the value κm,m−1 from estimate (5.17). For this, note
that if (3.19) holds, then the first inequalities in (3.17) and (3.18) are fulfilled. Combining (1.5), (2.2),
(3.16)–(3.20), (4.8) and (5.17)–(5.19), we obtain

for p = 1, κm,m−1 =
√
πmax

t

(
πφ1µ1(t)µ

1
2
2 (t)+

√
3

2
φ0φ

1
0µ

1
2
3 (t)

)
,

tm−1≤ t ≤ tm,

for p = 2, κm,m−1 =
π

3
√
2
max

t

[
5

π
µ4(t)

2∑
l=1

(φ0)
l

+ φ1
0µ1(t)µ

1
2
2 (t)

2∑
l=1

(2l + 1)φl + 9φ1µ1(t)µ
1
2
3 (t)

+ µ2(t)

2∑
i=1

(i+ 1)µ
1
2
i+1(t)

1∏
l=0

φl

]
, tm−1 ≤ t ≤ tm.

(5.20)

5.3. The estimate of the difference scheme error. For error (5.1), we have

Lemma 5.5. If for every mth level, m = 1, 2, . . . ,m0, 1 ≤ m0 ≤ M , the grid step satisfies the
inequality

τm ≤ 2(1− σ)

n

[
max

(
1,

1∑
l=0

((1 +
√
2) z∗)

lφl

)]−1

, (5.21)

where

σ is an arbitrary parameter such that 0 < σ < 1, (5.22)

then for the m0th level, i.e., for t = tm0
, the error of scheme (2.14) is estimated by

∥∆sm0
n ∥n ≤ c3(tm0

)
1

n

[(
1 +

1

m0
λn

)m0

− 1

]
max

1≤m≤m0

τpm. (5.23)

Here

c3(tm0) = max
1≤m≤m0

κm,m−1

[
max

(
1,

1∑
l=0

((1 +
√
2) z∗)

lφl

)]−1

, (5.24)

λ =
tm0

σ
max

1≤i,j≤m0

τi
τj

max

(
1,

1∑
l=0

((1 +
√
2) z∗)

lφl

)
. (5.25)

Proof. Formulas in (5.2) and (5.3) give the inequality

∥∆smn ∥n ≤ ∥∆sm−1
n ∥n + τm

(
∥Nn(sn(tm−1), sn(tm))−Nn(s

m−1
n , smn )∥n + ∥ψm,m−1

n ∥n
)
.

Applying to it (5.1), (5.9) and (5.10), we obtain

1∑
i=0

(
(−1)i − τmnχ

m,m−1
)
∥∆sm−i

n ∥n ≤ τm∥ψm,m−1
n ∥n. (5.26)
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Here,

χm,m−1 =
1

2
max

(
1, 2−1

1∑
i=0

max
0≤z≤zi+1

|φ(z)|+ (2−
3
2 + 2−2)

× max
0≤z≤max(z1,z2)

|φ′(z)|
1∑

i=0

(
∥vn(tm−i)∥2n + ∥vm−i

n ∥2n
))

,

z1 = max
(
∥vn(tm−j)∥2n, j = 0, 1

)
, z2 = max

(
∥vm−j

n ∥2n, j = 0, 1
)
.

If in the expression for χm,m−1 we use estimates (3.16), (5.8), and notation (3.20), then (5.26) can be
replaced by the inequality

1∑
i=0

(
(−1)i − τmnχ

)
∥∆sm−i

n ∥n ≤ τm∥ψm,m−1
n ∥n, (5.27)

where

χ =
1

2
max

(
1,

1∑
l=0

((1 +
√
2) z∗)

lφl

)
. (5.28)

Since (5.21), (5.22) and (5.28) imply 1− τmnχ ≥ σ > 0, it follows from (5.17) and (5.27) that

∥∆smn ∥n ≤
(
1 + 2

τmnχ

σ

)
∥∆sm−1

n ∥n +
1

σ
κm,m−1τp+1

m . (5.29)

Observing that (5.29) is fulfilled for m = 1, 2, . . . ,m0, m0 > 1, and using (5.2), we obtain

∥∆sm0
n ∥n ≤ 1

σ
max

1≤m≤m0

κm,m−1

[m0−1∑
m=1

m0∏
i=m+1

(
1 + 2

τinχ

σ

)
τp+1
m

]
. (5.30)

Applying (5.28), (5.30) and the inequalities τm ≤ maxl τl ≤
tm0

m0
max τi

τj
, where 1 ≤ m ≤ m0,

l, i, j = 1, 2, . . . ,m0, we conclude that (5.23) is true, and the coefficient c3(tm0) and the parameter λ
are defined by (5.24) and (5.25). □

Let us introduce into consideration the single-index parameters ν1=πφ
1
0φ1, ν2 = (φ1

0)
1
2 max
l=1,2

φl
0 and

the double-index parameters ν11 = 3φ0(φ
1
0)

1
2 , ν12 = 4, 5(φ1

0)
3
2 , ν21 = 2φ0, ν22 = 0, 5φ−1

1 (φ1
0)

2
∑2

l=1(2l+
1)φl. Using (3.24)–(3.27) and (5.20) together with notation (5.28) in (5.24), we come to a conclu-
sion that

for p = 1, c3(tm0) = 2
√
2χ

×
( 2∑

i=1

νi(H(tm0))
i− 1

2

i∏
j=1

ζ(2(p+ s+ i) + j − 4)

)
,

for p = 2, c3(tm0) =

√
2π

3
χH(tm0)

(
5

π
φ1
0ζ(2(p+ s)− 3)

+ φ1H
1
2 (tm0

)

2∑
i,j=1

νij (ζ(2(p+ s) + 2i− 3))
1
2 ζ(2(p+ s) + j)

)
.

(5.31)

6. The Iteration Process Error

6.1. Some inequalities and definitions. In this subsection, we consider equation (2.16). Let us
estimate the norm of the vector vmn,R which forms the nonlinearity. As will be seen, the estimate

depends on the iteration results on the preceding (m− 1)th level. Denote

zm−1,L
n,R =

1

α

(
∥um−1,L

n,R ∥2n + ϕ(∥vm−1,L
n,R ∥2n)

)
, (6.1)

n = 1, 2, . . . , m = 1, 2, . . . ,M.
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In particular, for m = 1, it follows from this relation and (2.9), (2.14), (2.15) and (2.17) that z0,Ln,R

is calculated by (3.12).

Lemma 6.1. We have an a priori estimate

|vmn,R∥2n ≤ zm−1,L
n,R , n = 1, 2, . . . , m = 1, 2, . . . ,M. (6.2)

Proof. Equation (2.16), whose solvability will be shown below, is a particular case of equation (5.5).
Hence, using (5.6), we obtain the equality

∥um
n,R∥2n + ϕ(∥vmn,R∥2n) = ∥um−1,L

n,R ∥2n + ϕ(∥vm−1,L
n,R ∥2n),

which together with (3.11) and (6.1) gives (6.2). □

Further, we will also need to estimate the norm of the vector vm−1,L
n,R by means of zm−1,L

n,R . Using

(3.11) and (6.1), we obtain the needed inequality

∥vm−1,L
n,R ∥2n ≤ zm−1,L

n,R , n = 1, 2, . . . , m = 1, 2, . . . ,M. (6.3)

Now, let us introduce some definitions. The iteration process (2.18) enables us to find an approxi-
mate value of the vector smn . We define the error of the kth step of process (2.18) on the mth level,
i.e., for t = tm, as the vector

∆sm,k
n,R = smn − sm,k

n,R . (6.4)

To estimate the norm of ∆sm,k
n,R , we have to introduce the values hm, ∇m and qm for each mth time

level, m = 1, 2, . . . ,M . The first of these values depends on the last approximation on the (m− 1)th

level. The next value depends on the constants z∗ and zm−1,L
n,R from (3.1) and (6.1). As to qm, it is

defined by means of simple inequalities. To be more exact, assume that

hm =
(
∥um−1,L

n,R ∥n + φ(∥vm−1,L
n,R ∥2n) ∥v

m−1,L
n,R ∥n

)
, (6.5)

∇m =
1

2
max

(
1,

1∑
l=0

[(
1√
2
+

1

2

)
(z∗ + zm−1,L

n,R )

]l
max

z

∣∣∣∣dlφdzl (z)
∣∣∣∣ ), (6.6)

0 ≤ z ≤ max
(
z∗, z

m−1,L
n,R

)
,

0 < qm < 1. (6.7)

Also, for the step τm, consider the inequalities

τm <
1

n∇m
, (6.8)

τmn

2
max

(
1,

1∑
l=0

[( 1√
2
+
1

2

)
(zm−1,L

n,R +zm,m−1
n,R )

]l
max

z

∣∣∣∣dlφdzl (z)
∣∣∣∣ )≤qm , (6.9)

0 ≤ z ≤ max
(
zm−1,L
n,R , zm,m−1

n,R

)
. (6.10)

In (6.9) and (6.10),

zm,m−1
n,R =

(
∥sm−1,L

n,R ∥n + τmnhm
1

1− qm

)2

. (6.11)

From (3.1), (6.1) and (6.5)–(6.11) it follows that hm, ∇m, qm and, which is important, τm, can be
found prior to performing the iteration on the mth level.

Finally, we introduce one more notation. We denote by mL the number of iterations performed on

the mth level, m = 1, 2, . . . ,M . Therefore mL is the number of the iteration that yields sm,L
n,R .
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6.2. The estimate of the iteration process error. To estimate the error of the iteration process
(2.18), we use the inequalities and definitions of the preceding subsection.

Lemma 6.2. If conditions (6.7)–(6.9) are fulfilled for each mth level, m = 1, 2, . . . ,m0, 1 < m0 ≤M ,
except for the first level for condition (6.8), then the error of the kth step of process (2.18) on the m0th
level satisfies the inequality

∥∆sm0,k
n,R ∥n ≤

m0−1∑
m=1

qmL
m

1− qm

∥∥sm,1
n,R − sm−1,L

n,R

∥∥
n

m0∏
i=m+1

1 + τin∇i

1− τin∇i

+
qkm0

1− qm0

∥∥sm0,1
n,R − sm0−1,L

n,R

∥∥
n
,
1

k = 1, 2, . . . . (6.12)

Proof. We use the inequality∥∥∆sm,k
n,R

∥∥
n
≤

∥∥smn − smn,R
∥∥
n
+

∥∥smn,R − sm,k
n,R

∥∥
n
, (6.13)

m = 1, 2, . . . ,m0, k = 1, 2, . . . ,

obtained from (6.4) and estimate each summand in the right-hand part of (6.13).
Consider the first summand. Since by virtue of (2.17) for m = 1 equation (2.16) does not differ

from equation in (2.14), we have

∥s1n − s1n,R∥n = 0. (6.14)

Let m > 1. For simplicity, we use the notation

vm−1
n,R = vm−1,L

n,R , sm−1
n,R = sm−1,L

n,R . (6.15)

Subtracting (2.16) from the first equality in (2.14), we get

∥smn − smn,R∥n ≤ ∥sm−1
n − sm−1

n,R ∥n
+ τm

∥∥Nn(s
m−1
n , smn )−Nn(s

m−1
n,R , smn,R)

∥∥
n
. (6.16)

Applying (5.9) and (5.10) to ∥Nn(s
m−1
n , smn )−Nn(s

m−1
n,R , smn,R)∥n, we obtain

∥∥Nn(s
m−1
n , smn )−Nn(s

m−1
n,R , smn,R)

∥∥
n
≤ 1

2
n max

(
1,

1

2

2∑
i=1

max
0≤z≤zi

|φ(z)|

+
1

2

(
1√
2
+

1

2

)
max

0≤z≤z3
|φ′(z)|

1∑
i=0

(∥vm−i
n ∥2n + ∥vm−i

n,R ∥2n)
) 1∑

i=0

∥sm−i
n −sm−i

n,R ∥n,

z1 = max
(
∥vm−j

n ∥2n, j = 0, 1
)
,

z2 = max
(
∥vm−j

n,R ∥2n, j = 0, 1
)
, z3 = max(z1, z2).

This inequality together with (5.8), (6.2), (6.3) and (6.6) lead to the relation
∥∥Nn(s

m−1
n , smn ) −

Nn(s
m−1
n,R , smn,R)

∥∥
n
≤ n∇m

1∑
i=0

∥sm−i
n − sm−i

n,R ∥n. Using this relation and (6.8), (6.15), (6.16), we con-

clude that the first summand in the right-hand side of (6.13) is estimated as follows:

∥smn − smn,R∥n ≤ 1 + τmn∇m

1− τmn∇m

∥∥sm−1
n − sm−1,L

n,R

∥∥
n
, m = 2, 3, . . . ,m0 . (6.17)

Let us estimate the second summand in (6.13). From (2.18), we have sm,k+1
n,R − sm,k

n,R =

τm
(
Nn(s

m−1,L
n,R , sm,k

n,R) − Nn(s
m−1,L
n,R , sm,k−1

n,R )
)
, k = 1, 2, . . . . Applying (5.9), (5.10) and (6.3) to this

1For simplicity, here and in some formulas below, we use certain conventions in the notation: firstly, when the index

m takes values 1, 2, . . . ,m0−1, it is assumed that the parameter mL becomes respectively equal to 1L, 2L, . . . , (m0−1)L
and, secondly, if in the summation symbol

∑
the value of the subscript is greater than that of the superscript, the

summation operation should be omitted.
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relation and also taking into account the inequality ∥vm,k−l
n,R ∥n ≤ ∥sm,k−l

n,R ∥n, l = 0, 1 obtained from

(2.19) and (4.8), we find that

∥∥sm,k+1
n,R − sm,k

n,R

∥∥
n
≤ 1

2
τmnmax

{
1,

1∑
l=0

[(
1√
2
+

1

2

)(
zm−1,L
n,R

+
1

2

1∑
i=0

∥sm,k−i
n,R ∥2n

)]l
max

z

∣∣∣∣dlφdzl (z)
∣∣∣∣ }∥sm,k

n,R − sm,k−1
n,R ∥n, (6.18)

0 ≤ z ≤ max
(
zm−1,L
n,R , ∥sm,k−i

n,R ∥2n, i = 0, 1
)
.

Further, we apply (2.11), (2.12), (2.15) and (2.20) to (2.18) and also take into account (4.8), (5.14)
and (6.5). This results in

(1− l)∥sm,0
n,R∥n, ∥sm,1

n,R − lsm,0
n,R∥n ≤ ξlm, (6.19)

where ξlm = (1− l)∥sm−1,L
n,R ∥n + τmnhm, l = 0, 1. The parameters ξ0m and ξ1m allow us to rewrite

condition (6.9) as

τmn

2
max

{
1,

1∑
l=0

[(
1√
2
+

1

2

)(
zm−1,L
n,R + ξm

)]l
max

z

∣∣∣∣dlφdzl (z)
∣∣∣∣ } ≤ qm, (6.20)

where 0 ≤ z ≤ max
(
zm−1,L
n,R , ξm

)
, ξm =

(
ξ0m + ξ1m

qm
1−qm

)2

.

By (6.18)–(6.20), we have∥∥sm,2
n,R − sm,1

n,R

∥∥
n
≤ qm

∥∥sm,1
n,R − sm,0

n,R

∥∥
n
≤ ξ1mqm. (6.21)

This and (6.19) imply

∥sm,2
n,R∥n ≤ ξ0m + ξ1mqm. (6.22)

Now, assume that for k = 2, 3, . . . , lm we have the inequalities∥∥sm,k
n,R − sm,k−1

n,R

∥∥
n
≤ qm

∥∥sm,k−1
n,R − sm,k−2

n,R

∥∥
n
, (6.23)

∥sm,k
n,R∥n ≤ ξ0m + ξ1m

k−1∑
i=1

qim. (6.24)

Substituting the estimate ∥sm,l−j
n,R ∥n ≤ ξ0m + ξ1m

qm
1−qm

, j = 0, 1, obtained from (6.7), (6.19) and

(6.24) into (6.18) for k = l and using (6.20), we find

∥sm,l+1
n,R − sm,l

n,R∥n ≤ qm∥sm,l
n,R − sm,l−1

n,R ∥n. (6.25)

This inequality, (6.19) and (6.23) lead to the estimate ∥sm,l+1
n,R −sm,l

n,R∥n ≤ ξ1mq
l
m which, together with

(6.24) for k = l, gives

∥sm,l+1
n,R ∥n ≤ ∥sm,l

n,R∥n + ∥sm,l+1
n,R − sm,l

n,R∥n ≤ ξ0m + ξ1m

l∑
i=1

qim. (6.26)

By (6.25) and (6.26), we conclude that (6.23) and (6.24) are fulfilled for k = l + 1. This fact,
together with (6.21) and (6.22), means that (6.23) and (6.24) hold for arbitrary k > 1. From (6.23)
follows ∥∥sm,k

n,R − sm,k−1
n,R

∥∥
n
≤ qk−1

m

∥∥sm,1
n,R − sm,0

n,R

∥∥
n
, k = 1, 2, . . . . (6.27)

Let us verify that the sequence (sm,k
n,R)

∞
k=0 is fundamental. On the strength of (6.27), for any l > 0,

we have ∥∥sm,k+l
n,R − sm,k

n,R

∥∥
n
≤

l∑
i=1

∥∥sm,k+i
n,R − sm,k+i−1

n,R

∥∥
n
≤

∥∥sm,1
n,R − sm,0

n,R

∥∥
n

l∑
i=1

qk+i−1
m .
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Therefore ∥∥sm,k+l
n,R − sm,k

n,R

∥∥
n
≤ qkm

1− qm

∥∥sm,1
n,R − sm,0

n,R

∥∥
n
, (6.28)

k = 0, 1, . . . , l = 1, 2, . . . .

For any l, the right-hand side of this inequality tends to zero as k → ∞. Hence the sequence (sm,k
n,R)

∞
k=0

is fundamental and has lim sm,k
n,R = smn,R. To pass to the limit in (2.18) as k → ∞, we use the continuity

property of the matrix Nn. Then it is obvious that smn,R is a solution of equation (2.16). Passing to the

limit in (6.28) as l → ∞, we obtain the inequality ∥smn,R − sm,k
n,R∥n ≤ qkm

1−qm
∥sm,1

n,R − sm,0
n,R∥n, which to-

gether with inequalities (6.13), (6.17) and relation (6.14) imply the estimates ∥∆s1,kn,R∥n ≤ qk1
1−q1

∥∥s1,1n,R−

s1,0n,R

∥∥
n
, ∥∆sm,k

n,R∥n ≤ 1+τmn∇̇m

1−τmn∇m
×

∥∥sm−1
n −sm−1,L

n,R

∥∥
n
+

qkm
1−qm

∥∥sm,1
n,R − sm,0

n,R

∥∥
n
, m = 2, 3, . . . ,m0. Using

these formulas and also taking into account (2.20), (6.4) and the definition of mL, we get (6.12). □

By (2.5), (2.15), (2.19), (2.21) and (4.8), we rewrite (6.12) in the form needed in what follows:

∥∆sm0,k
n,R ∥n ≤

m0−1∑
m=1

dmq
mL
m + dm0q

k
m0
, (6.29)

where

dm =
1

1− qm

{ n∑
i=1

[
(um,1

ni,R − um−1,L
ni,R )2 + (vm,1

ni,R − vm−1,L
ni,R )2

]} 1
2

em,

m = 1, 2, . . . ,m0, m0 > 1,

em =

m0∏
j=m+1

1 + τjn∇j

1− τjn∇j
, m = 1, 2, . . . ,m0 − 1, em0

= 1.

(6.30)

7. The Total Error of the Algorithm

7.1. Definition of the total error of the algorithm. We calculate the components um,k
ni,R and

vm,k
ni,R by formulas (2.22). Then, for the chosen n and for t = tm, the series

∑n
i=1 w

m,k
ni,R sin ix, where

wm,k
ni,R =

1

i
vm,k
ni,R , (7.1)

gives, at the kth iteration step, an approximate value of the exact solution w(x, tm) of problem (1.2),
(1.3). Therefore the total error of algorithm (2.22) can be characterized by the difference

∆wm,k
n,R (x) = w(x, tm)−

n∑
i=1

wm,k
ni,R sin ix. (7.2)

7.2. Decomposition of the estimate into components. To estimate error (7.2) for t = tm0
,

1 ≤ m0 ≤ M, we have to majorize it by the errors for which the estimates have already been found.

First of all, note that ∆wm0,k
n,R (x) is estimated through ∆xw

m0,k
n,R (x) = wx(x, tm0

) −
n∑

i=1

vm0,k
ni,R cos ix.

Indeed, by virtue of (1.3), (7.1) and (7.2) we have ∆wm0,k
n,R (x) =

∫ x

0
∆xw

m0,k
n,R (ξ)dξ. Hence, denot-

ing by ∥ · ∥L2(0,π) the norm in the space L2(0, π), we get
(
∆wm0,k

n,R (x)
)2 ≤ x

∫ x

0

(
∆xw

m0,k
n,R (ξ)

)2
dξ ≤

x
∥∥∆xw

m0,k
n,R (x)

∥∥2
L2(0,π)

and therefore ∥∆wm0,k
n,R (x)∥L2(0,π) ≤ π√

2
∥∆xw

m0,k
n,R (x)∥L2(0,π). If in this in-

equality we use (2.5), (2.19), (2.21), (3.3), (3.7), (3.8) and finally (4.1), (4.8), (7.1), then we obtain

∥∆wm0,k
n,R (x)∥L2(0,π) ≤ π

[(∥∥∥∥ n∑
i=1

(w′
i(tm0

)− um0,k
ni,R ) sin ix

∥∥∥∥2
L2(0,π)

+

∥∥∥∥ n∑
i=1

(iwi(tm0)− vm0,k
ni,R ) cos ix

∥∥∥∥2
L2(0,π)

) 1
2
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+

(∥∥∥∥ ∞∑
i=n+1

w′
i(tm0) sin ix

∥∥∥∥2
L2(0,π)

+

∥∥∥∥ ∞∑
i=n+1

iwi(tm0
) cos ix

∥∥∥∥2
L2(0,π)

) 1
2
]

= π

(
∥pns(tm0)− s

m0,k
n,R ∥n +

(
π

2

1∑
l=0

∞∑
i=n+1

(
il
d1−lwi

dt1−l
(tm0)

)2
) 1

2
)
. (7.3)

Let us estimate the first summand in the right-hand side of the equality in (7.3). Recalling definitions
(4.2), (5.1), (6.4), we write

∥∆wm0,k
n,R (x)∥L2(0,π) ≤ π

(
||∆sn(tm0)∥n + ∥∆sm0

n ∥n

+ ∥∆sm0,k
n,R ∥n +

(
π

2

1∑
l=0

∞∑
i=n+1

(
il
d1−lwi

dt1−l
(tm0

)
)2

) 1
2
)
. (7.4)

7.3. The main result – the total error of the algorithm. In Lemmas 5.5 and 6.2, we have
imposed restrictions (5.21), (6.8) and (6.9) on the grid step τm. For their fulfillment, in view of (5.22)
and (6.7), it suffices for the inequality

τm max

[
1,

1∑
l=0

((
1√
2
+

1

2

)(
max(z∗, z

m−1,L
n,R )

+max(z∗, z
m,m−1
n,R )

))l

max
z

∣∣∣∣dlφdzl (z)
∣∣∣∣ ] ≤ 2qm(1− σ)

n
(7.5)

to be valid, where

0 ≤ z ≤ max
(
z∗, z

m−1,L
n,R , zm,m−1

n,R

)
. (7.6)

The formulas for defining the values z∗, z
m−1,L
n,R and zm,m−1

n,R in inequalities (7.5) and (7.6) have been
presented above in a scattered way, but since they play an essential role in our discussion, we give
them anew, this time in the combined form. Thus,

z∗ =
1

α

(
∥w1(x)∥2L2(0,π) + ϕ(∥w0′(x)∥2L2(0,π))

)
, zm−1,L

n,R =
1

α
(∥um−1,L

n,R ∥2n

+ ϕ(∥vm−1,L
n,R ∥2n)), zm,m−1

n,R =

(
∥sm−1,L

n,R ∥n + τmnhm
1

1− qm

)2

. (7.7)

Further, let us replace (3.2) by an estimate, more convenient for calculation. Applying (3.21) and
(3.22) to (3.2), we write

0 < T <
1

2ω2N
min(1, α)

(
ζ(2(p+ s+ 1))

)−1
. (7.8)

Inequalities (7.5), (7.6) imply that the step τm satisfying (7.5) can be found before performing the
counting operation by relations (2.22) for the given m. In fact, the problem consists in determining
the step τm and the value qm by (7.5)–(7.7) so that the calculation on the mth level by formulas (2.22)
can be continued. Two approaches are possible here: either, in view of (6.7), we set the parameter qm
determining the error decrease rate on the mth level and use it to find the value of τm satisfying (7.5),
or vice versa. As follows from (1.6) and (7.5)–(7.7), in the first case, for any qm, there always exists
a sufficiently small τm such that (7.5) is fulfilled. In the second case, it should be kept in mind that
not every τm corresponds to an admissible value of qm. When this happens, τm should be reduces.

Now let us formulate the main result.

Theorem 7.1. Suppose that restrictions (1.4)–(1.7) are fulfilled, thereby ensuring the existence of a
local solution of problem (1.2), (1.3), i.e., of a solution for T satisfying (7.8) [8]. Choose a value σ
such that 0 < σ < 1. Assume for each m = 1, 2, . . . ,m0, 1 ≤ m0 ≤ M that the step τm is such that

for 0 < qm < 1 it satisfies inequality (7.5), where the values z∗, z
m−1,L
n,R and zm,m−1

n,R are defined by

formulas (7.7).
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Then, with the chosen n and for t = tm0
, the total error of algorithm (2.22) is estimated at the kth

iteration step, k = 1, 2, . . . , by∥∥∥∥w(x, tm0
)−

n∑
i=1

1

i
vm0,k
ni,R sin ix

∥∥∥∥
L2(0,π)

≤ π

{ 2∑
l=1

cl(tm0
)
( 1

np+s+1

)l

+c3(tm0
)
1

n

[(
1+

1

m0
λn

)m0

− 1

]
max

1≤m≤m0

τpm +

m0−1∑
m=1

dmq
mL
m +dm0

qkm0

}
, (7.9)

where cl(tm0) and dm, l = 1, 2, 3, m = 1, 2, . . . ,m0, are the coefficients defined by (3.32), (4.10), (5.31)
and (6.30), λ is the parameter defined by (5.25), and, finally, mL denotes the number of iterations
performed on the mth level, m = 1, 2, . . . , m0 − 1.

Proof. Let us consider relation (7.4). To estimate the summands ∥∆sn(tm0
)∥n, ∥∆sm0

n ∥n, ∥∆sm0,k
n,R ∥n

and

(
π
2

∑1
l=0

∑∞
i=n+1 ≤

(
il d

1−lwi

dt1−l (tm0)
)2

) 1
2

in (7.4) we respectively apply inequalities (4.9), (5.23),

(6.29) and (3.28). Recall also (7.1) and (7.2). The result is (7.9). □

We conclude the paper by making a few comments.
1. The simple way of finding τm by the given qm, m = 1, 2, . . . ,m0, 1 ≤ m0 ≤ M, is to calculate

the majorant of zm,m−1
n,R after replacing, on the basis of (7.5), τmn by 2qm(1−σ) in the third equality

of (7.7). Then we use zm,m−1
n,R in (7.6) and (7.5). As a result, we obtain a linear inequality with

respect to τm. However, this technique gives, in general, a smaller upper bound of possible τm than
it actually is.

2. If the value of an approximate solution
∑n

i=1 w
m,k
ni,R sin ix, where wm,k

ni,R is defined by (7.1), is

compared not with w(x, tm), as is done in subsection 7.1, but with
∑n

i=1 wi(tm) sin ix, i.e., with the
truncation of series (3.3) for t = tm, then by analogy with (7.2), the total error of algorithm (2.22)

is defined by the relation ∆wm,n
n,R (x) =

∑n
i=1(wi(tm) − wm,k

ni,R) sin ix. Estimate (7.9) remains valid for

this difference with only one correction. The coefficient c1(tm0) should be set equal to zero.
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