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A NUMERICAL ALGORITHM OF SOLVING A NONLINEAR
INTEGRO-DIFFERENTIAL STRING EQUATION AND ITS ERROR

JEMAL PERADZE

Abstract. The paper considers an initial-boundary value problem for the Kirchhoff equation w: =
o( 5 widz)wse describing the oscillation of a string. It is assumed that ¢(z) € CP[0,00), @(2) >
®
i = 1,2,..., of the initial functions w'(zx), | = 0,1, satisfy the inequality \agl)| < wil=(pts+2.5)
where w and s are the positive numbers. As S. Bernstein showed, this requirement guarantees the
existence of a local solution to the problem posed. To find it, the numerical algorithm is constructed,
consisting of three parts: the Galerkin method, a modified Crank-Nicolson difference scheme, and a
Picard type iterative process. The algorithm error is estimated.

a > 0, where p is either 1 or 2, and the coefficients a;’ of expansions into a Fourier sine-series,

1. THE PROBLEM

1.1. Formulation of the problem and its background. In 1876 [19], G. Kirchhoff, when refining
D’Alembert’s linear model, derived an equation for a string of the form

wy (x,t) — (ao + ag /wi(x,t) d:c> Wee(x,t) =0, (1.1)
0
O<z<m 0<t<T,

where oy = const > 0, [ =0, 1.
In the present paper, we consider the following initial boundary value problem for the generalized
Kirchhoff equation

wy(z, 1) cp(/wi(m,t)d:c)wm(x,t), O<z<m, 0<t<T, (1.2)

U)(I‘,O) = wo(x)v wt(xao) = wl(x)a 'LU(O,t) - w(ﬂvt) =0,

(1.3)
0<az<m 0<t<T,

with the aim to construct for it an approximate method and estimate the method accuracy. In (1.2),
(1.3), the functions ¢(z) and w'(z) are known, [ = 0,1, and

p(z) >a, 0<z<oo, a=const>0. (1.4)

The mechanical meaning of equation (1.2) [2] is to describe a dynamic string under conditions of
nonlinear stress-strain dependence, while equation (1.1), being a particular form of equation (1.2)
with ¢(z) = ag + a1 2, is applicable in the case of the linear Hooke’s law.

Many experts have studied equations (1.1), (1.2) and their various versions and generalizations,
including the equation wy (t) + a(||A2w(t)]|?)Aw(t) = f(t), a(s) > ag > 0, A = A* > 0. We mention
only some of the works [1-3,5-8,10,12-15,20-23,25,26,28-34,38,39] and especially accentuate paper [8]
as a pioneering mathematical study of equation (1.2). Most frequently, the authors were interested in
such questions as the solvability and uniqueness of a solution, its continuous dependence on the initial
data, as well as control and stability. As for the problem of constructing and finding the properties of
numerical methods for the above equations, it should be noted that there are relatively few published
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works in this direction. Various aspects of the algorithm construction for the Kirchhoff type equation
(1.1) are considered in the works of Attigui [4], Bilbao [9], Chaudhary et al. [11], Kachakhidze et
al. [18], Mbehou et al. [27], Liu and Rincon [24], Oplinger [35], Rogava and Vashakidze [40], Truong
et al. [41]. In our papers, an approximate algorithm was constructed and its total error was estimated
for equation (1.1) in [36] and for equation (1.2) in [37], which for these equations was done for the first
time. Approximate methods for solution a certain class of parabolic integro-differential equations are
investigated by Jangveladze et al. [17].

In this paper, we return to equation (1.2) considered in [37] under initial boundary conditions
of the form (1.3). The difference between these two papers is that in [37] it is assumed that the
initial functions w'(x), [ = 0,1, are analytic, whereas in the present paper the requirement on these
functions is relaxed so much that it becomes sufficient for these functions to have derivatives up to a
certain finite order. The latter assumption, expanding the class of possible functions w!(x), I = 0,1,
however,affects the properties of an exact solution of the problem, as well as the rate of error reduction
of the numerical algorithm under consideration. As follows from [8], in this case the upper bound of
the time interval on which the solvability of problem (1.2), (1.3) is guaranteed, may be less than 7.
Therefore the solution will already be local. It is proposed to find it by the same computational
algorithm that was applied by us in [37]. The main objective of the paper is to estimate the total
error of the result. This is achieved by including into the algorithm the parts related to the energy
preserving property (Lemma 5.2, Lemma 6.1), inherent in the Kirchhoff equation (1.2). Owing to
such an approach, we obtain a priori inequalities allowing us to estimate finally the total error of the
algorithm. The upper bound of the total error can be calculated. The formulas needed for this and
also for estimating T' are written.

1.2. Restrictions. Let the function ¢(z) from equation (1.2) satisfy, in addition to (1.4), the require-
ment

©(z) € C?[0,00), (1.5)

where p can be equal both to 1 and to 2.

Let in conditions (1.3), the functions
w?(x) and w'(z) be of the form w!(x) = Z al’ siniz, 1=0,1, (1.6)
i=1
and
(0) w (1) w .

|a; ‘—mv |a; |§W7 i=12,..., (1.7)

where w and s are some positive constants.

2. THE ALGORITHM

2.1. Space discretization — Galerkin’s method. An approximate solution of problem (1.2), (1.3)
is written in the form

n
wp(z,t) = Zwm-(t) sinizg, 0<z<mwm, 0<t<T, (2.1)
i=1

where the coefficients wy,;(t) are defined by Galerkin’s method from the system of nonlinear differential
equations and the conditions

w”(t) + <p<; leQwij(t)>i2wm(t) =0, i=12,...,n, 0<t<T, (2.2)
iz

Wi (0) = aEO), w,,;(0) = agl), i=1,2,...,n.

We introduce the functions
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and replace system (2.2) by an equivalent system
n
™ .
wlt) + o5 2 02,0 v =0,

j=1

v () =idugi(t), 0<t<T, i=1,2,...,n,

Uni(0) = al(-l), v (0) = iaz(-o), 1=1,2,...,n.

Let us write system (2.4) in a different form. For this we need some definitions. First of all, we

define respectively the scalar product and the norm

T 1
(uvv)n = 9 Zuivi7 ||u||n = (u, u)72l (2'5>
i=1
for the vectors u,v € R™, v = (u;)!_4, v = (v;)I~,. Next, by functions (2.3), 0 < ¢ < T, and the
coefficients az(-J), 1=1,2,...,n,j=0,1, from (1.6), we form the vectors
un(t) = (uni()ier, valt) = (uil®)ir, @l = (@)iy, §=0,1. (2.6)

We also define the matrix
K, = diag(1,2,...,n). (2.7)

Following these definitions, system (2.4) can be rewritten as
up () + ¢ ([lon (7)) Knvalt) =0, v;,(t) = Knun(t), 0<t<T, (2.8)
u,(0) =al, v,(0)=K,al. '

Using the vectors in (2.6), we define the block vectors
sn(t) = (un(t),va(t)), an = (ay,, Knay). (2.9)

Here and in what follows, the transposition sign of the vectors is omitted. Definitions (2.9) allow us
to write system (2.8) in the form

sty = (o, AR o ),

5n(0) = an.

(2.10)

2.2. Time discretization — the difference scheme. Using the function ¢(z) from equation (1.2),
we introduce two new functions ®(z) and ®(z1,22), 0 < z, 21,22 < 00. Let the first of them mean
the primitive function of ¢(z), and the second one be the divided difference of the function ®(z) for
z1 # 29 and be equal to ¢(2) for z; = zo. Therefore

z

M@=/@@ma
0

dene) = 22O 0 = v0a) (211)

0< 2z, 21,20 < 00.

To a pair of block vectors s1, s2, s; = (u;,v;), ui,v; € R", i = 1,2, we put into correspondence the
block vector N,,(s1,s2) defined by the formula

. 2 2
N(s1,82) = (f? ¢(Iv1||nbllvzlln)Kn> L;Sl _ (2.12)

Now, let us proceed to solving problem (2.10) by using the difference method. On the time interval
[0,T], we introduce the grid {t,, | 0 =ty < t; < --- < tyy = T} with a generally variable step
T =tm —tm—1 >0, m=1,2,..., M. An approximate value of s, (t) on the mth time level, i.e., for
t=tm, m=0,1,..., M, denoted by the vector

s = (ult, o), (2.13)
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ut, vt € R", is defined by the implicit symmetric scheme

m m—1
s, — S8 1

L =N, (s 8", m=12,...,M,
Tm (sn ) (2.14)

S, = Qp.

2.3. Solution of a discrete system — the iteration process. The last part of the algorithm is
aimed in solving the system of nonlinear equations (2.14).

Note that equation in (2.14) contains the vectors s™~!, [ = 0, 1, from two time levels. It is assumed
that the counting is performed levelwise and the iteration process is applied to each mth level, m > 1.
In the equation from (2.14), the vector s™~! is replaced by the vector smmLL = (ym-LL ym-LL)
um— bl ym=LL ¢ R which is the last (L) approximation for s”~! obtained on the (m — 1)th level.
Therefore the vector ;' cannot be found exactly. Instead of s}', it is the vector s} p = (u;' g, V' 5),

m m—1,L
Up'R, V' g € R, which is a real (R) solution of the resulting equation. Thus the equation Snr=8n

Tm
= Ny (sp—1h, s 5) corresponds to the mth level, m > 1.

Slnce starting from the second level, one and the same situation occurs on every level, it is natural
to replace s™ 1L in the latter equation by

st = (un g on ), (2.15)
u::él’L s LL ¢ R, As a result, for s, we obtain the equation
SpR— SZELL m—1,L _m
SR N () (2.16)

Not to introduce a special equation for the case m = 1, let us assume that (2.16) holds likewise for

m = 1, provided that
$O-L 0 0

nR = Sn,R = Sp- (2.17)
The nonlinear equation (2.16) is solved by a Picard type iteration process
sih = s T A TN (s s, k=12, (2.18)
where

siop = (u i o), (2.19)
u;”ﬁ*l, 'UT‘;;*Z € R™, is an approximation of the vector 8, g on the (k— l)th 1l =0,1, iteration step.
Thus the approximation to s} is performed by using the vectors s " R, k =0,1,.... For a slight
simplification of our further reasoning it will be assumed that as the initial approxnnatlon on the mth

level, m =1,2,..., M, we take the last iteration approximation on the preceding layer, i.e.,
sip=snath. (2.20)

Let us write the iteration process (2.18) componentwise. Toward this end, we first represent the
vectors from (2.15) and (2.19) as

m—1,L m—1,L\n m—1,L m—1,L\n
un,R - (uni,R )i=17 vn,R - (vni,R )i=1’ (2 21)
m,k—l __ ; m,k—I\n m,k—l __ ; m,k—Il\n :
U, r = (uni,R )izt VR = (Um',R )iz
Using also (2.5) and (2.12), we eventually obtain two simple recurrent formulas
T n
m,k _  m—1,L - m 1L 2 m,k—1\2
Upi,R = Uni, . — Tm? ¢< Unj,R Z(UTLLR ) )
=1 = (2.22)
m,k—1 +o m—1,L
vnz R nz R m,k _  m—1,L Tmz m,k—1 m—1,L
2 ’ Uni,R - vni,R + 2 ( ni,R tu Uns R )?
m=12,....M, k=12,..., i=1,2,....n

Thus the algorithm proposed for the solution of problem (1.2), (1.3) should be understood as
performing the counting by formulas (2.22).
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3. PRELIMINARIES

3.1. Some results of S. Bernstein. In [8], the solvability of problem (1.2), (1.3) is studied under
the conditions somewhat different from (1.4)—(1.7). The difference is that the particular case p = 2 is

not considered in that work and, besides, it is assumed that the coefficients ago) and agl) of expansions
in (1.6) are such that the series > >°, i5+5az(-0)2 and Y .0, i3+€a§1)2 converge, where ¢ is an arbitrary
positive constant. As compared with the latter requirement, condition (1.7) for p = 2 is more restric-
tive. After making the corresponding minor correction in order to make the results of [8] applicable
to our case, we present some statements therefrom on the solvability of problem (1.2), (1.3) and the
fulfillment of certain inequalities. To do this, we introduce some values. We apply the functions ¢(z),
wl(z), I = 0,1, ¢(z) from equalities (1.2), (1.3), (2.11), the number « from condition (1.4) and the

coefficients al(-l), I =1,2 from expansion in (1.6). Using also assumptions (1.5)—(1.7), we define

1 7 7 , 2
z a[o/(wl(x))de+¢<o/<w0 (x)) da;)}

(3.1)

/

=T ey |22

2 0<2<z. | 1 /op(2)

and
oo o) -1
p1(0) = Zi[igal@” + ((p(g Zj2a§o)2>> al(_l)2:|.

i=1 j=1

It is proved that problem (1.2), (1.3) is solvable on the time interval, which can be expressed by
using the parameters given herein. Namely, the existence of a solution is guaranteed for

0<T < (Np(0)". (3.2)

This solution w(zx,t), which we call local, is representable in the form of a series
o0
w(z,t) = sz(t) siniz, 0<z<mw, 0<t<T, (3.3)
i=1
whose coefficients satisfy the system of equations with the initial conditions

[ee]
w! (t) + ga(” ijwf(t)>i2 wi(t)=0, i=1,2,..., 0<t<T,
2 <
j=1 (3.4)
wi(0)=al”, w0y =al", i=1,2,....

For [ > 0, using the coefficients wy;(t) and w;(t) from expansions (2.1) and (3.3), we define the
functions

pinlt) = Zl a0+ (v(5 ijlfwzj ®)) i)
)= > ¢ [t + (o3 ij%g(t)))lw;z(t)].

It is proved that
pin(t), p(t) < pr(0)(1 = Npy(0)t) ™" (3.6)

It will be further assumed that condition (3.2) is fulfilled. Otherwise, we may shorten the time
interval and T' will be understood as the value satisfying this condition.
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3.2. Auxiliary inequalities. Like in the case of (2.3), using the coefficients of expansion (3.3) of an
exact solution of problem (1.2), (1.3), we introduce the functions

wi(t) = wi(t), wi(t) =dwi(t), i=1,2,..., (3.7)
by which, analogously to (2.6), we construct the vectors
pru(t) = (wit)izy,  pav(t) = (vi(t))is: (3.8)
Lemma 3.1. The following inequality:
Ipnv(@®)]2 < 2.y, n=12,..., 0<t<T, (3.9)
holds.

Proof. We multiply equation (1.2) by 2w;(x,t) and integrate the resulting relation with respect to x
from 0 to . By (1.3), (1.6), (1.7) and (2. 11) (3.3), we come first to ( [ wi(z t)d:z: + ¢ (fy wi(z t)d:z:))

=0 and then to [ w}(z,t)dz +¢ ( [y wi(z,t)dx) = [; (w' ) dz + ¢( [, (w° (x))?dx). Let us use
the latter equality and the relation

™

n oo
™ . i .
[pnv ()2 = E v; =3 E Pfwi(t) < 3 E 2w (t) :/wi(x,t)dx
i1 i=1

0

(67

1 s
<¢(/w§(x,t)dx>, n=12..., 0<t<T, (3.10)
0

obtained from (2.5), (3.3), (3.7), (3.8) and from the inequality

o(z) > az, (3.11)
which is a consequence of (1.4) and (2.11). This and (3.1) give (3.9) forn = 1,2,..., 0 <t < T.
Using (1.3) and (3.1) in (3.10), we conclude that (3.9) is true for ¢ = 0, as well. O

Applying the vectors from (2.6) and matrix (2.7), the number a and the function ¢(z) from (1.4)
and (2.11), we define the value

1
Zne = <||a}L||$L + ¢(||Kna,0L||i)), n=12.... (3.12)

Comparing (3.1) and (3.12), by virtue of (1.4), (1.6), (2.5)—(2.7) and (2.11), we find that
s < ze, m=1,2,.... (3.13)
Lemma 3.2. Problem (2.10) has a solution and the estimate
o2 < 2pey, n=1,2,..., 0<t<T, (3.14)
18 true.

Proof. Consider system (2.8) whose operator form is (2.10). Note that the validity of (3.14) for ¢t =0
is a consequence of (2.8) and (3.11), (3.12). Further, multiplying scalarly the first equation in (2.8)
by 2u,(t) and taking into account the second equation and definition (2.7), we obtain (||u, (t)||?)" +
o([lvn®OI2)(lvn(®)|?) = 0. From this and (2.11) follows the equality (||w, (t)||2 + ¢(||v.(t)]|2))" =

which, together with (2.8), gives ||u,(t)[|2 + ¢(|[v.(t)]|2) = ||laL]|2 + ¢(||K,a’||?). The latter relation
and (3.11), (3.12) imply inequality (3.14) for v,(t), 0 < ¢ < T, and an analogous estimate for w,(t),
namely, |[u,(¢)||2 < az,.. From this and (3.14), by virtue of (1.6), (1.7), (3.1) and (3.13), we obtain
the uniform boundedness of the norms w, () and v, (t) with respect to n and ¢, which guarantees the
solvability of problem (2.10). O
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Below, we will use the estimates

ngf( Zz )<z, 0<t<T, (3.15)
lon(@®)l7 = va = ZiZW%i(t) < 2, (3.16)
=1
n—LZ“w 0<t<T,

obtained respectively from (3.1), (3.7), (3.9), (3.10) and (2.3), (2.5), (2.6), (3.13), (3.14).
Further, we will need some inequalities for the coefficients in (2.1) and (3.3).

Lemma 3.3. The estimates

Zi2wm(t)w;”» ’ ’ < pa(t), (3.17)
i=1
Zz ) < polt Zz ) < pa(t), (3.18)
DT (Pwni () + wi (1) < (), J=3,.p+2, (3.19)
n=1,2,..., 0<t<T,

are valid, where the values (1;(t), j =1,2,...,p+ 2, do not depend on n.
Proof. To simplify the notation, we introduce the values

1
T

pr= max |- , 1=0,1,...,p, @5 = max(1, ¢g). (3.20)

0<2<z,

In expression (3.6), let us represent p;(0) and p;(0) in terms of al(-o) and al(.l), 1 =1,2,..., for which

we use the initial conditions in (3.4) and (3.5). We also take into account relations (1.4) and (1.7).
As aresult, if [ <2(p+ s+ 1), we obtain

pln(t)’ pl(t) < C (2(]7 + S) +3 - l) H(t)a 0<t< T, (321)
where H(t) is a positive-valued function of the form
1 ~1
H(t) = <2w2 min(1, o) —C(2(p—|—5+1))Nt) (3.22)
and ((z) is the Riemann zeta-function
1
= — 1 3.23
(=35 >t (3.23)

whose numerical values are obtained, for example, in [16].
From (3.22) and (3.23), it follows that H(t) is a monotonically increasing function

H(tl) < H(tg), 0<t; <ty <T. (324)
Further, by virtue of (1.5), (3.5), (3.16) and (3.20), we have
— 1
Zzzwm(t)w;i(t)‘ < §<Pép1n(t)
i=1
and therefore, after applying (3.21), we conclude that the first inequality in (3.17) is fulfilled with

i (6) = 5 b (2o + 5+ 1)) H(1). (3.25)

Analogously, after replacing (3.16) by (3.15), we prove the second inequality in (3.17).
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The fulfillment of inequalities (3.18) follows from relations (3.5) and (3.21). Obviously,
pa(t) = ¢ (2(p+s) +1) H(t). (3.26)

Finally, by virtue of (1.5), (3.5), (3.16) and (3.20), the left-hand side of inequality (3.19) is estimated
through pfp2;j_2.n,(t). For paj_o.,(t), we have estimate (3.21). Therefore in (3.19) it can be assumed
that for j =3,...,p+ 2,

115(t) = o (2(p + s — §) +5) H(2). (3.27)
The lemma is proved. O
Lemma 3.4. The inequality
T — . H 1
i=n+1
[=0,1, n=1,2,..., 0<t<T,
where
1
1 - 3
alt) = 3 (~(2p+ 5+ ) HO) 1= (3.20)
is valid.

Proof. We introduce into our consideration the function
00 - o] —1
)= Y (a0 + (¢(F20)) wie). (3.30)
i=n+1 j=1

After multiplying the differential equation in (3.4) by 2w.(¢f) and performing summation over
t=n+1,n+2, ..., we write

)= 3 w?(téfwja)w;w 10 = (ngw?a)))l_gr.

i=n+1 r=0

This and (3.1), (3.5) and (3.30) imply |y,,(¢)] < Np1(t)yn(t). Now, recalling (3.6), we obtain y, () <
yn(0)(1 — Np1(0)t)~1. From the latter relation and (3.15), (3.20), (3.30), we have the inequality

2 (PU2) + 10 (0) < () (0)(1 = Nps(0)0) 1. We apply to it (14), (17), (34), (3.21),
(3.22) and (3.30). Besides, we use the estimate

oo

1 1
> - < (3.31)
2 s)+3 — 2 s+1)
i1 1 (p+s)+ 2(p + s+ 1)n (p+s+1)
which follows from the integral test of the series convergence. Hence we conclude that inequality
(3.28) for 0 < t < T is fulfilled with ¢;(¢) calculated by formula (3.29). Expression (3.29) for ¢ (t)
is applicable in (3.28) in the case t = 0 as well, which can be verified by (1.7), (3.4), (3.20), (3.22)
and (3.31). O

We will need the following form of formula (3.29) separately for the case [ = 1. He is following

ei(t) = ;(piH@})H(@ ’ (3.32)



A NUMERICAL ALGORITHM OF SOLVING A STRING EQUATION 427

4. THE ERROR OF GALERKIN’S METHOD
4.1. Error relations. Applying the vectors (3.8), let us construct the block vector
Pn8(t) = (pnul(t), pao(t)) (4.1)

which will be an exact solution of problem (1.2), (1.3). The error of Galerkin’s method is understood
as a difference between the vectors from (4.1) and (2.9),

Asn(t) = pps(t) — sn(t). (4.2)
The above formulas imply
Asp(t) = (Aun(t), Av, (1)), (4.3)
where
Auy(t) = ppu(t) —un(t), Avn(t) =pao(t) — va(t). (4.4)

Let us derive the equations needed to estimate the norm of the error As,(t). To this end, using
functions (3.7), we take n first equalities in each relation of (3.4) and replace the resulting system by
an equivalent system

Zuj?(t))m(t):o, V() = dug(t), i=1,2,...,n, 0<t<T,

j=1

wi(t) + o

ol 3

u;(0) = a'V, v;(0) =ial”, i=1,2,...,n,
which, recalling notation (2.5)—(2.7) and (3.8), can be rewritten as
pnu'(t) + ‘p(llpnv(t)Hi)Knpn'U(t) + "/’n(t) =0, pnv/(t) = Knpnu(t)7
pou(0) = al, p,v(0)=K,al,

where ,,(t) is the truncation error of the method equal to

90 = (o5 2 50)) = o5 2o 50) ) vt (16)

Now, subtracting (2.8) from (4.5) and using (4.4), we obtain the desired equations and the condi-
tions

A, (t) + @ (lpnv (0)]17) KnAvna () + (2(lpnv@)]7) — ¢(loa(®)]17))
XKpvn(t) +,(t) =0, Av)(t) = K,Au,(t), (4.7)
Au,(0) =0, Awv,(0)=0.

4.2. The estimate of the method error. This subsection deals with error (4.2). To begin with,
we extend the definition of the norm || - ||,, given by (2.5) for the vectors from R™ to the block vectors.
Let s = (u,v), u,v € R™. Assume that

1
Islln = (lullz +1lv]I2)* - (4.8)

Lemma 4.1. The error of Galerkin’s method is estimated by

|80 (t)lln < ca(t) n=12.., 0<t<T, (4.9)

n2(ptst1)’
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where

1
W 2

co(t) = st D max (1, é) (% cplTH(T))

. 1 Vit1
2% :
X max e (72w2 min(1, a)H(t)) , (4.10)

Vg =

2
1 3-2j
2ap 1t M= 1:[ 2(p+s)+3)) ;

1 1
V2= Lo TP

and a, b are arbitrary positive constants.

Proof. After multiplying scalarly the first equation in (4.7) by 2Aw,(¢) and recalling the second
equation and (1.5), (2.7), we obtain

FL(t) = | Ava(8)]2 = 7 Pllpav@117) + 2 (2(lva@)17) = e(lpav@)17))
X (Knon(t), Aun(t)),, = 2(, (1), Awn(t))n, (4.11)

where we use the notation

Fu(t) = [Aua ()17 + e(llpav®)2) [ Ava (B)]15- (4.12)

We are to estimate the terms on the right-hand side of (4.11) for 0 < ¢t < T. Formulas (1.5), (2.5)
and (3.20) will be used repeatedly.
Applying (3.9), (3.10) and (3.17), we get

d
L ol ®12)] < 7¢I Jul(0)] < w0 (4.13)
By (3.9), (3.16) and (4.4), we conclude that
|e(llvn (®)II7) = e(llpav®7)] < 222 @1 [|Ava (). (4.14)

By (2.3), (2.6) and (2.7), we write |[K,v,(t)||2 = 5 31", i*w?,(¢) and, taking additionally into
account (3.18), we have

5 ha(b). (4.15)

Now, let us estimate the norm of the truncation error v, (t) defined by equality (4.6). Using (2.7),
(3.7), (3.8) and (3.18), we get [|[K,p,v(t)[|2 < 230 i*w?(t) < 5 pa(t). Moreover, by (3.7) and
(3.15), we infer

K nvn (®)II7 <

T™E 1l o=,
9.l < (5) erud () - 2wd(@). (4.16)
i=n+1
Further, from (4.7) and (4.12) follows
F,(0) =0. (4.17)

By (1.4) and (4.11)—(4.17), using arbitrary positive constants a and b, we write the relation F,(t) <
Y1 [ﬁ 7Tf0T (Zznﬂ 2w (t) ) dt—i—fo max (a ( +pa (7T ))7 2(a+b)><,u2(7')) F,(7) dT]. Let us apply
to it the Gronwall inequality together with (1.4), (3 22), (3.25), (3.26), and relations (3.28), (3.29) for
the case I = 0. Lastly, using (4.3), (4.8) and (4.12), we obtain estimate (4.9) and formula (4.10). O
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5. THE DIFFERENCE SCHEME ERROR

5.1. The error equation. The difference scheme (2.14) enables us to solve approximately problem
(2.10). Let us define the error of scheme (2.14) on the mth time level, i.e., for t = t,,,

As = (Au)', Avl),
as a difference of the vectors from (2.9) and (2.13)
As = 8y (tm) — sty m=0,1,..., M. (5.1)

If now we write 87" = s, (tm) — As]' and use this equality together with (2.10) in scheme (2.14), then
we obtain

Asyr — Asp! m,m—1 m,m—1
n 8% _ pmamel g gmmelg 19 M,
Tm f ¥ (5.2)
As? = 0.
In (5.2), denote by f7™~! the vector defined by the formula
f?’mil = Nn(sn(tm—l)v sn(tM)) - Nn(snm_lv 5?) (5'3)

and by 9™ ! the truncation error of scheme (2.14) equal to

’lﬁ?’mhl _ Sn(tm) — sn(tm—1) — Ny (8 (tm—1), Sn(tm)) - (5.4)

Tm

5.2. Auxiliary propositions. In this subsection, several lemmas will be proved.

Lemma 5.1. If the vectors s1 and sa, where s; = (u;,v;), u;,v; € R™, i = 1,2, satisfy the equation

S2 — S1

= Nn(Sl,Sg), (55)

T

7> 0, then
2

=0 (sl + (lleillz) = o. (5.6)
i=1
Proof. The combination of (2.12) and (5.5) yields *2=%i4 o(||lv1]2,[|lv2]|2) xK, 232 =0,
= = K, % Multiplying scalarly the first equation of this system by us + u; and using the
second equation, we come to (5.6). O

Let us estimate the term that forms the nonlinearity in the difference scheme (2.14).

Lemma 5.2. System (2.14) has a solution and the estimate

o2 < 2o, (5.7)

n=12..., m=0,1,..., M,

1s valid.

Proof. Inequality (5.7) is fulfilled for m = 0, which can be verified by means of (2.9), (2.13), (2.14)
and (3.11), (3.12). As to (5.7) for m > 0, note that the first equality in (2.14) is inscribed in scheme
(5.5) for every m = 1,2,..., M. Following (2.9), (2.13), (2.14) and (5.6), we find ||u™||2+ &(|lv™]2)
=|lall|? +¢(||[K,al||?). This equality and (3.11), (3.12) give (5.7) for m = 1,2,..., M. Moreover, we
obtain [|[u™||2 < az,. (5.7) and the latter estimate together with (3.1) and (3.13) imply the uniform
boundedness of the norms of ] and v, and therefore of s]' too, which guarantees the solvability

n

of system (2.14). O

From (3.13) and (5.7) follows
o2 < 2z, n=1,2,..., m=0,1,...,M. (5.8)

We will need the following property of the block vector (2.12).
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Lemma 5.3. For the vectors s;=(u;,v;), u;,v; ER™, i=1,2,3,4, the inequality

1
[N (s1,82) = Nu(s3, s4)lln < 5 nmax(1,n) (lls1 = sslln + [[s2 = salln) , (5.9)
holds, where
21—1,24
=3 2m 5 (g5 g || w2,
24 2\v2
i (5.10)
I = max| 2 ()], 0< 2 < max (||vll||i7...,||vl2Hi) ,
2J

i=0,1, 1 =13 lb=24, [1<ls.
Proof. By (2.12), we have

Ny (s1,82) — Np(ss,s4) = (A, B), (5.11)
where

1
A= 5 (6 (lorl12, ozll2) Knvr +v2) =6 (lesl2, lloal2) Kn(vstor)]
. (5.12)
B=3
1

Ko [(ur —ug) + (uz — ua)] -
To derive (5.9), (5.10), we use the equality

1
1N (s1,52) = Nu(sz, s)lln = (1415 + 1BI17) * (5.13)
arising from definitions (4.8) and (5.11). Let us estimate ||Al|,, and || B||,». By (5.12),
{Z¢> oz a2 ozl (s —v5) + (02 — va)]

4

+H@(llvrllz, o207) = ¢llvsl, lvall2)) K Zv}
i=1

We here transform the expressions ¢(||vz;_1]|2, ||[v2il|2), i = 1,2, and ¢(||v1 |2, ||v2]|2) — o (|lvs]|2, [[vall?)
by the Taylor formula and (1.5), (2.11). We also use the relations
[ Knlln < n, (5.14)
wills, = llois2lln] < (lvilln + lvitelln) [0i = vigalln, = 1,2,
which are a consequence of (2 5) and (2.7). Thus, using notation (5.10), we get
[Alln < 7 n[(Fl 2T (lor = valln + vz = vall)
1 4
A4
t3 Lt (Honlly = loslia] + [lloals = lloall2]) D Hvilln]
i=1
1 : 12, 134, L 14
S0P (067 + 06+ 3T (il + lloiea )
x Z sl 101 = vis2ln- (5.15)
j=1
As to the estimate of || B]|,, it is obtained from (5.12) and (5.14) as
1
IBlln < 5 n(”Ul —ugl|n + ||uz — u4l|n) - (5.16)

To complete proving the lemma, it remains to use (5.15), (5.16) in (5.13) and to take into account
the estimate

4
(loillaHlvi2lla) D llojlla < (14V2) levgl\m =12

j=1 j=1
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as well as the equality

N|=

i = sivalln = (lui — wigallZ + lvi —vigall2)?, i=1,2,

arising from definition (4.8). O

Now, we will estimate the norm of the truncation error of the difference scheme ¢nm,m—1 defined
by (5.4).
Lemma 5.4. The estimate
™, < sl n=1,2,..., m=1,2,...,M, (5.17)
is valid, where ™™ is a positive value not depending on T,, and n.

Proof. Let us write 9™ ! as the block vector o™~ 1 = (/=1 4p7um =1y qpmm =t ¢ R = 1,2,

nl nl

By virtue of (5.4), we obtain the formulas for the ith components """ and ¢ " of the vectors

™™ and ™5™t i =1,2,...,n. Taking into account (2.6), (2.7), (2.9) and (2.12), we write

Unj (tm) — Un; (tm— 1 )

m,m—l —
’l/)nlz T
'Unz( m) + Uni(tmfl)
P([[on(tm-1) 17 loa(tm) ) i 5 :
mym—1 __ Uni (tm) — Unj (tmfl) . Ung (tm) + Up; (tmfl)
VUi = -t :

T, 2

Performing here the Taylor expansion at the point ¢ = ¢,,_1, using condition (1.5), relations (2.3),
(2.4), (2.11) and, in the case p = 2, also the relations obtained from (2.3), (2.4) by differentiation, we
get for ™™ ! the following equality:

nli
v = (1-5) [wx; + w(g Zﬁw,%j)izw’

AsE ) e e

+(p—1)ni{éwm+z [ ( Zy )
(3500 s () o)

j=1

% ”< ZJ )((g;fwia >2wn]} (5.18)

wm

(

where, for brevity, the values of the argument of the functions dlé"l"i( t), 1 =0,1,...,4, are omitted.
These values belong to the interval [t,,_1,y,]. As to the formula for ¢, 5" 71, it can be written as

O = (1= B i (0 (600) = i (02)) + (0 — V7
1 1
X (6 wxi(6‘3l) - Z w;{;(&u)) y tm—1 < 9” < tm, l= 1,2,3,4. (519)
Note that formulas (5.18) and (5.19) are valid provided the inclusion w,,;(t) € CP*2[0,T],i = 1,2,...,n

holds. Lemma 3.2 states that (2.10), i.e., system (2.2), is solvable. This result together with the form
of the equation in (2.2) and condition (1.5) imply that this requirement is fulfilled.
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Now, to obtain estimate (5.17), using (5.18) and (5.19), we need to verify that the series Y i*w2,(¢),

i=1

STitwA(t), S i%Pw!2(t), Z P2P=D2(1), (p— 1) Z i*w!V2(t) are uniformly bounded with respect
=1 i=1

to n = 1,2,... and 0 < ¢ < T Toward this end, it sufﬁces for (3.19) to be fulfilled. Indeed, by virtue
of (2.2), we write

n ( ) d w 9 n ( 2
2(p—1 ni _ 2(p—142)
St (Tt ) = o G oG L a0 )t
i=1 i=1
and then, keeping in mind (1.5), consider successively the cases l =0,1,...,p. O

Further, it will be useful to define concretely the value ™™~ from estimate (5.17). For this, note
that if (3.19) holds, then the first inequalities in (3.17) and (3.18) are fulfilled. Combining (1.5), (2.2),
(3.16)—(3.20), (4.8) and (5.17)—(5.19), we obtain

1 3 1
for p=1, ™™ = \/?mgX<7Tsolu1(t)M§ (t)+\/;<poso5u§ (t)),

tm—l St S tma

2
_ ™ 5
for p=2, »™m 1 = 3—\/§mtax [w 14 (t) Z(cpo)l
=1 (5.20)
2
Jug (6> (21 + 1)1 + 91 ()3 (t)
=1

2
+pa(t Zl+1uz+1 )H@l],tm1§t§tm.
i=1 —

+ oo (t

5.3. The estimate of the difference scheme error. For error (5.1), we have

Lemma 5.5. If for every mth level, m = 1,2,...,mg, 1 < mg < M, the grid step satisfies the

inequality
1

Ton < Z(ITW {max <1, > ((+v2) Z*)lw)] _1, (5.21)

1=0
where
o s an arbitrary parameter such that 0 < o <1, (5.22)
then for the moth level, i.e., for t = t,,,, the error of scheme (2.14) is estimated by
1 1 "o
mo||l — _ — P .
18527 < caltms) | (14 oA ) 1] e 7 (5:29

Here

c3(tmy) = max »™™ [max( 21: 14V2)z,) @l)]_l, (5.24)
=0

1<m<myg

t T :
A=-"% max — max (1, Z((l +2) z*)lgol) (5.25)

o 1<i,5<mg T =0

Proof. Formulas in (5.2) and (5.3) give the inequality
||A3nm||n < ”Aszlen + Tm (”Nn(sn(tm—l)vsn(tm)) - Nn(sgilvszl)”n + ||1/’Zl7m_1||n) .
Applying to it (5.1), (5.9) and (5.10), we obtain

1
D (1 = ranx™ ) 1Al < Tl (5.26)
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Here,

1
T = 3 max< 27! ZO<I§1<aZX+1 2|+ (277 4272

< WY (ool + o7 I2) )
=0

0<z<max(z1,22)

21 = max ([[on ()2, 5 =0,1), 2 = max (JJor |3, j=0,1).

If in the expression for Y™~ we use estimates (3.16), (5.8), and notation (3.20), then (5.26) can be
replaced by the inequality

1

> ((=1)" = 7unx) 1A [l < 7)™ | (5.27)
i=0
where

X = % max( Z((l +v2) z,) <,Ol> (5.28)

1=0
Since (5.21), (5.22) and (5.28) imply 1 — 7,,nx > o > 0, it follows from (5.17) and (5.27) that

A8l < (142 722 ) Asy o e (5.29)

Observing that (5.29) is fulfilled for m = 1,2,...,mg, mgo > 1, and using (5.2), we obtain

1 mo—1 myo

m _ m,m—1 p+1

laszoll, < = | Jnax s { S 11 (1+2 )rm ] (5.30)
m=1 i=m+1

Applying (5.28), (5.30) and the inequalities 7, < max;7; < tr% max:—;, where 1 < m < my,

l,i,j =1,2,...,mg, we conclude that (5.23) is true, and the coefficient c3(t,,,) and the parameter A
are defined by (5.24) and (5.25). O

Let us introduce into consideration the single-index parameters vy =mplp1, v2 = (gpo)% mzla)é ob and

the double-index parameters Vi1 = 3(,00((,05)%, Vig = 47 5(@(1))%, Vo1 = 2(p0, Voo = 0, 5@1 ( )2 Zl 1(2l+
1)¢r. Using (3.24)—(3.27) and (5.20) together with notation (5.28) in (5.24), we come to a conclu-
sion that

for p=1, cs(tm,) = 2V2x

Y (metmo»i—% T[cm+sti+i- 4>>,

i=1 j=1

N (5.31)
3

for p =2, c(tm,) = xH(tm)(i A2+ ) -3)

2
+ o HE(t Z 2(p+s)+2i— 3))§C(2(p+s)+j)>.

6. THE ITERATION PROCESS ERROR

6.1. Some inequalities and definitions. In this subsection, we consider equation (2.16). Let us
estimate the norm of the vector v;)'p which forms the nonlinearity. As will be seen, the estimate
depends on the iteration results on the preceding (m — 1)th level. Denote

m— 1L m—1,L m—1,L
TRl (P R A ) (6.1)
n—1,2,...7 m:172,...7M.
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In particular, for m = 1, it follows from this relation and (2.9), (2.14), (2.15) and (2.17) that 22’,%
is calculated by (3.12).

Lemma 6.1. We have an a priori estimate
Wrl2 <zrptt, n=12..., m=12... M. (6.2)

Proof. Equation (2.16), whose solvability will be shown below, is a particular case of equation (5.5).
Hence, using (5.6), we obtain the equality

i g 17 + ol all2) = Tz 715 + oz 112),
which together with (3.11) and (6.1) gives (6.2). O

Further, we will also need to estimate the norm of the vector v, =" by means of z =", Using
(3.11) and (6.1), we obtain the needed inequality

|| m—1,L
vn,R

2<arett, n=12,..., m=12,... M (6.3)

Now, let us introduce some definitions. The iteration process (2.18) enables us to find an approxi-
mate value of the vector s]'. We define the error of the kth step of process (2.18) on the mth level,
i.e., for t = t,,,, as the vector

Asmﬁ =g — sf:ﬁ. (6.4)

To estimate the norm of Aszl R’f, we have to introduce the values h,,, V,, and g,, for each mth time
level, m = 1,2,..., M. The first of these values depends on the last approximation on the (m — 1)th
level. The next Value depends on the constants z, and z, Rl L from (3.1) and (6.1). As to g, it is

defined by means of simple inequalities. To be more exact, assume that

2oz ) (6.5)

o = (gl + oll0]

1 ! 11 ! dlp
m—1,L
Vi = 5 max (L; [(\@ + 2> (2« + 2, 5 )} max |- (2) >7 (6.6)
0 < z < max (z*,z;an L) ,
0< qm < L. (6.7)
Also, for the step 7,,, consider the inequalities
< 1 (6.8)
m nVm ' .
1
TmM 1 1 1,L, —m,m—1 dl@
5 X (1,; {(\/54—2)(2'2“1% +z )} max | = )| ) <qm, (6.9)
0 < z < max (z;"Rl’L, z;”,};nfl) (6.10)
n (6.9) and (6.10),
mm 1 m—1,L 1 2
(|| + Tty ——— 7qm) . (6.11)

From (3.1), (6.1) and (6.5)—(6.11) it follows that hy,, Vi, g and, which is important, 7,,, can be
found prior to performing the iteration on the mth level.

Finally, we introduce one more notation. We denote by my, the number of iterations performed on
the mth level, m = 1,2,..., M. Therefore my, is the number of the iteration that yields S:Z’]%.
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6.2. The estimate of the iteration process error. To estimate the error of the iteration process
(2.18), we use the inequalities and definitions of the preceding subsection.

Lemma 6.2. If conditions (6.7)—(6.9) are fulfilled for each mth level, m =1,2,...,mg, 1 <mog < M,
except for the first level for condition (6.8), then the error of the kth step of process (2.18) on the moth
level satisfies the inequality

mo—1 mr, mo
q 1+ 7nV;
||Asmo k||n < Z I l"qm| Sn R — S:anl LH H Tznvz
m=1 i=m—+1
D mo,l _ omo—1,L) 1 L _
+7HS _SnR w k—1,27 . (612)
Proof. We use the inequality
lasall, < llsi = siirll, + Isve = sz, (6.13)

m=1,2,....mg, k=12,...,

obtained from (6.4) and estimate each summand in the right-hand part of (6.13).
Consider the first summand. Since by virtue of (2.17) for m = 1 equation (2.16) does not differ
from equation in (2.14), we have

87, = 8n,glln =0 (6.14)
Let m > 1. For simplicity, we use the notation
,val — ,U’Ir’)L’LRl L’ Sle — S:lan L. (615)

Subtracting (2.16) from the first equality in (2.14), we get
I = siglln < st = sn'R I
+ TmHNn(sﬂ_l, s — Nn(szgl, stR)Hn. (6.16)
Applying (5.9) and (5.10) to || Ny (s, s7) — Nu(s)' 5!, 87 1) [lny We obtain

n

1
HNn(S?_laS:ln) _N ( rLR17S:lnR)H < 5” maX( ZOglzag(z <P

1
+3( 5+ 3) max 0 (s o7 12) Z s~ =55l
21 = max (v |7, 5 =0,1),
Zy = max (Hv;nyﬂfl, j=0, 1) , 23 = max(z1, 22).
This inequality together With (5.8), (6.2), (6.3) and (6.6) lead to the relation ||N, (s, sm) —
Ny (s, P Sn'R) H <nV,, Z [|sm—t — m7i||n Using this relation and (6.8), (6.15), (6.16), we con-

clude that the first summand in the right-hand side of (6.13) is estimated as follows:

1+Tmnvm”m1 m—1,L

s — snglln < T —snwll,, m=2,3,...,mo. (6.17)
Let us estimate the second summand in (6.13). From (2.18), we have sm;tfﬂ - ST,}]:; =
Ton (N (s 25 siie) — Nt E sih™h), k= 1,2,... . Applying (5.9), (5.10) and (6.3) to this

IFor simplicity, here and in some formulas below, we use certain conventions in the notation: firstly, when the index
m takes values 1,2,...,mg—1, it is assumed that the parameter my, becomes respectively equal to 11,,21,...,(mo—1)
and, secondly, if in the summation symbol > the value of the subscript is greater than that of the superscript, the
summation operation should be omitted.
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relation and also taking into account the inequality [v,'z . < s k Yln, I = 0,1 obtained from
(2.19) and (4.8), we find that

m 1 SN T A
||s K41 SnRHn <3 Tmnmax{l Z [(\/5 4 2> <zn7R1,L

=0
l
4= ZH m,k— 'L||2>:| max

1
m,k—1
}Hsn R Sn R ||n7 (618)
ogzgmax(muusmkln ; )

d'o
(2

Further, we apply (2.11), (2.12), (2.15) and (2.20) to (2.18) and also take into account (4.8), (5.14)
and (6.5). This results in

(1= DIl

HSTLR_lsn RHTL Sgl’ﬂu (619)

where &, = (1 —1)||s]' & L L||n + Ty, 1 =0,1. The parameters &g, and &1, allow us to rewrite
condition (6.9) as

1 l 1
TmT 1 1 m—1,L d (2
—5— max {1,; [(\/ﬁ + 2)( + fm)} max | = (2)| ¢ < ¢m, (6.20)
1,L 2
where 0 < 2 < max (27'2" €m ), &m = (€om + €um 722
By (6.18)—(6.20), we have
Hsn R sn RH < quS;, R~ Sn, RH < €1QO~ (621)
This and (6.19) imply
87l < Eom + E1mdm- (6.22)
Now, assume that for £ = 2,3, ..., lm we have the inequalities
m,k—1 m,k—1 ™ k 2
sy = swn Il < amllshn s (6.23)
k—1
875 I < Som + &im Z 0, (6.24)
Substituting the estimate ||sml N < Eom + fim72—, j = 0,1, obtained from (6.7), (6.19) and
(6.24) into (6.18) for k = and using (6.20), we find
lsmi™ = spglln < amlishs = sng  ln. (6.25)

This inequality, (6.19) and (6.23) lead to the estimate ||s)"%; oLt

(6.24) for k =1, gives

— 8, R”n < €1mqm which, together with

l
o S = ST < o+ Eum S i (6.26)
i=1

By (6.25) and (6.26), we conclude that (6.23) and (6.24) are fulfilled for k¥ = [ + 1. This fact,

together with (6.21) and (6.22), means that (6.23) and (6.24) hold for arbitrary & > 1. From (6.23)
follows

L1
lsnr lln < llsy.

m,k—1

lshw —snm I, < k=1,2,.... (6.27)

a7 -

Let us verify that the sequence (s R) % o is fundamental. On the strength of (6.27), for any [ > 0,
we have

RHn’

} mk+l Z| mk+27 karz 1||n—HsansnR|| qu+z 1
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Therefore

m,k+l qk om0
lsm™ = siall, < 772~ llshn = szl

(6.28)
k—O,l,...7 1_1,2,....

For any [, the right-hand side of this inequality tends to zero as k — co. Hence the sequence (s R)°°

is fundamental and has lim s, mok = sy g To pass to the limit in (2.18) as k — oo, we use the continuity
property of the matrix N,,. Then it is obvious that 8, 1s a solution of equation (2 16). Passing to the

limit in (6.28) as [ — oo, we obtain the inequality [|s}'p — snm;;Hn < q’”

”sn R~ Sn R”n, which to-

gether with inequalities (6.13), (6.17) and relation (6.14) imply the estlrnates HAsn’RHn < 1_1 - Hsnﬂf
1,0 k s _ 1,L . 1 0 _ .
Sn,Ran HAsm I < %—s-;nzig ||s,’;n —SZLR ||n—|— lzquszﬁtR—s:Ln’RHn, m=2,3,...,mp. Using

these formulas and also taking into account (2.20), (6.4) and the definition of my, we get (6.12). O
By (2.5), (2.15), (2.19), (2.21) and (4.8), we rewrite (6.12) in the form needed in what follows:

mo—l
IASTSE | < dm@n® + ding @, (6.29)
m=1
where 1
1 - m.l 1L m,1 1L 2
dm: 1 q { [(uan_uan )2+(Uan_van )2] Em;s
m =1
m=1,2,...,mg, mg > 1, (6.30)
mo
1+ Tj’nv]'
em:‘H m, m=1,2,...,mg—1, emO:1.
Jj=m+1 J J

7. THE ToTAL ERROR OF THE ALGORITHM

7.1. Definition of the total error of the algorithm. We calculate the components uﬁ% and

Vpi, R by formulas (2.22). Then, for the chosen n and for t = ¢,,, the series Y w/> %sm iz, where

1
K K
wTTi,R = gvz,m (71)

gives, at the kth iteration step, an approximate value of the exact solution w(x,t,,) of problem (1.2),
(1.3). Therefore the total error of algorithm (2.22) can be characterized by the difference

szljg(x) Zw Rsm ix. (7.2)

7.2. Decomposition of the estimate into components. To estimate error (7.2) for ¢t = t,,,,
1 < mg < M, we have to majorize it by the errors for which the estimates have already been found.

First of all, note that Aw?‘}%k(x) is estimated through A wm“’k(x) = Wy (T, tm,) — Z (i R cosix.

Indeed, by virtue of (1.3), (7.1) and (7.2) we have AwZLORk(x) = waAmef%k(f)df Hence denot-

ing by || - [|22(0,x) the norm in the space L*(0,7), we get (Awmo’k( ))2 <) (As wmo’ (f)) d¢ <
2 s >

xHAl.wZT‘}’%k(x)HH(O’W) and therefore ||Awm°’ (@)l L2(0,m) < NG |A, wm‘) ()|l L2(0,7)- If in this in-

equality we use (2.5), (2.19), (2.21), (3.3), (3.7), (3.8) and finally (4.1), ( .8), (7.1), then we obtain
2

ey
Ui R sinix

JAwsH @)l 20 < w[(

L2(0,7)

2 3
L2(0,7r))

1=
n

iw; (tm ) — v cos i
( ( 0) ni,R

=1
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o0 2 00 2 1
+ ( Z W (tm, ) Sin iz + iw; (tm, ) COS T > }
i=n+1 L2(0,m) i=n+1 L2(0,7)

= (Ipusttns) 57500+ (5 SOy (L m0>)2)é). (73)

=0 i=n+1

Let us estimate the first summand in the right-hand side of the equality in (7.3). Recalling definitions
(4.2), (5.1), (6.4), we write

mo,k m
[ Awy 5 ()| 2(0,m) < 7T(IIASn(lM)IIn + [[Asy|n

+ [ AsTE, + < Z Z ( dtl“f mo))2>;>. (7.4)

=0 i=n

7.3. The main result — the total error of the algorithm. In Lemmas 5.5 and 6.2, we have
imposed restrictions (5.21), (6.8) and (6.9) on the grid step 7,,. For their fulfillment, in view of (5.22)
and (6.7), it suffices for the inequality

Ty MMAX [121: ((\}5 + ;) (max(z., 21 5"")

=0
! l
d'o 2¢m (1 — o)
m,m—1 m
. < — 7.5
+ max(z Zn R ))) max dzl( 2) ] " (7.5)
to be valid, where
O<z<max(z*,zn Rl L,Z:fén 1). (7.6)

The formulas for defining the values z,, ZZRI’L and z,"7" "~ in inequalities (7.5) and (7.6) have been

presented above in a scattered way, but since they play an essential role in our discussion, we give
them anew, this time in the combined form. Thus,

1 ! m-1,L _ L, m-1L
2= = (It @I e0,m + 60 @0,0)) - 2m" = S (g IR

2)), zmmet (nsm L

Further, let us replace (3.2) by an estimate, more convenient for calculation. Applying (3.21) and
(3.22) to (3.2), we write

+ ¢(||’U'rn 1,L

1 2

0<T < o ! S min(La) (C2(p+s+1)

Inequalities (7.5), (7.6) imply that the step 7, satisfying (7.5) can be found before performing the
counting operation by relations (2.22) for the given m. In fact, the problem consists in determining
the step 7, and the value g, by (7.5)—(7.7) so that the calculation on the mth level by formulas (2.22)
can be continued. Two approaches are possible here: either, in view of (6.7), we set the parameter gy,
determining the error decrease rate on the mth level and use it to find the value of 7,,, satisfying (7.5),
or vice versa. As follows from (1.6) and (7.5)—(7.7), in the first case, for any g,,, there always exists
a sufficiently small 7,,, such that (7.5) is fulfilled. In the second case, it should be kept in mind that
not every 7, corresponds to an admissible value of ¢,,,. When this happens, 7,,, should be reduces.

Now let us formulate the main result.

(7.8)

Theorem 7.1. Suppose that restrictions (1.4)—(1.7) are fulfilled, thereby ensuring the existence of a
local solution of problem (1.2), (1.3), i.e., of a solution for T satisfying (7.8) [8]. Choose a value o
such that 0 < o < 1. Assume for each m = 1,2,...,mg, 1 < mg < M that the step T, is such that
for 0 < q,, < 1 it satisfies inequality (7.5), where the values z,, z;'fl_%l’L and 25" U are defined by
formulas (7.7).
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Then, with the chosen n and for t = ty,,, the total error of algorithm (2.22) is estimated at the kth
iteration step, k =1,2,..., by

n 2
1 my . . 1 l
Hw(:z:,tmo) — Z fvm?kk sin iz < 71'{ Z 1 (tmg) (m>
=1 L2(0,m) 1=1 "
1 1 \™ " "
il il _ p m
+¢:3(tm0)n [<1+m0 An) 1} | Joax T, erzﬂ dmagn*® +dm0qmo}, (7.9)

where ¢;(tm,) and dp,, 1 =1,2,3, m = 1,2,...,mg, are the coefficients defined by (3.32), (4.10), (5.31)
and (6.30), X\ is the parameter defined by (5.25), and, finally, my, denotes the number of iterations
performed on the mth level, m =1,2,..., mg — 1.

Proof. Let us consider relation (7.4). To estimate the summands ||Asy, (tmo)|In, |AST0]n, HAsnm"}%’an

1
2

- 2
and <’27 le:O Z;’inﬂ < (il%(tmo)) > in (7.4) we respectively apply inequalities (4.9), (5.23),
(6.29) and (3.28). Recall also (7.1) and (7.2). The result is (7.9). O

We conclude the paper by making a few comments.
1. The simple way of finding 7,,, by the given ¢,,, m = 1,2,...,mg, 1 < mg < M, is to calculate

m,m

the majorant of 2,y ~! after replacing, on the basis of (7.5), Tmn by 2¢: (1 — o) in the third equality

of (7.7). Then we use z:}gn_l in (7.6) and (7.5). As a result, we obtain a linear inequality with
respect to 7,,. However, this technique gives, in general, a smaller upper bound of possible 7,,, than
it actually is.

2. If the value of an approximate solution ) ., w;r;’f% siniz, where w;r;’f% is defined by (7.1), is
compared not with w(z,t,,), as is done in subsection 7.1, but with Y. | w;(tm)siniz, i.e., with the
truncation of series (3.3) for t = ¢,,, then by analogy with (7.2), the total error of algorithm (2.22)
is defined by the relation Aw,"g (z) = Y1 (wi(tm) — w;’zg) sinix. Estimate (7.9) remains valid for
this difference with only one correction. The coefficient ¢;(¢,,,) should be set equal to zero.
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