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ON THE CRITERION OF THE WELL-POSEDNESS OF THE MODIFIED

INITIAL PROBLEM FOR SINGULAR LINEAR ORDINARY DIFFERENTIAL

SYSTEMS

MALKHAZ ASHORDIA

Abstract. Effective necessary and sufficient conditions are established for the well-posedness of the

initial problem with weight for linear systems of ordinary differential equations with singularities.

1. Statement of the Problem, Basic Notation and Formulation of Basic Results

Let [a, b] ⊂ R be a finite and closed interval, non-degenerate at the point t0 ∈]a, b[, and It0 =
[a, b] \ {t0}.

Consider the initial problem with weight for a linear system of ordinary differential equations with
singularities

dx

dt
= P (t)x+ q(t) for a.a. t ∈ It0 , (1.1)

lim
t→t0

(Φ−1(t)x(t)) = 0, (1.2)

where P = (pik)
n
i,k=1 ∈ Lloc(It0 ;Rn×n), q = (qk)

n
k=1 ∈ Lloc(It0 ;Rn); Φ = diag(φ1, . . . , φn) is a positive

diagonal n× n-matrix function, defined continuously on [a, b] \ {t0}.
Without loss of generality, we can assume that t0 = a, or t0 = b.
Consider the case t0 = b. The case t0 = a will be considered analogously.
Let I = Ib=[a,b[.
Along with system (1.1), let us consider the sequence of perturbed singular systems

dx

dt
= Pm(t)x+ qm(t) for a.a. t ∈ I (m = 1, 2, . . . ), (1.3)

under condition (1.2), where Pm = (pmik)
n
i,k=1 ∈ Lloc(I;Rn×n), qm = (qmk)

n
k=1 ∈ Lloc(I;Rn).

We are interested in establishing the necessary and sufficient conditions under which the unique
solvability of problem (1.1), (1.2) guarantees the unique solvability of problem (1.3), (1.2) and the
nearness of its solution in the definite sense if the matrix-functions Pm and P and the vector-functions
qm and q are close to each other.

As we know, the question on the necessary and sufficient conditions for the well-posedness was not
fully investigated in earlier papers. In [1], only some results are presented. Thus, the problem under
consideration is urgent. In our paper, an attempt is made to fill in the existing gaps.

The same problem was previously studied earlier in [6] (see also references therein), where only the
sufficient conditions were obtained.

The singularity of system (1.1) is considered in the sense that the matrix P and vector q functions
are in general not integrable on each interval including t0. Moreover, the solution of problem (1.1),
(1.2) is not continuous at the point t0 and, therefore, it cannot be a solution in the classical sense.
But its restriction on each interval from It0 is a solution of system (1.1). In this regard, we recall the
following example from [6].
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Let α > 0 and ε ∈]0, α[. Then x(t) = |t|ε−α sgn t is the unique solution of the problem

dx

dt
= −αx

t
+ ε|t|ε−1−α, lim

t→0
(tαx(t)) = 0.

The function x is not a solution of the equation on the set R, however x is a solution to the above
equation only on R \ {0}.

The questions of the solvability and well-posedness of singular differential problem (1.1), (1.2) have
been studied, for example, in [5–7] (see also references therein). As far as we know, the necessary
and sufficient conditions for the well-posedness of problem (1.1), (1.2) with singularity have not been
studied up to now.

Similar problems for singular impulsive and the so-called generalized orinary differential equations
are investigated in [1–4].

The present paper presents the necessary and sufficient conditions for the so-called strongly Φ-well-
posedness of problem (1.1), (1.2).

Throughout the paper, we use the following notation and definitions:
R =]−∞,+∞[, R+ = [0,+∞[.

Rn×m is the space of all real n×m matrices X = (xik)
n,m
i,k=1 with the norm ∥X∥ = max

k=1,...,m

n∑
i=1

|xik|.

|X| = (|xik|)n,mi,k=1 , [X]− =
1

2
(|X| −X), [X]+ =

1

2
(|X|+X).

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

Rn = Rn×1 is the space of all column n-vectors x = (xi)
n
i=1.

On×m (or O) is the zero n×m-matrix, 0n (or 0) is the zero n-vector.
In is identity n× n-matrix.
The inequalities between the matrices are understood componentwise.
If X ∈ Rn×n, then X−1 and r(X) are, respectively, the matrix inverse to X and the spectral radius

of X.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its components

is such.
C(I;Rn×m) is the space of all continuous and bounded matrix-functions X : I → Rn×m with the

norm ∥X∥∞,I = sup{∥X(t)∥ : t ∈ I}.
C(I;D), where D ⊂ Rn×m, is the set of all continuous and bounded matrix-functions X : I → D.
Cloc(I;D) is the set of all continuous matrix-functions X : I → D.
If X ∈ C([a, b];Rn×m), then ∥X∥c = max{∥X(t)∥ : t ∈ [a, b]}.
AC([a, b];D) is the set of all absolutely continuous matrix-functions X : [a, b] → D.
ACloc(I;D) is the set of all matrix-functions X : I → D whose restrictions to an arbitrary closed

interval [a, b] from I belong to AC([a, b];D).
L([a, b];Rn×m) is the set of all integrable matrix-functions on [a, b].
Lloc(I;Rn×m) is the set of all matrix-functions X : I → D for which the restriction on [a, c] belongs

to L([a, c];Rn×m) for every a, c ∈ I.
A vector-function x ∈ ACloc(I;Rn) is said to be a solution of system (1.1) if

x′(t) = P (t)x(t) + q(t) for a. a. t ∈ I.

Let P∗ = (p∗ik)
n
i,k=1 ∈ Lloc(I;Rn). Then a matrix-function C∗ : I × I → Rn×n is said to be the

Cauchy matrix of the homogeneous system

dx

dt
= P∗(t)x, (1.4)

if for each interval J ⊂ I and τ ∈ J , the restriction of the matrix-function C∗(., τ) : I → Rn×n on J
is the fundamental matrix of system (1.4), satisfying the condition

C∗(τ, τ) = In.

Therefore, C∗ is the Cauchy matrix of system (1.4) if and only if the restriction of C∗ on J × J is the
Cauchy matrix of the system in the regular case. Let X∗(t) ≡ C∗(t, a).
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Definition 1.1. Problem (1.1), (1.2) is said to be weakly Φ-well-posed if it has the unique solution x0

and for every sequences of matrix and vector-functions Pm and qm (m = 1, 2, . . . ) such that conditions

lim
m→+∞

∥∥∥∥
b∫

t

Φ−1(s) |Pm(s)− P (s)|Φ(s)ds
∥∥∥∥ = 0, (1.5)

lim
m→+∞

∥∥∥∥
b∫

t

Φ−1(s) rm(s)ds

∥∥∥∥ = 0 (1.6)

and
lim

m→+∞
∥Φ−1(t)rm(t)− Φ−1(b)rm(b)∥ = 0, (1.7)

are fulfilled uniformly on I, where rm(t) ≡
t∫
a

|qm(s) − q(s)|ds, problem (1.3), (1.2) has the unique

solution xm for each sufficiently large m and the condition

lim
m→+∞

∥Φ−1(t) (xm(t)− x0(t))∥ = 0 (1.8)

holds uniformly on I.

Definition 1.2. Problem (1.1), (1.2) is said to be strongly Φ-well-posed if it has the unique solution
x0 and for every sequences of matrix– and vector-functions Pm and qm (m = 1, 2, . . . ) such that
conditions (1.5) and

lim
m→+∞

∥∥∥∥
b∫

t

Φ−1(s)|qm(s)− q(s)|ds
∥∥∥∥ = 0,

hold uniformly on I, problem (1.3), (1.2) has the unique solution xm for each sufficiently large m and
condition (1.8) holds uniformly on I.

The case of strongly Φ-well-posedness has been investigated in [6], where only the sufficient condi-
tions guaranteeing this property were obtained.

We establish the necessary and sufficient, as well effective sufficient conditions for the weakly
Φ-well-posedness.

Remark 1.1. If problem (1.1), (1.2) is strongly well-posed, then it is also stated weakly well-posed,
since due to the formula of integration by parts, we find

τ∫
t

Φ−1(s)|qm(s)− q(s)|ds =
(
Φ−1(s) rm(s)

)∣∣∣∣τ
t

+

τ∫
t

Φ−1(s) rm(s)ds

for a ≤ t < τ < b.

Definition 1.3. We say that the sequence (Pm, qm) (m = 1, 2, . . . ) belongs to the set SP∗(P, q; Φ),
i.e., (

(Pm, qm)
)+∞
m=1

∈ SP∗(P, q; Φ), (1.9)

if problem (1.3),(1.2) has the unique solution xm for each sufficiently large m and condition (1.8) holds
uniformly on I.

Let I(δ) = [b− δ, b[ for every δ > 0.

Theorem 1.1. Let there exist a matrix-function P∗ ∈ Lloc(I;Rn×n) and constant matrices B0 and B
from Rn×n

+ such that

r(B) < 1 (1.10)

and estimates

|C∗(t, τ)| ≤ Φ(t)B0 Φ
−1(τ) for b− δ ≤ t ≤ τ < b (1.11)
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and ∣∣∣∣
b∫

t

|C∗(t, s)| |P (s)− P∗(s)|Φ(s)ds
∣∣∣∣ ≤ H(t)B for t ∈ I(δ) (1.12)

are fulfilled for some δ > 0, where C∗ is the Cauchy matrix of system (1.4). Let, moreover,

lim
t→b

b∫
t

∥Φ−1(t)C∗(t, τ)q(τ)∥dτ = 0. (1.13)

Then problem (1.1), (1.2) is weakly Φ-well-posed with respect to the matrix-function P∗.

Theorem 1.2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that condition (1.10) is
satisfied, and the estimates

ci(t, τ) ≤ b0
φi(t)

φi(τ)
for b− δ ≤ t ≤ τ < b (i = 1, . . . , n); (1.14)

∣∣∣∣
b∫

t

ci(t, τ)φi(τ)[pii(τ)]−dτ

∣∣∣∣ ≤ bii φi(t) for t ∈ I(δ) (i = 1, . . . , n) (1.15)

and ∣∣∣∣
b∫

t

ci(t, τ)φk(τ)|pik(τ)|dτ
∣∣∣∣ ≤ bik hi(t) for t ∈ I(δ) (i ̸= k; i, k = 1, . . . , n) (1.16)

are fulfilled for some b0 > 0 and δ > 0, where

ci(t, τ) = exp

(
−

∣∣∣∣
τ∫

t

[pii(s)]+ds

∣∣∣∣). (1.17)

Let, moreover,

lim
t→b

b∫
t

ci(t, τ)

φi(t)
|qi(τ)|dτ = 0 (i = 1, . . . , n). (1.18)

Then problem (1.1), (1.2) is weakly Φ-well-posed with respect to the matrix-function P∗(t) ≡
diag([p11(t)]+, . . . , [pnn(t)]+).

Corollary 1.1. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that the condition

(1.10) is satisfied, and the estimates

pii(t) ≤
µi

b− t
for a ≤ t < b (i = 1, . . . , n), (1.19)

lim
τ→b−

τ∫
t

[pii(s)]−ds ≤ bii for t ∈ I(δ) (i = 1, . . . , n) (1.20)

and

lim
τ→b

τ∫
t

|pik(s)|ds ≤ bik for t ∈ I(δ) (i ̸= k; i, k = 1, . . . , n) (1.21)

are fulfilled for some µi ≥ 0 (i = 1, . . . , n) and δ > 0. Let, moreover,

lim
t→b

b∫
t

1

(b− τ)µi
|qi(s)|ds = 0 (i = 1, . . . , n). (1.22)

Then problem (1.1), (1.2) is weakly Φ-well-posed with respect to matrix-function P∗(t) ≡
diag([p11(t)]+, . . . , [pnn(t)]+), where Φ(t) ≡ diag((b− t)µ1 , . . . , (b− t)µn).
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Remark 1.2. In the conditions of Corollary 1.1, the solution of problem (1.1), (1.2), where Φ(t) ≡
diag((b− t)µ1 , . . . , (b− t)µn), belongs to ACloc(I,Rn).

Corollary 1.2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that condition (1.10)

holds, and estimates (1.19) for µi = 0 (i = 1, . . . , n),

b∫
t

(b− τ)[pii(s)]−ds ≤ bii (b− t) for t ∈ I(δ) (i = 1, . . . , n)

and
b∫

t

(b− τ)|pik(s)|ds ≤ bik (b− t) for t ∈ I(δ) (i ̸= k; i, k = 1, . . . , n)

are fulfilled for some δ > 0. Let, moreover,

lim
t→b

1

b− t

b∫
t

|qi(s)|ds = 0 (i = 1, . . . , n).

Then problem (1.1), (1.2) is weakly Φ-well-posed with respect to the matrix-function P∗(t) ≡
diag([p11(t)]+, . . . , [pnn(t)]+), where Φ(t) ≡ diag((b− t), . . . , (b− t)).

The remark analogous to Remark 1.2 is likewise true for Corollary 1.2 if µi = 1 (i = 1, . . . , n).

Corollary 1.3. Let

[pii(t)]≤
λi

b− t
+ p∗ii(t) for t ∈ I (i = 1, . . . , n)

hold, where λi ≥ 0 (i = 1, . . . , n), p∗ii(t) ∈ Lloc(I;R+) (i = 1, . . . , n). Let, moreover,

b∫
t

(b− τ)λi−λk |pik(s)|ds < +∞ for t ∈ I (i ̸= k; i, k = 1, . . . , n)

and
b∫

t

(b− τ)λi |qi(s)|ds < +∞ for t ∈ I (i = 1, . . . , n).

Then problem (1.1), (1.2) is weakly Φ-well-posed with respect to the matrix-function P∗ defined as in
Corollary 1.2, where Φ(t) ≡ diag((b− t)−λ1 , . . . , (b− t)−λn).

The remark analogous to Remark 1.2 is likewise true for Corollary 1.3 if λi = 0 (i = 1, . . . , n).

Theorem 1.3. Let the conditions of Theorem 1.1 be fulfilled and let there exist a sequence of the
non-degenerated matrix-functions Hm ∈ ACloc(I;Rn×n) (m = 1, 2, . . . ) such that

lim
m→+∞

∥Φ−1(t)H−1
m (t)Φ(t)− In∥ = 0, (1.23)

lim
m→+∞

∥∥∥∥
b∫

t

Φ−1(s) |P ∗
m(s)− P (s)|Φ(s)ds

∥∥∥∥ = 0, (1.24)

lim
m→+∞

∥∥∥∥
b∫

t

Φ−1(s) r∗m(s)ds

∥∥∥∥ = 0 (1.25)

and

lim
m→+∞

∥Φ−1(t)r∗m(t)− Φ−1(b)r∗m(b)∥ = 0, (1.26)
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are fulfilled uniformly on I, where P ∗
m(t) ≡(H ′

m(t)+Hm(t)Pm(t))H−1
m (t), r∗m(s) ≡

s∫
a

|q∗m(τ)− q(τ)|dτ

and q∗m(t) ≡ Hm(t) qm(t). Then inclusion (1.9) holds.

Theorem 1.3 has the following form if we assume that Hm(t) ≡ In (m = 1, 2, . . . ) therein.

Corollary 1.4. Let the conditions of Theorem 1.1 be fulfilled and conditions (1.5)–(1.7) hold uniformly
on I, where the vector-functions rm (m = 1, 2, . . . ) are defined as in Definition 1.1. Then inclusion
(1.9) holds.

Theorem 1.4. Let the conditions of Theorem 1.1 be fulfilled and let

∥B0∥ ∥(In −B)−1∥ < 1, (1.27)

lim sup
t→b

∥∥∥∥Φ−1(t)

b∫
t

|P (s)|Φ(s)ds
∥∥∥∥ < +∞. (1.28)

lim sup
t→b

∥∥∥∥
b∫

t

Φ−1(s)|P∗(s)|Φ(s)ds
∥∥∥∥ < +∞. (1.29)

Then inclusion (1.9) holds if and only if there exists the sequence of matrix functions Hm ∈
ACloc(I;Rn×n) (m = 1, 2, . . . ) such that conditions (1.23)–(1.26) hold uniformly on I, where the
matrix– and vector functions P ∗

m, q∗m and r∗m (m = 1, 2, . . . ) are defined as in Theorem 1.3.

Theorem 1.4′. Let the conditions of Theorem 1.4 be fulfilled. Then inclusion (1.9) holds if and only
if conditions (1.25), (1.26) and

lim
m→+∞

∥Φ−1(t)(Xm(t)−X0(t))∥ = 0

hold uniformly on I, where X0 and Xm are the fundamental matrices of systems (1.1) and (1.3),
respectively, and q∗m(t) ≡ X0(t)X

−1
m (t) qm(t) (m = 1, 2, . . . ).

Remark 1.3. Condition (1.27) in Theorem 1.4 is essential and it cannot be neglected, i.e., if the
condition is violated, then the conclusion of the theorem is not true, in general. Below we present an
example.

Let I = [0, 1[, n = 1, b = 1, B = 0, B0 = 1, Phi(t) ≡ 1− t;

P (t) = Pm(t) = P∗(t) ≡ −(1− t)−1 (m = 1, 2, . . . );

q(t) ≡ 0, qm(t) ≡ − 1− t

m cos2(1− t)
(m = 1, 2, . . . ).

Then

C∗(t, τ) ≡
1− t

1− τ
, x0(t) ≡ 0, xm(t) ≡ (1− t)

tan(1− t)

m
(m = 1, 2, . . . ).

So, all the conditions of Theorem 1.4, with the exception of (1.27), are fulfilled for Hm(t) ≡ In.
But condition (1.8) is not fulfilled uniformly on I.

Remark 1.4. The results analogous to Theorems 1.1, 1.2 and Corollary 1.4 are proved in [6] for
the strongly well-posed case, as well. However, in the paper under consideration, the necessary and
sufficient conditions for the well-posedness in the strong case are not considered.

2. Proofs of Results

We need the following lemma from [6].

Lemma 2.1. Let the matrix-function P∗ ∈ ACloc(I,Rn×n) and constant matrices B0 and B from
Rn×n

+ be such that conditions (1.10), (1.11) and (1.12) hold for some δ > 0, where C∗ is the Cauchy
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matrix of system (1.4). Let, moreover,

γ(t) = sup

{∥∥∥∥
b∫

s

|Φ−1(s)C∗(s, τ)q(τ)|dτ
∥∥∥∥ : t ≤ s < b

}
< +∞ for t ∈ I(δ).

Then each solution x ∈ ACloc(J,Rn) of system (1.1) admits the estimate

∥Φ−1(t)x(t)∥ ≤ ρ
(
∥B0∥ · ∥Φ−1(s0)x(s0)∥+ γ(t)

)
for t ∈ J, t ≤ s < b,

where ρ = ∥(In −B)−1∥, and J ⊂ I(δ) and s0 ∈ J are an arbitrary interval and point.

Proof of Theorem 1.1. Owing to conditions (1.10)–(1.13), problem (1.1), (1.2) has the unique solu-
tion x (see [6, Theorem 2.1]). On the other hand, since I is the finite interval, there exists ρ ∈ Rn×n

+

such that

|x(t)| ≤ Φ(t)ρ for t ∈ I. (2.1)

It is clear that

ρ1 = sup{ρ1(δ) : δ ∈]0, b− a]} < +∞, (2.2)

where

ρ1(δ) =

∥∥∥∥
b−δ∫
a

Φ−1(s)|P (s)− P∗(s)|Φ(s)ds
∥∥∥∥.

Let B1 be the n×n-matrix whose every element is equal to 1 and let B̃ = B+ η0B0 B1. Then due
to (1.10), there exists η0 ∈]0, 1[ such that

r(B̃) < 1. (2.3)

Let ε > 0 be an arbitrary fixed number. Then, taking into account (2.2), we find that there exists
η ∈]0, η0[ such that

ρ0
[
1 + ∥B0∥ exp

(
(η + ρ1)∥B0∥

)]
< ε, (2.4)

where

ρ0 = η (1 + ∥ρ∥)(1 + ∥(In − B̃)−1∥ ∥B0∥).
Let Pm ∈ Lloc(I;Rn×n) and qm ∈ Lloc(I;Rn) (m = 1, 2, . . . ) be arbitrary matrix– and vector-

functions satisfying conditions (1.5) and (1.6). First, we have to show that the matrix– and vector-
functions Pm and qm (m = 1, 2, . . . ) satisfy conditions (1.12) and (1.13), as well.

In view of (1.11) and (1.12), we find, without loss of generality, that for every natural m,∣∣∣∣
τ∫

t

|C∗(t, s)||Pm(s)− P∗(s)|Φ(s)ds
∣∣∣∣

≤
∣∣∣∣

τ∫
t

|C∗(t, s)||P (s)− P∗(s)|Φ(s)ds
∣∣∣∣

+

∣∣∣∣
τ∫

t

|C∗(t, s)| |Pm(s)− P∗(s)|Φ(s)ds
∣∣∣∣

≤ Φ(t)B +Φ(t)B0

∣∣∣∣
τ∫

t

|C∗(t, s)| |Pm(s)− P∗(s)|Φ(s)ds
∣∣∣∣

≤ Φ(t)B̃ for a ≤ t < τ < b.

Therefore, the matrix-function B̃ satisfies condition (1.12).
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In addition, due to (1.23)–(1.26), there exists a natural m0 such that for every m > m0,∥∥∥∥
b−∫
t

Φ−1(s) |Pm(s)− P (s)|Φ(s)ds
∥∥∥∥ < η for t ∈ I (2.5)

and

∥Φ−1(t)rm(t)− Φ−1(b−)rm(b−)∥+
∥∥∥∥

b−∫
t

Φ−1(s) |P∗(s)| rm(s)ds

∥∥∥∥ < η for t ∈ I, (2.6)

where the functions rm (m = 1, 2, . . . ) are defined as in Definition 1.1.
Below, we assume that m > m0 is an arbitrary fixed natural.
Now, using (1.11), we show that

τ∫
t

|Φ−1(t)C∗(t, s)(qm(s)− q(s))|ds ≤ B0

(
Φ−1(s)rm(s)

)∣∣∣τ
t

+B0

τ∫
t

Φ−1(s) |P∗(s)| |qm(s)− q(s)|ds for a ≤ t < τ < b (2.7)

and therefore,

τ∫
t

|Φ−1(t)C∗(t, s)qm(s)|ds ≤
τ∫

t

|Φ−1(t)C∗(t, s)q(s)|ds

+Φ−1(t)

τ∫
t

|C∗(t, s)(qm(s)− q(s))|ds ≤
τ∫

t

|Φ−1(t)C∗(t, s)q(s)|ds

+B0

t∫
τ

Φ−1(s)|qm(s)− q(s)|ds

≤
τ∫

t

Φ−1(t)C∗(t, s)P∗(s)q(s)ds+B0

(
Φ−1(s)rm(s)

)∣∣∣τ
t

∣∣∣∣
+B0

τ∫
t

Φ−1(s) |P∗(s)| |qm(s)− q(s)|ds for a ≤ t < τ < b.

From this, in view of conditions (1.6), (1.13) and (1.26), it follows that the vector-function qm
satisfies condition (1.13), as well.

Hence, according to Theorem 2.1 from [6], the last two conditions guarantee the unique solvability
of problem (1.3), (1.2).

Let xm be the unique solution of problem (1.3), (1.2) and, without loss of generality, let

zm(t) ≡ x(t)− xm(t) and um(t) ≡ ∥Φ−1(t)zm(t)∥

for every natural m.
Then zm will be a solution of the system

dz

dt
= Pm(t) z + ξm(t) (2.8)

under the condition

lim
s0→b

(Φ−1(s0) z(s0)) = 0,
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where

ξm(t) = gm(t) + (q(t)− qm(t)), gm(t) = (P (t)− Pm(t))x(t).

In view of Lemma 2.1, conditions (2.3) and (2.8) guarantee the estimate

um(t) ≤ ∥(In − B̃)−1∥ γm(t) for t ∈ I(δ), (2.9)

where

γm(t) = sup

{∥∥∥∥
b∫

s

|Φ−1(s)C∗(s, τ)ξm(τ)|dτ
∥∥∥∥ : t ≤ s < b

}
for t ∈ I(δ).

In addition, in view of (2.1) and (2.7), we get

s0∫
s

|Φ−1(s)C∗(s, τ)ξm(τ)|dτ ≤
s0∫
s

Φ−1(s)|C∗(s, τ)| |gm(τ)|dτ

+

s0∫
s

Φ−1(s)|C∗(s, τ)| |ξm(τ)− gm(τ)|dτ

≤
s0∫
s

Φ−1(s)|C∗(s, τ)|P (τ)− Pm(τ)| |x(τ)|dτ

+B0

s0∫
s

Φ−1(τ)|q(τ)− qm(τ)|dτ for a ≤ s < s0 < b

and, therefore, due to (1.11), (2.6) and (2.9), we find

γm(t) ≤ η (1 + ∥ρ∥)∥B0∥

and

um(t) ≤ η (1 + ∥ρ∥) ∥(In − B̃)−1∥ ∥B0∥ < ρ0 for t ∈ I(δ). (2.10)

Now, consider the case for t ∈ [a, b− δ].
Due to (2.8), the vector-function zm satisfies the system

dz

dt
= P∗(t) z + (Pm(t)− P∗(t)) z + ξm(t).

Therefore, using the Cauchy formula, we conclude

Φ−1(t)zm(t) = Φ−1(t)C∗(t, b− δ)z(b− δ)

+

b−δ∫
t

Φ−1(t)C∗(t, τ)(Pm(τ)− P∗(τ)) Φ(τ) · (Φ−1(τ)z(τ))dτ

+

b−δ∫
t

Φ−1(t)C∗(t, τ)(Pm(τ)− P∗(τ))x(τ)dτ

+

b−δ∫
t

Φ−1(t)C∗(t, τ)(q(τ)− qm(τ))dτ for t ∈ [a, b− δ[,

and by (2.7), we have∥∥∥∥
b−δ∫
t

|Φ−1(t)C∗(t, s)(qm(s)− q(s))|ds
∥∥∥∥ ≤ ∥B0∥

∥∥∥∥(Φ−1(s)rm(s)
)∣∣∣b−δ

t

∥∥∥∥
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+∥B0∥
∥∥∥∥

b−δ∫
t

Φ−1(s) |P∗(s)| |qm(s)− q(s)|ds
∥∥∥∥ for t ∈ [a, b− δ],

whence, taking into account (1.11), (2.1) and (2.7), we conclude

∥Φ−1(t)zm(t)∥ ≤ ∥B0∥∥Φ−1(t)zm(b− δ)∥

+ ∥B0∥
∥∥∥∥

b−δ∫
t

Φ−1(τ)|Pm(τ)− P∗(τ)|Φ(τ) · |Φ−1(τ)z(τ)|dτ
∥∥∥∥

+ ∥B0∥
∥∥∥∥

b−δ∫
t

Φ−1(τ)|Pm(τ)− P∗(τ)| |x(τ)|dτ
∥∥∥∥+ ∥B0∥

∥∥∥∥(Φ−1(s)rm(s)
)∣∣∣b−δ

t

∥∥∥∥
+ ∥B0∥

∥∥∥∥
b−δ∫
t

Φ−1(s) |P∗(s)| |qm(s)− q(s)|ds
∥∥∥∥ for t ∈ [a, b− δ].

Thus, due to (2.1), (2.6) and (2.10), we find

um(t) ≤ ρ0∥B0∥+ ∥B0∥
b−δ∫
t

ωm(τ)um(τ)dτ, for t ∈ [a, b− δ],

where

ωm(τ) ≡ ∥Φ−1(τ)|Pm(τ)− P∗(τ)|Φ(τ)∥.
Therefore, according to the well-known Gronwall’s inequality, we get

um(t) ≤ ρ0∥B0∥ exp

(
∥B0∥

∥∥∥∥
b−δ∫
t

wm(s)ds

∥∥∥∥) for t ∈ [a, b− δ]. (2.11)

In addition, by (2.5), we have

∥B0∥
∥∥∥∥

b−δ∫
t

wm(s)ds

∥∥∥∥ ≤ ∥B0∥
∥∥∥∥

b−δ∫
t

∥Φ−1(τ)|Pm(τ)− P (τ)|Φ(τ)∥ds
∥∥∥∥

+ ∥B0∥
∥∥∥∥

b−δ∫
t

∥Φ−1(τ)|P (τ)− P∗(τ)|Φ(τ)∥ds
∥∥∥∥

≤ (η + ρ1)∥B0∥ for t ∈ [a, b− δ].

Hence, owing to (2.11), we have

um(t) ≤ ρ0(∥B0∥ exp
(
(η + ρ1)∥B0∥

)
for t ∈ [a, b− δ].

Relying on the above and (2.11), due to (2.4), we have

∥Φ−1(t)zm(t)∥ < ε for t ∈ I.

Therefore, estimate (1.8) holds uniformly on I. □

Proof of Theorem 1.2. By the definition of the matrix-function P∗(t), we have p∗ik(t) = 0 if i ̸= k
(i, k = 1, . . . , n).

Consider the case, where i = k (i = 1, . . . , n). It is evident that

pii(t)− p∗ii(t) = −[pii(t)]− for t ∈ I (i = 1, . . . , n).

The Cauchy matrix of system (1.4) has the form

C(t, τ) ≡ diag(c1(t, τ), . . . , cn(t, τ)).
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In addition, due to (1.17), it is evident that

ci(t, τ) > 0 for t, τ ∈ I (i = 1, . . . , n),

whence with regard for (1.14), (1.15), (1.16) and (1.18), we can conclude that conditions (1.11), (1.12)
and (1.13) of Theorem 1.1 are valid. Hence the theorem immediately follows from Theorem 1.1. □

Proof of Corollary 1.1. In view of (1.19), we have

0 < ci(t, τ) ≤
∣∣∣∣ t− t0
τ − t0

∣∣∣∣µi

for (t− t0)(τ − t0) > 0 (i = 1, . . . , n). (2.12)

So, evidently, the functions

hi(t) = |t− ti|µi (i = 1, . . . , n) (2.13)

satisfy inequalities (1.14), where b0 = 1.
In addition, with regard to (2.12) and (2.13), from (1.20), (1.21) and (1.22), it follows that conditions

(1.16), (1.17) and (1.18) hold true. Therefore, according to Theorem 1.2, inclusion (1.9) holds. □

Corollaries 1.2 and 1.3 follow immediately from Theorem 1.2, since under the conditions of these
corollaries the conditions of Theorem 1.2 are fulfilled (for the proof, see [5]).

Proof of Theorem 1.3. For each natural m, consider the system

dy

dt
= P ∗

m(t) · y + q∗m(t) for t ∈ I. (2.14)

Due to (1.10) there exists η0 ∈]0, 1[ such that r(B̃) < 1, where B̃ = B + η0B0 In×n.
Let us show that, for each sufficiently large m, the matrix-function P ∗

m and the vector-function

q∗m satisfy, respectively, conditions (1.11) and (1.12) for constant matrix B̃, where C∗ is the Cauchy
matrix of system (1.4).

Indeed, due to (1.24) we have∥∥∥∥
b−∫
t

Φ−1(s)|P ∗
m(s)− P (s)|Φ(s)ds

∥∥∥∥ < η0 for t ∈ I(δ) (2.15)

for each sufficiently large m.
On the other hand, in view of (1.11) and (1.12) we have∥∥∥∥

b−∫
t

|C∗(t, s)|Φ−1(s)|P ∗
m(s)− P (s)|Φ(s)ds

∥∥∥∥
≤

∥∥∥∥
b−∫
t

|C∗(t, s)|Φ−1(s)|P ∗
m(s)− P (s)|Φ(s)ds

∥∥∥∥
+

∥∥∥∥
b−∫
t

|C∗(t, s)|Φ−1(s)|P ∗
m(s)− P (s)|Φ(s)ds

∥∥∥∥
≤ Φ(t)B0

∥∥∥∥
b−∫
t

Φ−1(s)|P ∗
m(s)− P (s)|Φ(s)ds

∥∥∥∥+Φ(t)B

for each sufficiently largem and, therefore, thanks to (2.15) we conclude that, without loss of generality,
for every natural m,∥∥∥∥

b−∫
t

|C∗(t, s)|Φ−1(s)|P ∗
m(s)− P (s)|Φ(s)ds

∥∥∥∥ ≤ Φ(t)B̃ for t ∈ I(δ).
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Similarly, we show that

lim
t→b

∥∥∥∥∥∥
b−∫
t

H−1(t)C∗(t, τ)q
∗
m(τ)dτ

∥∥∥∥∥∥ = 0

for each natural m.
So, according to Theorem 1.1, system (2.14), under the condition

lim
t→b

(Φ−1(t) y(t)) = 0,

has the unique solution ym for every m and

lim
m→+∞

∥Φ−1(t) (ym(t)− x0(t))∥ = 0 (2.16)

uniformly on I (here the value of the left hand equals 0 at the point b).
On the other hand, it is not difficult to verify that xm is a solution of system (1.3) if and only if the

vector-function ym(t) = Hm(t)xm(t) is a solution of system (2.14) for each natural m. In addition, by
(1.23) and the equality

Φ−1(t)xm(t) = (Φ−1(t)H−1
m (t)Φ(t)) Φ−1(t)ym(t)

(m = 1, 2, . . . ), the vector-function xm satisfy condition (1.2) if and only if the vector-function ym
satisfy the same condition.

So, the vector-functions xm(t) = H−1
m (t) ym(t) (m = 1, 2, . . . ) will be solutions of problems (1.2),

(1.3), respectively.
Let us show that that condition (1.8) holds uniformly on I.
We have

Φ−1(t) (xm(t)− x0(t)) = Φ−1(t)
(
H−1

m (t)ym(t)− x0(t)
)

= Φ−1(t)
(
H−1

m (t)Φ(t) Φ−1(t)ym(t)− Φ(t) Φ−1(t)x0(t)
)

+Φ−1(t)
(
H−1

m (t)Φ(t) Φ−1(t)x0(t)− Φ(t) Φ−1(t)x0(t)
)

= Φ−1(t)H−1
m (t)Φ(t)

(
Φ−1(t)ym(t)− Φ−1(t)x0(t)

)
+
(
Φ−1(t)(H−1

m (t)− In)Φ(t)
)
Φ−1(t)x0(t) for t ∈ I

and therefore,

∥Φ−1(t) (xm(t)− x0(t))∥ ≤ ∥Φ−1(t)H−1
m (t)Φ(t)∥ ∥Φ−1(t)(ym(t)− x0(t))∥

+ ∥Φ−1(t)(H−1
m (t)− In)Φ(t)∥ ∥Φ−1(t)x0(t)∥ for t ∈ I,

because the left side of the inequality equals to 0 for t = b (by definition).
From the estimate, due to (1.23) and (2.16), we conclude that (1.8) holds uniformly on I. Hence

inclusion (1.9) holds. □

Proof of Theorem 1.4. The sufficiency follows from Theorem 1.3.
Let us show the necessity.
Let δ > 0 be such that the conditions of Lemma 2.1 are fulfilled.
For each m ∈ {0, 1, . . . }, let Xm (Xm(a) = In) with the columns xmj (j = 1, . . . , n) be a funda-

mental matrix of system (1.3) (if m = 0, then under the system we understand system (1.1) on the
interval I).

Due to Lemma 2.1, we have the estimates

∥Φ−1(t)xmj(t)∥ ≤ ρ∥B0∥ ∥Φ−1(s0)xmj(s0)∥ for b− δ ≤ t < s0 < b

(j = 1, . . . , n; m = 0, 1, . . . ), (2.17)

where ρ = ∥(In −B)−1∥.
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Passing to the limit as s0 → b− in the right-hand side of (2.17), we obtain

∥Φ−1(t)xmj(t)∥ ≤ ρ∥B0∥ lim sup
s0→b−

∥Φ−1(s0)xmj(s0)∥

for b− δ ≤ t < b (j = 1, . . . , n; m = 0, 1, . . . ).

Therefore

lim sup
t→b

∥Φ−1(t)xmj(t)∥ ≤ ρ∥B0∥ lim sup
s0→b

∥Φ−1(s0)xmj(s0)∥

(j = 1, . . . , n; m = 0, 1, . . . ).

From this, in view of (1.27), we have

lim sup
t→b

∥Φ−1(t)xmj(t)∥ = 0 (j = 1, . . . , n; m = 0, 1, . . . ).

Hence

lim
t→b

∥Φ−1(t)xmj(t)∥ = 0 (j = 1, . . . , n; m = 0, 1, . . . ). (2.18)

Let Hm(t) ≡ X0(t)X
−1
m (t) (m = 0, 1, . . . ). It is evident that Hm ∈ ACloc(I;Rn×n) (m = 0, 1, . . . ).

Let us verify conditions (1.24) and (1.25).
Due to the definition of the matrix-function P ∗

m, we have

P ∗
m(t) =

(
(X0(t)X

−1
m (t))′ +X0(t)X

−1
m (t)Pm(t)

)
Xm(t)X−1

0 (t) ≡ P (t). (2.19)

So, condition (1.24) is valid uniformly on I.
It is clear that the conditions of Corollary 1.4 are fulfilled for the homogeneous systems correspond-

ing to systems (1.1) and (1.3) (m = 1, 2, . . . ), i.e., when q(t) ≡ 0n and qm(t) ≡ 0n (m = 1, 2, . . . ).
Now, taking into account (2.18), owing to Corollary 1.4, we get

lim
m→+∞

(
Φ−1(t)Xm(t)− Φ−1(t)X0(t)

)
= On×n (2.20)

uniformly on I. So, condition (1.23) holds.
Moreover, due to (2.20), we have

lim
m→+∞

∥Φ−1(t)H−1
m (t)Φ(t)− In∥ = lim

m→+∞
∥Φ−1(t)Xm(t)X−1

0 (t)Φ(t)− In∥ = 0 (2.21)

uniformly on I.
Consider now condition (1.25).
Let xm (m = 0, 1, . . . ) be the unique solution of problem (1.3), (1.2). Let ym(t) ≡ Hm(t)xm(t)

(m = 0, 1, . . . ) be, just as in the proof of Theorem 1.3, the solution of system (2.14).
Due to (1.8), we have

lim
m→+∞

(
Φ−1(t)xm(t)− Φ−1(t)x0(t)

)
= 0n (2.22)

uniformly on I.
Moreover, due to (2.21), we have

lim
m→+∞

∥Φ−1(t)Hm(t)Φ(t)− In∥ = 0

uniformly on I. From this and (2.22), by equalities

ym(t) ≡ Φ(t)
(
Φ−1(t)Hm(t)Φ(t)

) (
Φ−1(t)xm(t)

)
(m = 1, 2, . . . ),

we conclude that the function ym satisfies condition (1.2) if and only if the function xm satisfies the
same one and, in addition,

lim
m→+∞

∥Φ−1(t)ym(t)− Φ−1(t)x0(t)∥ = 0

and

lim
m→+∞

∥Φ−1(t)zm(t)∥ = 0 (2.23)

uniformly on I, where zm(t) ≡ ym(t)− x0(t).
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Let

f∗
m(t) ≡

t∫
a

q∗m(τ)dτ (m = 1, 2, . . . ) and f(t) ≡
t∫

a

q(τ)dτ.

Further, due to the formula of integration by parts, we have

f∗
m(t) =

t∫
a

Hm(τ)qm(τ)dτ =

t∫
a

Hm(τ)
(
x′
m(τ)− Pm(τ)xm(τ)

)
dτ

= Hm(t)xm(t)−Hm(a)xm(a)−
t∫

a

(
H ′

m(τ) +Hm(τ)Hm(τ)
)
xm(τ)

for t ∈ I (m = 1, 2, . . . ).

Hence, due to (2.19),

f∗
m(t) ≡ Hm(t)xm(t)−Hm(a)xm(a)−

t∫
a

P (τ) ·Hm(τ)xm(τ)dτ

and

f∗
m(t)− f(t) ≡ zm(t)−

t∫
a

P (τ) zm(τ)dτ (m = 1, 2, . . . ).

Therefore

Φ−1(t)(f∗
m(t)− f(t)) ≡ Φ−1(t)zm(t)− Φ−1(t)

t∫
a

P (s) · Φ(s)(Φ−1(s)zm(s))ds

(m = 1, 2, . . . ).

By this and (1.28), there exists a positive r0 such that

∥Φ−1(t)(f∗
m(t)− f(t))∥ ≤ ∥Φ−1(t)zm(t)∥+ r0∥Φ−1 zm∥∞

for t ∈ I (m = 1, 2, . . . ).

Moreover, in view of (2.23), we conclude that

lim
m→+∞

∥Φ−1(t)(f∗
m(t)− f(t))∥ = 0 (2.24)

uniformly on I. So, we find that condition (1.26) holds uniformly on I.
In addition, by (1.29), there exists r1 > 0 such that

∥∥∥∥
b−∫
t

Φ−1(τ)|P∗(τ)| |f∗
m(τ)− f(b)|dτ

∥∥∥∥ ≤ r1 sup{∥Φ−1(s)(f∗
m(s)− f(s))∥ : s ∈ I}

for t ∈ I (m = 1, 2, . . . ).

Consequently, due to (2.24), condition (1.25) holds uniformly on I, as well. □

Theorem 1.4′ follows immediately from the proof of the necessity of Theorem 1.4, since we can
choose Hm(t) ≡ X0(t)X

−1
m (t) (m = 1, 2, . . . ).
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