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INITIAL VALUE PROBLEM

FOR FIRST ORDER ADVANCED DIFFERENTIAL EQUATIONS

NINO PARTSVANIA

Abstract. For first order advanced differential equations, sufficient conditions for the solvability
and unique solvability of the Cauchy initial value problem are established.

In the present paper, on a finite interval [a, b] we consider the first order advanced differential
equation

u′(t) = f(t, u(τ(t))) (1)

with the initial condition
u(a) = c0. (2)

Here f : [a, b] × R → R is a function from the Carathéodory space, τ : [a, b] → [a, b] is a measurable
function such that

a ≤ t ≤ τ(t) ≤ b for a ≤ t ≤ b,

and c0 is a real constant.
Everywhere below we use the following notation and definitions.
R is the set of real numbers, R+ = [0,+∞[ , L([a, b]) is the space of Lebesgue integrable real

functions defined on [a, b],

f∗(t, x) = max
{
|f(t, y)| : 0 ≤ |y| ≤ x

}
for t ∈ [a, b], x ∈ R+.

We say that the function f : [a, b]×R → R belongs to the Carathéodory space if f(·, x) : [a, b] → R
is measurable for any x ∈ R, f(t, ·) : R → R is continuous for almost all t ∈ [a, b], and

f∗(·, x) ∈ L([a, b]) for x ∈ R+.

f is said to be locally Lipschitz in the second argument if for any positive number r there exists a
nonnegative function ℓr ∈ L([a, b]) such that

|f(t, x)− f(t, y)| ≤ ℓr(t)|x− y| for t ∈ [a, b], −r ≤ x, y ≤ r.

From the Schauder principle, it immediately follow the following propositions.

Proposition 1. If

lim sup
x→+∞

b∫
a

f∗(t, x)

x
dt < 1, (3)

then problem (1), (2) has at least one solution.

Proposition 2. Let the function f satisfy the Lipschitz condition in the second argument

|f(t, x)− f(t, y)| ≤ ℓ(t)|x− y| for t ∈ [a, b], x, y ∈ R,
where ℓ ∈ L([a, b]), and

b∫
a

ℓ(t) dt < 1. (4)

Then problem (1), (2) has a unique solution.
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As an example, we consider the equation

u′(t) = p(t)u(τ(t)) + q(t), (5)

where p, q ∈ L([a, b]).
If

b∫
a

|p(t)| dt < 1, (6)

then, by Proposition 2, problem (5), (2) has a unique solution.
On the other hand, it is easy to see that if

p(t) ≥ 0, q(t) ≥ 0, τ(t) = b for t ∈ [a, b],

b∫
a

p(t) dt ≥ 1, c0 > 0,

then problem (5), (2) has no solution.
Consequently, the strict inequalities (3) and (4) in Propositions 1 and 2 are unimprovable and they

cannot be replaced by nonstrict ones.
An important particular case of (1) is the differential equation

u′(t) = p(t)g(u(τ(t))), (7)

where p ∈ L([a, b]), and g : R → R is a continuous function.
Propositions 1 and 2 yield

Corollary 1. Let inequality (6) be satisfied. If, moreover,

lim sup
|x|→+∞

|g(x)|
|x|

< 1, (8)

then problem (7), (2) has at least one solution. And if

|g(x)− g(y)| ≤ |x− y| for x ∈ R, y ∈ R,
then that problem has a unique solution.

On the other hand, the following statement is true.

Proposition 3. Let

p(t) ≥ 0 for t ∈ [a, b], g(x) > 0 for |x| > 0, c0 > 0,

and
+∞∫
c0

dx

g(x)
<

b∫
a

p(t) dt.

Then problem (7), (2) has no solution.

According to Proposition 3, condition (8) in Corollary 1 cannot be replaced by the condition

lim sup
|x|→+∞

|g(x)|
|x|1+ε

≤ 1,

no matter how small ε > 0 is.
In the case, where equation (1) (equation (7)) is superlinear, i.e. when

lim
x→+∞

b∫
a

f∗(t, x)

x
dt = +∞

(
lim

|x|→+∞

|g(x)|
|x|

= +∞

)
,

the question on the solvability of problem (1), (2) (problem (7), (2)) still remains unstudied (see, [1–6]
and the references therein). The results below to some extent fill the existing gap.
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Below everywhere a solution u of problem (1), (2) is said to be nonnegative (positive) if it is
nonnegative (positive) on [a, b].

Theorem 1. If the conditions

f(t, 0) = 0, f(t, x) ≤ 0 for t ∈ [a, b], x ∈ R+ (9)

hold, then problem (1), (2) has at least one nonnegative solution. And if there exists a positive constant
ε and a positive function ℓ ∈ L([a, b]) such that along with (9) the condition

|f(t, x)| ≤ ℓ(t)x for t ∈ [a, b], 0 ≤ x ≤ ε (10)

holds, then that solution is positive.

Theorem 1 yields

Corollary 2. If the conditions

p(t) ≤ 0 for t ∈ [a, b], g(0) = 0, g(x) ≥ 0 (11)

hold, then problem (7), (2) has at least one nonnegative solution. And if along with (10) the condition

lim sup
x→0+

g(x)

x
< +∞ (12)

is satisfied, then that solution is positive.

Remark 1. In Theorem 1 (in Corollary 2) restriction (10) (restriction (12)) is imposed on the function
f (on the function g) in order to guarantee the positiveness of every nonnegative solution of problem
(1), (2) (of problem (7), (2)). This restriction is essential and it cannot be omitted. Indeed, let

τ(t) ≡ t, t0 ∈ ]a, b[ , c0 = (t0 − a)2,

and

f(t, x) = −2|x| 12
(
p(t) ≡ −2, g(x) = |x| 12

)
.

Then conditions (9) (conditions (11)) are fulfilled but condition (10) (condition (12)) does not hold.
On the other hand, in this case both problem (1), (2) and problem (7), (2) have a unique solution

u(t) =

{
(t0 − t)2 for a ≤ t ≤ t0,

0 for t0 < t ≤ b,

and, consequently, they do not have a positive solution.
Theorem 2 below and its corollary contain sufficient conditions for the unique solvability of problems

(1), (2) and (7), (2).

Theorem 2. If conditions (9) hold and the function f is locally Lipschitz and nonincreasing in the
second argument, then problem (1), (2) has a unique positive solution.

Corollary 3. If conditions (11) hold and the function g is locally Lipschitz and nonincreasing, then
problem (7), (2) has a unique positive solution.

Remark 2. Under the conditions of Theorem 2, the function f may have an arbitrary order of growth
with respect to the second argument at infinity. For example, the function

f(t, x) = p(t)(en(x)− en(0)),

where p ∈ L([a, b]) is a nonpositive function, n is any natural number,

e1(x) = exp(x), ek+1(x) = exp(ek(x)), k = 1, 2, . . . ,

satisfies the conditions of Theorem 2.
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Sketch of the Proof of Theorem 1. For every natural n we introduce the strictly advanced differential
equation

u′(t) = fn(t, u(τn(t))), (13)

where

τn(t) =

{
τ(t) + 1

n for a ≤ t ≤ b,

bn for b < t ≤ bn,

bn = b+
1

n
,

fn(t, x) =

{
f(t, x) for a ≤ t ≤ b,

0 for b < t ≤ bn.

We prove:
1. If the conditions of Theorem 1 are satisfied, then for any positive number x Eq. (13) has a

unique solution un(·;x), defined on [a, bn], such that un(bn;x) = x;

2. For every n there exists xn > 0 such that un(a;xn) = c0;

3. From the sequence (un(·;xn))
+∞
n=1 we can get a uniformly converging on [a, b] subsequence

(unk
(·;xnk

))+∞
k=1 whose limit is a solution of (1), (2). □
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