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TRACE INEQUALITY CRITERIA FOR TRUNCATED POTENTIAL

OPERATORS

LAZARE NATELASHVILI

Abstract. The necessary and sufficient conditions are given for the Borel measure ν on Rn, ensuring
that the trace inequality holds for multilinear truncated potential operators.

1. Preliminaries

Fractional integral operators play a considerable role in harmonic analysis and PDEs. For example,
the Riesz potentials

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy, 0 < α < n,

are important for studying Sobolev imbeddings (see, e.g., [7]).
One multilinear variant of the operator Iα is the following operator:

Iγ(f1, . . . , fm)(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−γ
dy1 · · · dym, 0 < γ < mn.

The operator Iγ is a natural intermediate operator (in m–linear form) between (Iα1f1)(Iα2f2) and
the bilinear operator Bα1+α2

(f1, f2), where

Iαi
f(x) =

∫
Rn

f(y)

|x− y|n−αi
dy, 0 < αi < n, i = 1, 2,

and

Bα(f1, f2)(x) =

∫
Rn

f1(x+ t)f2(x− t)

|t|n−α
dt, 0 < α < n.

The operators Iγ and Bα were introduced and studied in [3–5].
Criteria for the one-weight and trace inequalities for Iγ were established in [8] and [6], respectively.
In 1985, E. Sawyer [9] (see also [1, Chapter 5]) introduced and studied a truncated variant of the

Riesz potential

Jαf(x) =

∫
|y|<2|x|

f(y)

|x− y|n−α
dy,

and established the corresponding trace inequality

∥Jαf∥Lq
ν
≤ C∥f∥Lp(Rn).

We present criteria for the trace inequality for the following variants of multilinear truncated
potential operators

J (m)
α (f⃗)(x) =

∫
|y1|<2|x|

· · ·
∫

|ym|<2|x|

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α
dy1 · · · dym,

and
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K
(m)
α⃗ f⃗(x) =

m∏
k=1

∫
|yk|<2|x|

fk(yk)

|x− yk|n−αk
dyk,

where α⃗ = (α1, . . . , αm) and f⃗ = (f1, . . . , fm).
We denote by Lp

ν , 1 < p < ∞, the classical Lebesgue space with the measure ν given by the

standard norm ∥f∥Lp
ν
=

( ∫
Rn

|f(x)|pdν(x)
)1/p

. If µ is the Lebesgue measure, then we use the symbol

Lp for Lp
ν

2. Main Results

Now, we formulate the main results of this note.

Theorem A. Let 1 ≤ min{p1, . . . , pm} ≤ q < ∞ and n(m − 1/p′i0) < α < mn for some i0, where
p′i0 = pi0/(pi0 − 1). Then the following are equivalent:

(i) ∥J (m)
α (f⃗)∥Lq

ν
≤ C

∏m
k=1 ∥fk∥Lpk ;

(ii) B1 := supt>0

(∫
|x|>t

|x|(α−mn)qdν(x)

)1/q

tn(m−1/p) < ∞;

(iii) B2 := supk∈Z

(
ν(B(0, 2k+1) \B(0, 2k)

))1/q

2k(α−n/p) < ∞,

with 1/p =
∑m

k=1 1/pk.

Theorem B. Let 1 < min{p1, . . . , pm} ≤ q < ∞ and n
pk

< αk < n. Then the following are equivalent:

(i) ∥K(m)
α⃗ (f⃗)∥Lq

ν
≤ C

∏m
k=1 ∥fk∥Lpk ;

(ii) B1 < ∞, with α =
∑m

k=1 αk;
(iii) B2 < ∞, with α =

∑m
k=1 αk,

where B1 and B2 are defined in Theorem A.

Finally, we mention that similar results for multilinear Riemann–Liouville operators were estab-
lished in [2].
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