

TRACE INEQUALITY CRITERIA FOR TRUNCATED POTENTIAL OPERATORS

LAZARE NATELASHVILI

Abstract. The necessary and sufficient conditions are given for the Borel measure ν on \mathbb{R}^n , ensuring that the trace inequality holds for multilinear truncated potential operators.

1. PRELIMINARIES

Fractional integral operators play a considerable role in harmonic analysis and PDEs. For example, the Riesz potentials

$$I_\alpha f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy, \quad 0 < \alpha < n,$$

are important for studying Sobolev imbeddings (see, e.g., [7]).

One multilinear variant of the operator I_α is the following operator:

$$\mathcal{I}_\gamma(f_1, \dots, f_m)(x) = \int_{(\mathbb{R}^n)^m} \frac{f_1(y_1) \cdots f_m(y_m)}{(|x-y_1| + \cdots + |x-y_m|)^{mn-\gamma}} dy_1 \cdots dy_m, \quad 0 < \gamma < mn.$$

The operator \mathcal{I}_γ is a natural intermediate operator (in m -linear form) between $(I_{\alpha_1}f_1)(I_{\alpha_2}f_2)$ and the bilinear operator $B_{\alpha_1+\alpha_2}(f_1, f_2)$, where

$$I_{\alpha_i}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha_i}} dy, \quad 0 < \alpha_i < n, \quad i = 1, 2,$$

and

$$B_\alpha(f_1, f_2)(x) = \int_{\mathbb{R}^n} \frac{f_1(x+t)f_2(x-t)}{|t|^{n-\alpha}} dt, \quad 0 < \alpha < n.$$

The operators \mathcal{I}_γ and B_α were introduced and studied in [3–5].

Criteria for the one-weight and trace inequalities for \mathcal{I}_γ were established in [8] and [6], respectively.

In 1985, E. Sawyer [9] (see also [1, Chapter 5]) introduced and studied a truncated variant of the Riesz potential

$$J_\alpha f(x) = \int_{|y|<2|x|} \frac{f(y)}{|x-y|^{n-\alpha}} dy,$$

and established the corresponding trace inequality

$$\|J_\alpha f\|_{L_\nu^q} \leq C \|f\|_{L^p(\mathbb{R}^n)}.$$

We present criteria for the trace inequality for the following variants of multilinear truncated potential operators

$$J_\alpha^{(m)}(\vec{f})(x) = \int_{|y_1|<2|x|} \cdots \int_{|y_m|<2|x|} \frac{f_1(y_1) \cdots f_m(y_m)}{(|x-y_1| + \cdots + |x-y_m|)^{mn-\alpha}} dy_1 \cdots dy_m,$$

and

2020 *Mathematics Subject Classification.* 42B20, 42B25, 42B35.

Key words and phrases. Multilinear fractional integrals; Trace inequality; Weighted inequalities; Truncated potential operator.

$$K_{\vec{\alpha}}^{(m)} \vec{f}(x) = \prod_{k=1}^m \int_{|y_k| < 2|x|} \frac{f_k(y_k)}{|x - y_k|^{n - \alpha_k}} dy_k,$$

where $\vec{\alpha} = (\alpha_1, \dots, \alpha_m)$ and $\vec{f} = (f_1, \dots, f_m)$.

We denote by L_ν^p , $1 < p < \infty$, the classical Lebesgue space with the measure ν given by the standard norm $\|f\|_{L_\nu^p} = \left(\int_{\mathbb{R}^n} |f(x)|^p d\nu(x) \right)^{1/p}$. If μ is the Lebesgue measure, then we use the symbol L^p for L_ν^p .

2. MAIN RESULTS

Now, we formulate the main results of this note.

Theorem A. *Let $1 \leq \min\{p_1, \dots, p_m\} \leq q < \infty$ and $n(m - 1/p'_{i_0}) < \alpha < mn$ for some i_0 , where $p'_{i_0} = p_{i_0}/(p_{i_0} - 1)$. Then the following are equivalent:*

- (i) $\|J_{\vec{\alpha}}^{(m)}(\vec{f})\|_{L_\nu^q} \leq C \prod_{k=1}^m \|f_k\|_{L^{p_k}}$;
- (ii) $B_1 := \sup_{t>0} \left(\int_{|x|>t} |x|^{(\alpha-mn)q} d\nu(x) \right)^{1/q} t^{n(m-1/p)} < \infty$;
- (iii) $B_2 := \sup_{k \in \mathbb{Z}} \left(\nu(B(0, 2^{k+1}) \setminus B(0, 2^k)) \right)^{1/q} 2^{k(\alpha-n/p)} < \infty$,

with $1/p = \sum_{k=1}^m 1/p_k$.

Theorem B. *Let $1 < \min\{p_1, \dots, p_m\} \leq q < \infty$ and $\frac{n}{p_k} < \alpha_k < n$. Then the following are equivalent:*

- (i) $\|K_{\vec{\alpha}}^{(m)}(\vec{f})\|_{L_\nu^q} \leq C \prod_{k=1}^m \|f_k\|_{L^{p_k}}$;
- (ii) $B_1 < \infty$, with $\alpha = \sum_{k=1}^m \alpha_k$;
- (iii) $B_2 < \infty$, with $\alpha = \sum_{k=1}^m \alpha_k$,

where B_1 and B_2 are defined in Theorem A.

Finally, we mention that similar results for multilinear Riemann–Liouville operators were established in [2].

REFERENCES

1. D. E. Edmunds, V. Kokilashvili, A. Meskhi, *Bounded and Compact Integral Operators*. Mathematics and its Applications, 543. Kluwer Academic Publishers, Dordrecht, 2002.
2. D. E. Edmunds, A. Meskhi, L. Natelashvili, Boundedness criteria for the multilinear Riemann–Liouville operators. *Mathematical Methods in Applied Sciences*, 2025. DOI:10.1002/mma.10855.
3. L. Grafakos, On multilinear fractional integrals. *Studia Math.* **102** (1992), no. 1, 49–56.
4. L. Grafakos, N. Kalton, Some remarks on multilinear maps and interpolation. *Math. Ann.* **319** (2001), no. 1, 151–180.
5. C. Kenig, E. Stein, Multilinear estimates and fractional integration. *Math. Res. Lett.* **6** (1999), no. 1, 1–15.
6. V. Kokilashvili, M. Mastylo, A. Meskhi, On the boundedness of the multilinear fractional integral operators. *Nonlinear Anal.* **94** (2014), 142–147.
7. V. Maz'ya, *Sobolev Spaces*. Springer-Verlag, Berlin, 1985.
8. K. Moen, New weighted estimates for bilinear fractional integral operators. *Trans. Amer. Math. Soc.* **366** (2014), no. 2, 627–646.
9. E. Sawyer, Multipliers of Besov and power-weighted L^2 spaces. *Indiana Univ. Math. J.* **33** (1984), no. 3, 353–366.

(Received 06.10.2025)

DEPARTMENT OF MATHEMATICS, FACULTY OF INFORMATICS AND CONTROL SYSTEMS, GEORGIAN TECHNICAL UNIVERSITY, TBILISI, 77 KOSTAVA STR., TBILISI 0175, GEORGIA
Email address: lazarenatelashvili@gmail.com