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A MAZURKIEWICZ SET CONTAINING THE GRAPH OF AN ABSOLUTELY

NONMEASURABLE FUNCTION

ALEXANDER KHARAZISHVILI

Abstract. Assuming Martin’s axiom (MA), it is proved that there exists a Mazurkiewicz set in

the plane R2 containing the graph of some absolutely nonmeasurable function.

Throughout this short communication, the following notation will be used.
R is the set of all real numbers (the real line);
c is the cardinality of the continuum (i.e., c = card(R));
ω is the least infinite cardinal number and ω1 is the least uncountable cardinal number;
λ is the standard Lebesgue measure on R;
R2 is the Euclidean plane (i.e., R2 = R×R);
λ2 is the Lebesgue two-dimensional measure onR2 (i.e., λ2 is the completion of the product measure

λ⊗ λ).
M0(R) is the class of the completions of all nonzero σ-finite Borel measures on R that vanish at

every singleton in R.
M(R) is the class of all nonzero σ-finite measures on R that vanish at every singleton in R.
ZF & DC is an abbreviation of ZF set theory with the Axiom of Dependent Choice (see, e.g., [5]).
MA is an abbreviation of Martin’s Axiom (see again [5]).
In the definition below, a topological space E is assumed to have the following property: each

singleton in E is a Borel subspace of E.
A subset Z of a space E is called absolute null if µ∗(Z) = 0 for every nonzero σ-finite Borel measure

µ on E vanishing at all singletons in E (here, µ∗ denotes, as usual, the outer measure produced by µ).
Obviously, any absolute null subset Z of E is simultaneously totally imperfect in E (i.e., Z does

not contain a subspace homeomorphic to the Cantor space {0, 1}ω). For various properties of totally
imperfect sets, see [4, 6, 11, 12, 14–16]. The standard representatives of such sets are widely known
Bernstein subsets of R (see especially [12,14,15]).

A subset A of R is called a generalized Luzin set if card(A) = c and, for every first category set
X ⊂ R, one has card(X ∩A) < c.

A subset B of R is called a generalized Sierpiński set if card(B) = c and for every λ-measure zero
set Y ⊂ R, one has card(Y ∩B) < c.

Observe that all generalized Luzin sets and all generalized Sierpiński sets are totally imperfect in R.
Also, as is well-known, Martin’s axiom implies that:

(i) there exist generalized Luzin subsets of R and generalized Sierpiński subsets of R;
(ii) any generalized Luzin set in R is absolute null;
(iii) no generalized Sierpiński set in R is absolute null.
Generalized Luzin sets and generalized Sierpiński sets are natural representatives of the so-called

thin sets in topological spaces (see, e.g., [12, 14, 15]). There are many examples of totally imperfect
subsets of R that differ from generalized Luzin sets and generalized Sierpiński sets (for instance, no
Bernstein set can be a generalized Luzin set or a generalized Sierpiński set).

We say that a function f : R → R is absolutely nonmeasurable with respect to the class M0(R)
(M(R)) if f is nonmeasurable with respect to any measure belonging to M0(R) (to M(R)).
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Remark 1. Within the framework of ZF & DC theory, it can be proved that a function f : R → R
is absolutely nonmeasurable with respect to M0(R) if and only if the graph of f is totally imperfect
in the plane R2 (see, e.g., [9]).

Lemma 1. In ZF & DC theory, a function f : R → R is absolutely nonmeasurable with respect to
M(R) if and only if the range of f is an absolute null subset of R and the sets f−1(r) are at most
countable for all r ∈ R.

For the proof of Lemma 1, see e.g. [6].

Remark 2. Lemma 1 implies that the existence of absolutely nonmeasurable functions with respect
to M(R) cannot be established within ZFC set theory. Indeed, there are models of ZFC theory in
which c > ω1 and the cardinality of any absolute null set in R (or in R2) does not exceed ω1 (for
further details, see [5]).

Lemma 2. In ZF & DC theory, let E1 and E2 be two topological spaces and let X be an absolute
null subset of E1. Suppose also that for every point x ∈ X, a nonempty subset Yx of E2 is given,
which is absolute null in E2.

Then the set Z = ∪{{x} × Yx : x ∈ X} is absolute null in the topological product space E1 × E2.

Remark 3. It follows from Lemmas 1 and 2 that if a function g : R → R is absolutely nonmeasurable
with respect to M(R), then the graph of g is absolute null in R2 and hence is totally imperfect in R2.

Theorem 1. In ZF & DC theory, the following three assertions are equivalent:
(1) there exists an absolute null subset of R whose cardinality is c;
(2) there exists a function from R into R, absolutely nonmeasurable with respect to the class M(R);
(3) there exists a partition of R into continuum many absolute null sets, all of which are of cardi-

nality c.

A subset Z of the plane R2 is called a Mazurkiewicz set if every straight line in R2 meets Z at
exactly two points (see [13]).

Various properties of Mazurkiewicz type sets are discussed in [1–3,7,8,10] and in some other works.
A function f : R → R is called a Sierpiński–Zygmund function if for each set X ⊂ R with

card(X) = c, the restricted function f |X is not continuous on X (see [17]).

Remark 4. It is easy to see that any Sierpiński–Zygmund function f : R → R has the following
additional property:

For each set X ⊂ R with card(X) = c, the restricted function f |X is not monotone on X.
On the other hand, under MA, there exists a function g : R → R such that:
(a) for each set X ⊂ R with card(X) = c, the restricted function g|X is not monotone on X;
(b) g is not a Sierpiński–Zygmund function.

It is not hard to prove that every Sierpiński–Zygmund function is absolutely nonmeasurable with
respect to the class M0(R) (see, e.g., [9]).

It was shown in [8] that there exists a Mazurkiewicz set in R2 containing the graph of some
Sierpiński–Zygmund function. Since any Sierpiński–Zygmund function is absolutely nonmeasurable
with respect to the class M0(R), it follows from the above-mentioned result that there exists a
Mazurkiewicz set in R2 containing the graph of an absolutely nonmeasurable function with respect
to the same class M0(R). Further, since the proper inclusion

M0(R) ⊂ M(R)

holds, a natural question arises whether there exists a Mazurkiewicz set in R2 containing the graph
of some function that is absolutely nonmeasurable with respect to M(R). Certainly, the existence of
a Mazurkiewicz set with this property needs additional set-theoretical assumptions (cf. Remark 2).

Theorem 2. Under MA, there exists a subset Z of the plane R2 such that:
(1) Z is a Mazurkiewicz set in R2;
(2) there is a function f : R → R whose graph is entirely contained in Z and for which ran(f) is

a generalized Luzin subset of R.
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It follows from (ii) and Lemma 1 that the function f of Theorem 2 is absolutely nonmeasurable
with respect to the class M(R).

Remark 5. Using Lemma 1, it is not hard to see that no Mazurkiewicz set can be represented as a
union of the graphs of two functions g : R → R and h : R → R such that both g and h are absolutely
nonmeasurable with respect to M(R).

Moreover, suppose that a subset Z of the plane R2 satisfies the following two conditions:
(a) pr2(Z) is not an absolute null set in R;
(b) Z admits a representation in the form Z = ∪{gk : k ∈ K}, where card(K) ≤ ω and all

gk (k ∈ K) are the graphs of some functions acting from R into R.
Then at least one gk is not absolutely nonmeasurable with respect to M(R).

Assuming Martin’s axiom, it can be proved that there exists a Mazurkiewicz set no uniformization
of which is absolutely nonmeasurable with respect to M(R). More precisely, the next statement holds
true.

Theorem 3. Under MA, there exists a subset T of the plane R2 such that:
(1) T is a Mazurkiewicz set in R2;
(2) every function f : R → R whose graph is contained in T has the property that ran(f) contains

a generalized Sierpiński subset of R.

It follows from (iii), Lemma 1, and (2) of Theorem 3 that if the graph of a function g : R → R is
entirely contained in T , then g cannot be absolutely nonmeasurable with respect to the class M(R).
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