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A MAZURKIEWICZ SET CONTAINING THE GRAPH OF AN ABSOLUTELY
NONMEASURABLE FUNCTION

ALEXANDER KHARAZISHVILI

Abstract. Assuming Martin’s axiom (MA), it is proved that there exists a Mazurkiewicz set in
the plane R? containing the graph of some absolutely nonmeasurable function.

Throughout this short communication, the following notation will be used.

R is the set of all real numbers (the real line);

c is the cardinality of the continuum (i.e., ¢ = card(R));

w is the least infinite cardinal number and w; is the least uncountable cardinal number;

A is the standard Lebesgue measure on R;

R? is the Euclidean plane (i.e., R? = R x R);

Az is the Lebesgue two-dimensional measure on R? (i.e., Ao is the completion of the product measure
A® A).

My (R) is the class of the completions of all nonzero o-finite Borel measures on R that vanish at
every singleton in R.

M(R) is the class of all nonzero o-finite measures on R that vanish at every singleton in R.

ZF & DC is an abbreviation of ZF set theory with the Axiom of Dependent Choice (see, e.g., [5]).

MA is an abbreviation of Martin’s Axiom (see again [5]).

In the definition below, a topological space E is assumed to have the following property: each
singleton in F is a Borel subspace of F.

A subset Z of a space F is called absolute null if ©*(Z) = 0 for every nonzero o-finite Borel measure
won E vanishing at all singletons in E' (here, u* denotes, as usual, the outer measure produced by ).

Obviously, any absolute null subset Z of E is simultaneously totally imperfect in E (i.e., Z does
not contain a subspace homeomorphic to the Cantor space {0,1}*). For various properties of totally
imperfect sets, see [4,6,11,12,14-16]. The standard representatives of such sets are widely known
Bernstein subsets of R (see especially [12,14,15]).

A subset A of R is called a generalized Luzin set if card(A) = ¢ and, for every first category set
X CR, one has card(X N A4) < c.

A subset B of R is called a generalized Sierpinski set if card(B) = ¢ and for every A\-measure zero
set Y C R, one has card(Y N B) < c.

Observe that all generalized Luzin sets and all generalized Sierpiniski sets are totally imperfect in R.
Also, as is well-known, Martin’s axiom implies that:

(i) there exist generalized Luzin subsets of R and generalized Sierpinski subsets of R;

(ii) any generalized Luzin set in R is absolute null;

(iil) no generalized Sierpiriski set in R is absolute null.

Generalized Luzin sets and generalized Sierpinski sets are natural representatives of the so-called
thin sets in topological spaces (see, e.g., [12,14,15]). There are many examples of totally imperfect
subsets of R that differ from generalized Luzin sets and generalized Sierpiriski sets (for instance, no
Bernstein set can be a generalized Luzin set or a generalized Sierpinski set).

We say that a function f : R — R is absolutely nonmeasurable with respect to the class My(R)
(M(R)) if f is nonmeasurable with respect to any measure belonging to My(R) (to M(R)).
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Remark 1. Within the framework of ZF & DC theory, it can be proved that a function f: R — R
is absolutely nonmeasurable with respect to Mo(R) if and only if the graph of f is totally imperfect
in the plane R? (see, e.g., [9]).

Lemma 1. In ZF & DC theory, a function f : R — R is absolutely nonmeasurable with respect to
M(R) if and only if the range of f is an absolute null subset of R and the sets f~1(r) are at most
countable for all v € R.

For the proof of Lemma 1, see e.g. [6].

Remark 2. Lemma 1 implies that the existence of absolutely nonmeasurable functions with respect
to M(R) cannot be established within ZFC set theory. Indeed, there are models of ZFC theory in
which ¢ > w; and the cardinality of any absolute null set in R (or in R?) does not exceed w; (for
further details, see [5]).

Lemma 2. In ZF & DC theory, let E1 and FEs be two topological spaces and let X be an absolute
null subset of Fy. Suppose also that for every point x € X, a nonempty subset Y, of Es is given,
which is absolute null in Es.

Then the set Z = U{{x} x Y, : & € X} is absolute null in the topological product space F1 X Es.

Remark 3. It follows from Lemmas 1 and 2 that if a function g : R — R is absolutely nonmeasurable
with respect to M(R), then the graph of g is absolute null in R? and hence is totally imperfect in R2.

Theorem 1. In ZF & DC theory, the following three assertions are equivalent:
(1) there exists an absolute null subset of R whose cardinality is c;
(2) there exists a function from R into R, absolutely nonmeasurable with respect to the class M(R);
(3) there exists a partition of R into continuum many absolute null sets, all of which are of cardi-
nality c.

A subset Z of the plane R? is called a Mazurkiewicz set if every straight line in R? meets Z at
exactly two points (see [13]).

Various properties of Mazurkiewicz type sets are discussed in [1-3,7,8,10] and in some other works.

A function f : R — R is called a Sierpiriski-Zygmund function if for each set X C R with
card(X) = c, the restricted function f|X is not continuous on X (see [17]).

Remark 4. It is easy to see that any Sierpinski—Zygmund function f : R — R has the following
additional property:

For each set X C R with card(X) = c, the restricted function f|X is not monotone on X.

On the other hand, under MLA, there exists a function g : R — R such that:

(a) for each set X C R with card(X) = ¢, the restricted function ¢g|X is not monotone on X;

(b) g is not a Sierpinski—Zygmund function.

It is not hard to prove that every Sierpinski-Zygmund function is absolutely nonmeasurable with
respect to the class Mo(R) (see, e.g., [9]).

It was shown in [8] that there exists a Mazurkiewicz set in R? containing the graph of some
Sierpinski-Zygmund function. Since any Sierpinski—Zygmund function is absolutely nonmeasurable
with respect to the class Mo(R), it follows from the above-mentioned result that there exists a
Mazurkiewicz set in R? containing the graph of an absolutely nonmeasurable function with respect
to the same class My(R). Further, since the proper inclusion

Mo(R) C M(R)
holds, a natural question arises whether there exists a Mazurkiewicz set in R? containing the graph

of some function that is absolutely nonmeasurable with respect to M(R). Certainly, the existence of
a Mazurkiewicz set with this property needs additional set-theoretical assumptions (cf. Remark 2).

Theorem 2. Under MA, there exists a subset Z of the plane R? such that:

(1) Z is a Mazurkiewicz set in R?;

(2) there is a function f: R — R whose graph is entirely contained in Z and for which ran(f) is
a generalized Luzin subset of R.
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It follows from (ii) and Lemma 1 that the function f of Theorem 2 is absolutely nonmeasurable
with respect to the class M(R).

Remark 5. Using Lemma 1, it is not hard to see that no Mazurkiewicz set can be represented as a
union of the graphs of two functions g : R — R and h : R — R such that both g and & are absolutely
nonmeasurable with respect to M(R).

Moreover, suppose that a subset Z of the plane R? satisfies the following two conditions:

(a) pry(Z) is not an absolute null set in R;

(b) Z admits a representation in the form Z = U{gr : k € K}, where card(K) < w and all
gr (k € K) are the graphs of some functions acting from R into R.

Then at least one g is not absolutely nonmeasurable with respect to M(R).

Assuming Martin’s axiom, it can be proved that there exists a Mazurkiewicz set no uniformization
of which is absolutely nonmeasurable with respect to M(R). More precisely, the next statement holds
true.

Theorem 3. Under MA, there exists a subset T of the plane R? such that:

(1) T is a Mazurkiewicz set in R?;

(2) every function f: R — R whose graph is contained in T has the property that ran(f) contains
a generalized Sierpinski subset of R.

It follows from (iii), Lemma 1, and (2) of Theorem 3 that if the graph of a function g : R — R is
entirely contained in T, then g cannot be absolutely nonmeasurable with respect to the class M(R).
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