Transactions of A. Razmadze
Mathematical Institute
Vol. 179 (2025), issue 3, 475-479

THE EFFECT OF LOWER TERMS ON THE WELL-POSEDNESS OF THE
CHARACTERISTIC DIRICHLET PROBLEM FOR A THIRD-ORDER LINEAR
HYPERBOLIC EQUATION

OTAR JOKHADZE!? AND SERGO KHARIBEGASHVILI!-2

On the plane of independent variables x and ¢, let us consider a strictly hyperbolic third-order
equation with constant coefficients of the form

Za’atﬁa 3—i + Z 1j 81513 j F(l‘,t), (1>

where F' is a given and u is the unknown real functlons. Without loss of generality, we assume that
az = 1. Strictly hyperbolicity of equation (1) implies that the corresponding characteristic equation

/\3+a2/\2—|—a1/\+a0 =0
has only simple real roots A1, Ao, A3, which correspond to the families of characteristics lines defined by
the equalities x + A\;t = const, i = 1,2, 3, and without loss of generality, we assume that A3 < Ay < Aq.
Introducing the notation L; := & — \; -2, i = 1,2, 3, equation (1) can be rewritten in the form

ot © 9z
LiLoLsu+ aliLou+ SLoLau+~yLiLau+ cu = F, (2)
where the values o, 8 and « are uniquely determined by the following formulas:

 booA3 + biiAs + boo 5= booAT + b1 A1 + boz _ baoA3 + biidg + boo
(A2 = A3)(A1 = Ag) Dz 22— M) 1 s M) —h)
By D we denote the parallelogram bounded by the characteristic lines: x + Mt =0, z + Mt =
and x + Aot = 0, x + Aot = co, where ¢; = const > 0, ¢ = 1, 2, are the given numbers.
In the domain D, for equation (1), we consider the characteristic Dirichlet problem in the following
formulation: find in the domain D a solution u of equation (1) satisfies the boundary condition

ulyp = £, (3)
where f is the real function given on the boundary of the domain D. In this direction, the works [1-7]
are worth mentioning.

Remark. When considering problem (1), (3), we seek the solution u in the class C*(D) under the
fulfillment of the corresponding smoothness and consistency conditions for the data of this problem.

Theorem. Let all coefficients in the left-hand side of equation (2) be equal to zero, except for «, then
problem (1), (3) is well-posed in the characteristic parallelogram D. If the coefficient « is also equal
to zero, then problem (1), (3) is ill-posed. In particular, the corresponding to (1), (3) homogeneous
problem has an infinite number of linearly independent solutions.

Proof. Introducing the characteristic variables
x + )\1t x + )\2t

= = 4
under the conditions of the theorem equation (2) will be written in the form
g 0
<3£ o —|—0¢>u§n—F (5)
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where U(&,n) == u(z,t), F(£,1) = (A — A2)"2(A1 — A3)(A3 — A2)F (2, 1), and the domain D will be
transformed into the characteristic rectangle D : 0 < € < ¢1(A; — As) ™%, 0 <7 < ca(Aa — Ag) L.
Below, for the simplicity of presentation, we assume that Disa square, i.e., D:0< &, n <1, where
l:= Cl(>\1 — )\3)71 = CQ()\Q — )\3)71.
Under the above assumptions, the characteristic Dirichlet boundary condition (3) can be written
as

a(f,o):fl(f), a(ovn):fQ(n)a 0<¢&n<l, (6)
u(l,n) = fs(m), (&, 1) = fa(§), 0<&n<l, (7)

where the functions f;, i = 1,2,3,4, satisfy the following conditions of smoothness f; € C3([0,1]),
i=1,2,3,4, and consistency

f1(0) = £2(0),  fo(l) = f1(0), f3(0) = f1(1), f3(1) = fa(l).

First, for equation (5), we consider the auxiliary Goursat problem with the boundary conditions
on the characteristic segments £ = 0 and n = 0, when, in addition to conditions (6), the following
conditions must be satisfied:

un(§,0) = 9(§), ue(0,m) =v(n), 0<§ n<i, (8)

with a subsequent selection of the functions ¢ and 1 such that condition (7) is satisfied. It is assumed
that the following smoothness conditions ¢, € C?([0,1]) and consistency

f1(0) = £2(0), ¥(0) = f1(0), »(0) = £5(0), ¢'(0) =¥'(0),

are satisfied.
We introduce the following notation:

V= Ugy.

Then, taking into account equation (5) and condition (8) for the function v, we obtain the following
boundary value problem:

(%Jra%Jra)v:ﬁ (&) €D, (9)
’U(f,O):(p/(§>, ’U(Oan):wl(n)’ 0<&n<l (10)

By direct integration, the solution of problem (9), (10) is determined by the formula

v(E,n) = exp(—an)¢’' (€ —n) + Fi(&,m), n<¢E,
) eXp(_a§)¢/(n - g) + }72(57 'r,)’ n > é"

where

Fl(galrl) ::exp(—ag) F(flué-l + n—- g) exp(afl)dgh n S 57

13

Fy(&,n) :==exp(—an) [ F(m +§—mn,m)exp(an)dn, n>¢.

n

Ao— s i —

The next step is the solution of the Goursat problem for the equation

ﬁ&nzva Ogga 77§l,
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with the characteristic data (6). The solution is given by the formula

J1(8) + fa(n) — f2(0) + jdglj exp(—a&1)y’(m — &1)dm
n €
+ [dny [ exp(—am)¢' (&1 —m)dé + Fs(€,m), n<E,
u(&,m) = coom e g (11)
f1(6) + fa(n) = f2(0) + [ d&y1 [ exp(—aér)d (m — &1)dm

0 &1

¢
+{d§1 [ exp(—am)@' (& — m)dm + Fa(€,m), n>€,

where

n n 3
/d§1/F2 §1,m d771+/d771/F1 &,m)dé, n <&,

&1 m

£ &1

Fy(&m) /d§1/ (&, m d771+/d§1
0

Using (11), we satisfy conditions (7) and obtain

Fi(&,m)dm, n=>¢&.

o

1) + faln) — F2(0) + / ¢, / exp(—a&a ) (m — &2)dms

0 &1

n l
4 / dm / exp(—om) ! (€1 — m)déy + Fs(ln) = fa(n), 0<n<l,
0 m

C (12)
71O+ 20 = £20)+ [ des [ exp(-aga)u(m ~ &)im
0 &1
&1
/ s [ expl=am)e! (6~ m)dm + Fi(€.) = fu(©), 0 <1,
0
Introducing a single parametrization in equation (12), we get
£ 1
/d&/exp(—a&)ﬂ/(m —&)dm
0 &1
[on]
+ [ dm [ exp(—an)¢’ (&1 —m)dér = hi(§), 0<E<U,
o m (13)

l

€
/dfl/exp(—a&w'(m —&1)dm

0 &1
£ &1
4 O/ dt, 0/ exp(—an)¢ (€1 — m)dm = ha(€), 0<E<,

where

hi(§) := f3(8§) — f2(&) — f1(l) + f2(0) — F3(1,§),
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ha(€) := fa(§) — f1(§) — f2(l) + f2(0) — Fu(§,1), 0<E<L

Based on the structure of system (13) and differentiating this system with respect to the variable &,
we obtain an equivalent system

£ l
[ em(-agu(e - e + [ e(-agie' e - der =m(e), 0<E<L
0 1
z 3 (14)
/exp( af)y’ §)dm +/exp —am)@'(§ —m)dm = hy(§), 0<E<L.
€ 0
Making a suitable replacement of the variables &; and 7, in the integrands of system (14), we obtain
9
/exp(ar)w’(T)dT +o(l—& =h3(¢), 0<E<],
’ (15)

3
Bl — )+ / explar)g!(r)dr = ha(€), 0< €<,
0

where
h3(€) = exp(ag)hi(§) + f3(0), ha(§) == exp(ag)hy(§) + f1(0), 0<¢<L.
Similarly, based on the structure of system (15) and differentiating this system with respect to the

variable £, we obtain an equivalent system of the equations with respect to the unknown functions ¢’
and 1)’ with a shift

{exp<a5>w'<s> —¢ = =h(), 0<w <, 16)
—P' (1= &) + exp(ag)g’(§) = hy(§), 0<&<L
The analysis of system (16) allows us to conclude that:
1) if @ # 0, then system (16) has a unique solution taking the form
{w’(f) = exp(al) — 17 {h(1 = &) +explall — OGO}, 0<E<L, )
¥'(§) = lexp(al) — 1]7H{RL (1 — &) +expla(l — §h5(§)}, 0<E<L.

Substituting the expressions for ¢’ and ¥’ from (17) into (11) and returning to the original inde-
pendent variables x and ¢, by the formulas (4), we obtain the unique solution to the original problem

(1), (3).
2) if & = 0, then the corresponding to (16) homogeneous system has an infinite number of solutions,
which can be constructed by using the formulas

¢'(§) =x(8), V() =x(-¢), 0<&<1,
where Y is an arbitrary function from the class C'*([0,1]) and x(0) = x(I). Based on the above-said,
the general solution of the corresponding (5)—(7) homogeneous problem can be written in the form

e f exp(—a€)x(l — 1+ €1)dns

+fd771 f exp C”71)X(§1 - nl)dfla n < 57
/?I:O(Ean) = n O
fo dflff exp(—a&)x(l —m + & )dm

¢
+g’d§1 [ exp(—an) X/ (61— m)dm, 1> €.

At the same time, it is possible to constructively describe the set of the right-hand sides of equation
(1) for which the original problem (1), (3) is solvable.
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