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BOUNDEDNESS OF ONE-SIDED OPERATORS IN VARIABLE EXPONENT

MORREY SPACES

ETERI GORDADZE1, GIORGI IMERLISHVILI1∗ AND ALEXANDER MESKHI1,2

Abstract. The paper studies one-sided operators in the framework of variable-exponent Morrey
spaces. First, we prove the boundedness of the one-sided Hardy–Littlewood maximal operators

and then establish the boundedness theorems of Spanne and Adams type for the right-sided Weyl-

type fractional integral operator Wα(·) both on finite intervals and on the entire real line R. The
theorems are formulated for the right-sided operators, while the corresponding results remain valid

for the left-sided Hardy–Littlewood maximal operator and the Riemann–Liouville fractional integral
operator Rα(·).

1. Preliminaries

Morrey spaces, introduced by C.B. Morrey in 1938, were originally developed in connection with
the study of regularity properties of solutions to partial differential equations (PDEs). Such spaces
provide a more precise description of local integrability than the classical Lebesgue spaces.

The concept of Morrey spaces with variable exponents was introduced in the paper of A. Almeida,
J. Hasanov, and S. Samko [1] (see also V. Kokilashvili and A. Meskhi [9]). These spaces are partic-
ularly useful for modelling problems with spatially variable growth and local regularity arising, for
instance, in the study of PDEs with nonstandard structure or in the analysis of phenomena occurring
in inhomogeneous media (for the case of variable exponent Lebesgue spaces, see, e.g., paper [12] and
monographs [5, 11]).

One-sided maximal and fractional operators arise naturally in harmonic analysis and in PDEs with
directional structure. They appear in problems involving causality or asymmetry such as boundary
value problems, parabolic equations with drift terms, and various classes of evolution equations.
Moreover, such operators play a significant role in the theory of weighted inequalities, non-symmetric
filtration, and anisotropic settings, where classical symmetric tools are no longer sufficient.

Let p(·), q(·) : I → (1,∞) be measurable functions such that q(·) ≤ p(·). The variable exponent
Morrey space M p(·),q(·)(I) is defined by the norm

∥f∥Mp(·),q(·)(I) := sup
a∈I, R>0

R
1

pR(a)
− 1

qR(a) ∥f∥Lq(·)((a,a+R)),

where the norm in the variable-exponent Lebesgue space is given in terms of the Luxemburg norm,

∥f∥Lq(·)(E) := inf

{
λ > 0 :

∫
E

(
|f(x)|
λ

)q(x)

dx ≤ 1

}
.

Here,

pR(a) =

{
p(a), R < 1,

p(∞), R ≥ 1,
qR(a) =

{
q(a), R < 1,

q(∞), R ≥ 1.

If the interval I is bounded, then the norm has the form

∥f∥Mp(·),q(·)(I) := sup
a∈I, R>0

R
1

p(a)
− 1

q(a) ∥f∥Lq(·)((a,a+R)).
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If p(·) = q(·), then the Morrey space coincides with the variable-exponent Lebesgue space,

M p(·),p(·)(I) = Lp(·)(I).

The main operators under consideration are the one-sided maximal and fractional integral opera-
tors. The one-sided Hardy–Littlewood maximal operators are defined by

M+f(x) := sup
0<h<b−x

1

h

x+h∫
x

|f(t)| dt, M−f(x) := sup
0<h<x−a

1

h

x∫
x−h

|f(t)| dt,

where x ∈ (a, b) ⊂ R. The one-sided fractional integrals of Weyl and Riemann–Liouville type are
given by

Wα(·)f(x) :=

b∫
x

f(t)

(t− x)1−α
dt, Rα(·)f(x) :=

x∫
a

f(t)

(x− t)1−α
dt.

For the admissible exponents, we use the following classes. Let I ⊂ R be an open interval and
p : I → R be a measurable function. Then:

• the class P consists of those p such that

1 < p−I := ess inf
x∈I

p(x) ≤ p(x) ≤ ess sup
x∈I

p(x) =: p+I < ∞;

• p ∈ P log(I) if

|p(x)− p(y)| ≤ A

log
(

1
|x−y|

) whenever 0 ≤ |x− y| ≤ 1
2 ;

• the class P−(I) consists of those p such that for some constant c1 > 0,

p(x) ≤ p(y) +
c1

ln 1
x−y

, 0 < x− y ≤ 1
2 , a.e. x, y ∈ I.

• the class P+(I) is defined by the condition

p(x) ≤ p(y) +
c2

ln 1
y−x

, 0 < y − x ≤ 1
2 , a.e. x, y ∈ I,

for some constant c2 > 0.
• the class P∞(I) requires that there exists C > 0 such that

|p(x)− p(y)| ≤ C

log(e+ |x|)
, |y| ≥ |x|, x, y ∈ I.

The conditions defining P∞(I) guarantee controlled behaviour of the exponent at infinity and are
essential when dealing with unbounded domains.

The classes P−(I) and P+(I) are much wider than the class of log-Hölder continuous exponents,
which can be described as P log(I) := P−(I) ∩ P+(I). In particular, any non-decreasing function
p(x) belongs to P+(I), and any non-increasing function p(x) belongs to P−(I) in the case of bounded
interval I.

The condition P log(I) ∩ P∞(I) guarantees the boundedness of the operators in the classical
harmonic analysis in variable-exponent Lebesgue spaces. For the details, see, e.g., the monograph
by L. Diening, P. Harjulehto, P. Hästö and M. Růžička [5], D. Cruz–Uribe and A. Fiorenza [2],
V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko [10].

For a bounded domain Ω ⊂ Rn, the following statement was proved by L. Diening [4]:

Theorem A. Let Ω ⊂ Rn be a bounded domain. Define the Hardy–Littlewood maximal operator

(MΩf)(x) := sup
r>0

1

rn

∫
B(x,r)∩Ω

|f(y)| dy, x ∈ Ω.

Then MΩ is bounded on Lp(·)(Ω) if
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• p ∈ P ;
• p ∈ P log(Ω).

A related result was obtained by D. Cruz–Uribe, A. Fiorenza and C. J. Neugebauer [3].

Theorem B. Let Ω ⊂ Rn be an open set and let p ∈ P(Ω). Then the Hardy–Littlewood maximal
operator MΩ is bounded on Lp(·)(Ω) if:

(1) p ∈ P log(Ω),
(2) p ∈ P∞(Ω).

The boundedness of the operators of one-sided harmonic analysis in variable-exponent Lebesgue
spaces, under the conditions P+(I)∩P∞(I) or P−(I)∩P∞(I), was established by D. E. Edmunds,
V. Kokilashvili and A. Meskhi [6] (see also the monograph by V. Kokilashvili, A. Meskhi, H. Rafeiro
and S. Samko [10]).

Theorem C ([6]). Let I ⊂ R be a bounded interval. Then:

• If p ∈ P−(I), the left-sided maximal operator M− is bounded,

M− : Lp(·)(I) → Lp(·)(I);

• If p ∈ P+(I), the right-sided maximal operator M+ is bound,

M+ : Lp(·)(I) → Lp(·)(I).

Theorem D ([6]). The following statements hold:

• If p ∈ P+(R) ∩ P∞(R), then

M+ : Lp(·)(R) → Lp(·)(R);
• If p ∈ P−(R) ∩ P∞(R), then

M− : Lp(·)(R) → Lp(·)(R).

The boundedness of classical operators in variable-exponent Morrey spaces was studied by
A. Almeida, J. Hasanov and S. Samko [1], V. Kokilashvili and A. Meskhi [9] for the case of bounded
sets, and by V. S. Guliyev and S. G. Samko [7] in the case of unbounded sets (see also [8]).

2. Main Results

In this section, we formulate our main results on the boundedness of one-sided maximal operators
and one-sided fractional integral operators of Weyl type Wα(·) in variable-exponent Morrey spaces.
We distinguish between finite and infinite interval cases, as well as Spanne and Adams type results.

We begin with the boundedness of the right-sided Hardy–Littlewood maximal operator in variable
exponent Morrey spaces:

Theorem 2.1. Let I = (a, b) ⊂ R and suppose p(·), q(·) ∈ P(I) ∩P+(I), provided q(·) ≤ p(·). Then
the operator M+ is bounded on M p(·),q(·)(I):

∥M+f∥Mp(·),q(·)(I) ≤ C∥f∥Mp(·),q(·)(I).

Theorem 2.2. Let p(·), q(·) ∈ P(R)∩P+(R)∩P∞(R), provided q(·) ≤ p(·). Then the operator M+

is bounded on M p(·),q(·)(R),
∥M+f∥Mp(·),q(·)(R) ≤ C∥f∥Mp(·),q(·)(R).

Next, we consider the one-sided fractional integral operator of Weyl type Wα(·) in variable-exponent
Morrey spaces. The following theorem is the Spanne-type Results for the finite interval case.

Theorem 2.3. Let I = (a, b) ⊂ R and assume

p(·), q(·) ∈ P(I) ∩ P+(I), r(·), s(·) ∈ P(I),

with r(·) ≤ p(·), s(·) ≤ q(·), and
1

p(·)
− 1

r(·)
=

1

q(·)
− 1

s(·)
, α(x) :=

1

p(x)
− 1

q(x)
=

1

r(x)
− 1

s(x)
∈ (0, 1).
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Then the Weyl-type one-sided fractional integral

Wα(·) : M p(·),r(·)(I) −→ M q(·),s(·)(I)

is bounded.

Now, let us formulate Adams-type results for the Weyl-type Wα(·) operator in the finite interval
case:

Theorem 2.4. Let I = (a, b) ⊂ R and assume

p(·), q(·) ∈ P(I) ∩ P+(I), r(·), s(·) ∈ P(I),

with r(·) ≤ p(·), s(·) ≤ q(·), and

θ(x) :=
p(x)

r(x)
=

q(x)

s(x)
> 1, α(x) :=

1

r(x)
− 1

s(x)
∈ (0, 1).

Then
Wα(·) : M p(·),r(·)(I) −→ M q(·),s(·)(I).

To formulate the statement for the unbounded I, we need some definitions. Define the Morrey
gauge

ω(x, r) = r
1

pr(x)
− 1

rr(x) , ω1(x, r) := [ω(x, r)]pr(x)/qr(x),

where ur(x) = u(x) for 0 < r ≤ 1 and ur(x) = u(∞) for r > 1.
Define the space M p(·),ω(·)(R) by the norm

∥f∥Mp(·),ω(·)(R) := sup
x∈R, r>0

1

ω(x, r)
∥f∥Lp(·)(B(x,r)) < ∞,

where B(x, r) = (x− r, x+ r).
We now turn to the case of the entire real line. In this setting, additional care is required in order

to capture the asymptotic behaviour of the variable exponents at infinity. To this end, we employ the
Morrey gauges.

Theorem 2.5. Suppose p, q, r, s : R → (1,∞), provided 1 < r(·) ≤ p(·) and 1 < s(·) ≤ q(·). Let
α : R → (0, 1) satisfy

1

q(x)
=

1

p(x)
− α(x),

1

s(x)
=

1

r(x)
− α(x), θ(x) :=

p(x)

r(x)
=

q(x)

s(x)
> 1.

Assume that p, q, r, s ∈ P ∩ P+(R) ∩ P∞(R) and
sup
x∈R

α(x) r(∞) < 1.

Then
Wα(·) : M p(·),ω(·,·)(R) −→ M q(·),ω1(·,·)(R) + M q(∞),ω1(·,·)(R).

Finally, we note that all the results formulated above for the right-sided maximal and fractional
integral operators M+ and Wα(·) also remain valid for their left-sided counterparts M− and Rα(·)
under the corresponding assumptions on the exponents. Thus, our results provide a complete picture
of the boundedness of one-sided maximal and fractional integral operators in variable-exponent Morrey
spaces.
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5. L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture
Notes in Mathematics, 2017. Springer, Heidelberg, 2011.



BOUNDEDNESS OF ONE-SIDED OPERATORS IN VARIABLE EXPONENT MORREY SPACES 473

6. D. E. Edmunds, V. Kokilashvili, A. Meskhi, One-sided operators in Lp(x) spaces. Math. Nachr. 281 (2008), no. 11,

1525–1548.
7. V. S. Guliyev, S. G. Samko, Maximal, potential, and singular operators in the generalized variable exponent Morrey

spaces on unbounded sets. Problems in mathematical analysis. no. 71. J. Math. Sci. (N.Y.) 193 (2013), no. 2,

228–248.
8. K. - P. Ho, Extrapolation to weighted Morrey spaces with variable exponents and applications. Proc. Edinb. Math.

Soc. (2) 64 (2021), no. 4, 1002–1027.

9. V. Kokilashvili, A. Meskhi, Boundedness of maximal and singular operators in Morrey spaces with variable exponent.
Armen. J. Math. 1 (2008), no. 1, 18–28.

10. V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-standard Function Spaces.
vol. 1. Variable exponent Lebesgue and amalgam spaces. Operator Theory: Advances and Applications, 248.
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