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PERIODIC PROBLEM WITH RESPECT TO A SPATIAL VARIABLE FOR

A SEMILINEAR WAVE EQUATION
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Dedicated to the memory of Professor Elene Obolashvili

Abstract. For a one-dimensional semilinear wave equation, a periodic problem with respect to
a spatial variable is studied. Depending on the structure of the nonlinear term included in the

equation, the questions of the existence, uniqueness and absence of a solution to the problem are

investigated.

1. Statement of the Problem

In the plane of independent variables x and t in the domain DT := {(x, t) ∈ R2 : 0 < x < l,
0 < t < T}, R := (−∞,+∞) we consider the problem of determining the solution u(x, t) of the
semilinear wave equation

□u+ f(u) = F (x, t), (x, t) ∈ DT , (1.1)

satisfying the initial conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x), 0 ≤ x ≤ l, (1.2)

with respect to the variable t and the periodic conditions

u(0, t) = u(l, t), ux(0, t) = ux(l, t), 0 ≤ t ≤ T, (1.3)

with respect to the variable x, where f , F , φ and ψ are the given and u is the unknown real functions,

□ := ∂2

∂t2 − ∂2

∂x2 .

Everywhere below, when considering the classical solution u ∈ C2(DT ) of the problem (1.1)–(1.3),
we will assume that the following conditions of smoothness and consistency of data f, F, φ and ψ of
problem (1.1)–(1.3):

f ∈ C1(R), F ∈ C1(DT ), φ ∈ C2([0, l]), ψ ∈ C1([0, l]),

F (0, 0)− f [φ(0)] + φ′′(0) = F (l, 0)− f [φ(l)] + φ′′(l), (1.4)

φ(0) = φ(l), φ′(0) = φ′(l), ψ(0) = ψ(l), ψ′(0) = ψ′(l),

are satisfied at the points (0, 0) and (l, 0).
For some classes of hyperbolic equations, periodic problems have been the subject of research by

many authors (see, e.g., [2, 3, 7–11,13,14,16] and references therein).

2. A Priori Estimate of the Solution to Problem (1.1)–(1.3)

Let us consider the condition imposed on the nonlinear function f

(Gf)(s) :=

s∫
0

f(s1)ds1 ≥ −M1s
2 −M2 ∀s ∈ R, (2.1)

where Mi := const ≥ 0, i = 1, 2.
The following lemma holds:
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Lemma 2.1. Let the condition (2.1) be satisfied. Then for any solution u ∈ C2(DT ) of problem
(1.1)–(1.3) the a priori estimate

∥u∥C(DT ) ≤ c1∥φ∥C1([0,l]) + c2∥ψ∥C([0,l]) + c3∥f∥C([−∥φ∥C(ω0),∥φ∥C(ω0)]) + c4∥F∥C(DT ) + c5 (2.2)

with positive constants ci = ci(l, T ), i = 1, 2, 3, 4, independent of the functions u, F , φ and ψ is valid
at the same time c5 ≥ 0.

Proof. Multiplying both sides of equality (1.1) by 2ut, and integrating over the domainDτ , 0 < τ ≤ T ,
we obtain ∫

Dτ

(u2t )tdxdt− 2

∫
Dτ

uxxutdxdt+ 2

∫
Dτ

[
(Gf)(u)

]
t
dxdt = 2

∫
Dτ

Futdxdt. (2.3)

Set ωτ : t = τ , 0 ≤ x ≤ l, 0 ≤ τ ≤ T ; Γ := Γ1 ∪ ω0 ∪ Γ2, where Γ1 : x = 0, 0 ≤ t ≤ T ; Γ2 : x = l,
0 ≤ t ≤ T . Let ν := (νx, νt) be a unit vector of the outward normal to ∂Dτ . It is easy to see that

νx|ωτ
= 0, 0 ≤ τ ≤ T, νx|Γ1

= −1, νx|Γ2
= 1,

νt|Γ1∪Γ2
= 0, νt|ω0

= −1, νt|ωτ
= 1, 0 < τ ≤ T.

(2.4)

Using integration by parts, taking into account (1.2), (1.3) and (2.4), we have∫
Dτ

(u2t )tdxdt+ 2

∫
Dτ

[
(Gf)(u)

]
t
dxdt =

∫
∂Dτ

u2tνtds+ 2

∫
∂Dτ

(Gf)(u)νtds

=

∫
ωτ

u2tdx−
∫
ω0

ψ2dx+ 2

∫
ωτ

(Gf)(u)dx− 2

∫
ω0

(Gf)(φ)dx,

−2

∫
Dτ

uxxutdxdt = 2

∫
Dτ

[uxutx − (uxut)x]dxdt =

∫
Dτ

(u2x)tdxdt

−2

∫
∂Dτ

uxutνxds =

∫
∂Dτ

u2xνtds =

∫
ωτ

u2xdx−
∫
ω0

φ′2dx, (2.5)

where Γi,τ := Γi ∩ {t ≤ τ}, i = 1, 2.
In view of (2.5), equality (2.3) can be rewritten as

w(τ) :=

∫
ωτ

(u2x + u2t )dx =

∫
ω0

(φ′2 + ψ2)dx

+2

∫
ω0

(Gf)(φ)dx− 2

∫
ωτ

(Gf)(u)dx+ 2

∫
Dτ

Futdxdt. (2.6)

Taking into account (2.1), from (2.6), it follows that

w(τ) ≤
∫
ω0

(φ′2 + ψ2)dx+ 2

∫
ω0

(Gf)(φ)dx+ 2M1

∫
ωτ

u2dx+ 2M2l + 2

∫
Dτ

Futdxdt. (2.7)

Further, in view of (1.2)

u(x, τ) = φ(x) +

τ∫
0

ut(x, t)dt,

then

|u(x, τ)|2 ≤ 2φ2(x) + 2

( τ∫
0

ut(x, t)dt

)2

≤ 2φ2(x) + 2τ

τ∫
0

u2t (x, t)dt.
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Integrating the obtained inequality with respect to the variable x and taking into account (2.6), we
obtain ∫

ωτ

u2dx ≤ 2∥φ∥2L2(ω0)
+ 2T

τ∫
0

[ ∫
ωt

u2tdx

]
dt ≤ 2l∥φ∥2C(ω0)

+ 2T

τ∫
0

w(t)dt. (2.8)

For (x, t) ∈ DT , integrating the obvious inequality

|u(x, t)|2 =
∣∣∣u(ξ, t) + x∫

ξ

ux(x1, t)dx1

∣∣∣2 ≤ 2|u(ξ, t)|2 + 2l

l∫
0

u2x(x, t)dx

with respect to the variable ξ ∈ [0, l], similarly to how inequality (2.8) was obtained, we will have

|u(x, t)|2 ≤ 2

l

l∫
0

|u(ξ, t)|2dξ + 2lw(t) =
2

l

∫
ωt

u2dx+ 2lw(t). (2.9)

From (2.8) and (2.9), it follows that

|u(x, t)|2 ≤ 4∥φ∥2C(ω0)
+

4T

l

t∫
0

w(σ)dσ + 2lw(t), (x, t) ∈ DT . (2.10)

Taking into account that

2

∣∣∣∣ ∫
Dτ

Futdxdt

∣∣∣∣ ≤ ∫
Dτ

F 2dxdt+

∫
Dτ

u2tdxdt ≤ lT∥F∥2
C(DT )

+

τ∫
0

[ ∫
ωt

u2tdx

]
dt ≤ lT∥F∥2

C(DT )
+

τ∫
0

w(t)dt,

∫
ω0

(φ′2 + ψ2)dx ≤ l
(
∥φ′∥2C(ω0)

+ ∥ψ∥2C(ω0)

)
≤ l

(
∥φ∥2C1(ω0)

+ ∥ψ∥2C(ω0)

)
,

2

∫
ω0

(Gf)(φ)dx = 2

∫
ω0

[ φ(x)∫
0

f(s1)ds1

]
dx ≤ 2l∥(G|f |)(|φ|)∥C(ω0)

= 2l

∥∥∥∥
|φ|∫
0

|f(s1)|ds1
∥∥∥∥
C(ω0)

≤ 2l∥φ∥C(ω0)∥f∥C([−∥φ∥C(ω0),∥φ∥C(ω0)])

≤ l
(
∥φ∥2C1(ω0)

+ ∥f∥2C([−∥φ∥C(ω0),∥φ∥C(ω0)])

)
from (2.7), in view of (2.8), we obtain

w(τ) ≤ α1

τ∫
0

w(t)dt+ α2, (2.11)

where

α1 := 1 + 4M1T, α2 := 2l(1 + 2M1)∥φ∥2C1(ω0)
+ l∥ψ∥2C(ω0)

+l∥f∥2C([−∥φ∥C(ω0),∥φ∥C(ω0)])
+ lT∥F∥2

C(DT )
+ 2M2l.

Applying Gronwall’s lemma to inequality (2.11), we obtain

w(τ) ≤ α2 exp
(
α1T

)
, 0 < τ ≤ T. (2.12)
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From (2.10) and (2.12), it follows that

|u(x, t)|2 ≤ 4∥φ∥2C1(ω0)
+ 2α2

(
2T 2

l
+ l

)
exp

(
α1T

)
, (x, t) ∈ DT ,

whence, taking into account the obvious inequality
(∑n

i=1 a
2
i

) 1
2 ≤

∑n
i=1 |ai|, we get the a priori

estimate (2.2), in which

c1 := 2
(
1 + c0

√
1 + 2M1

)
, c2 = c3 :=

√
2c0, c4 =

√
2Tc0, c5 = 2

√
M2c0, (2.13)

where

c0 :=
√

2T 2 + l2 exp
α1T

2
.

Lemma 2.1 is proven. □

Remark 2.1. In particular, for f = 0, assuming M1 = M2 = 0 in inequality (2.1) and taking
into account (2.13), the uniqueness of the solution to problem (1.1)–(1.3) follows from the a priori
estimate (2.2).

3. Existence of a Solution to Problem (1.1)–(1.3)

Before moving on to the equivalent reduction of problem (1.1)–(1.3) to a nonlinear integral equation,
we present the solution of the following mixed problem for the corresponding linear equation (1.1)
i.e., for f = 0, retaining the previous notation u for the unknown function: in the domain DT find
the solution u ∈ C2(DT ) of equation (1.1) by the boundary

u(0, t) = µ1(t), u(l, t) = µ2(t), 0 ≤ t ≤ l, (3.1)

and by the initial conditions (1.2), where the functions F, φ, ψ, µ1 and µ2 satisfy the smoothness
and consistency conditions, similar to (1.4).

For simplicity of presentation, let us consider the case where the domain DT is a square, i.e.,
T = l. In order to solve this problem in quadratures let us divide the domain DT , which is a
square with vertices at the points A(0, 0), B(0, l), C(l, l) and D(l, 0), into four rectangular triangles
∆1 := ∆AOD, ∆2 := ∆AOB, ∆3 := ∆DOC and ∆4 := ∆BOC, where the point O( l

2 ,
l
2 ) is the

center of the square Dl [6].
By virtue of d’Alembert’s formula (see, e.g., [1]), the solution of problem (1.1), (1.2) is given by

the following equality:

u(x, t) =
1

2

[
φ(x− t) + φ(x+ t)

]
+
1

2

x+t∫
x−t

ψ(τ)dτ +
1

2

∫
Ω1

x,t

Fdξdτ, (x, t) ∈ ∆1, (3.2)

where Ω1
x,t is a triangle with vertices at the points (x, t), (x− t, 0) and (x+ t, 0).

As is known, for any twice continuously differentiable function v and any characteristic rectangle
PP1P3P2 from the domain of its definition for equation (1.1), the identity of the characteristic rectangle

v(P ) = v(P1) + v(P2)− v(P3) +
1

2

∫
PP1P3P2

□ v(ξ, τ)dξdτ, (3.3)

is valid [1], where P and P3, as well as P1 and P2 are opposite vertices of this rectangle, and the
ordinate of the point P is greater than the ordinates of the other points.

Let now (x, t) ∈ ∆2. Then, applying equality (3.3) for the characteristic rectangle with vertices
at the points P (x, t), P1(0, t − x), P2(t, x) and P3(t − x, 0), and also formula (3.2) for the point
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P2(t, x) ∈ ∆1, taking into account (1.1) and (3.1), we obtain

u(x, t) = µ1(t− x) +
1

2

[
φ(t+ x)− φ(t− x)

]
+
1

2

t+x∫
t−x

ψ(τ)dτ +
1

2

∫
Ω2

x,t

F (ξ, τ)dξdτ, (x, t) ∈ ∆2. (3.4)

Here, Ω2
x,t is a quadrangle PP̃2P3P1, where P̃2 := P̃2(t+ x, 0).

Similarly, we have

u(x, t) = µ2(x+ t− l) +
1

2

[
φ(x− t)− φ(2l − x− t)

]
+
1

2

2l−x−t∫
x−t

ψ(τ)dτ +
1

2

∫
Ω3

x,t

F (ξ, τ)dξdτ, (x, t) ∈ ∆3 (3.5)

and

u(x, t) = µ1(t− x) + µ2(x+ t− l)− 1

2

[
φ(t− x) + φ(2l − t− x)]

+
1

2

2l−t−x∫
t−x

ψ(τ)dτ +
1

2

∫
Ω4

x,t

F (ξ, τ)dξdτ, (x, t) ∈ ∆4. (3.6)

Here, Ω3
x,t is a quadrilateral with vertices P 3(x, t), P 3

1 (l, x+t−l), P 3
2 (x−t, 0) and P 3

3 (2l−x−t, 0), and
Ω4

x,t is a pentagon with vertices P 4(x, t), P 4
1 (0, t−x), P 4

2 (t−x, 0), P 4
3 (2l−x− t, 0) and P 4

4 (l, x+ t− l).
Thus the unique classical solution u ∈ C2(Dl) of problem (1.1), (1.2), (3.1) for f = 0 is given by

formulas (3.2), (3.4)–(3.6), which will be applied to obtain a solution to the periodic problem (1.1)–
(1.3) for f = 0. For this purpose, we apply the Monge–Ampere theory presented in [5]. Along the
family of characteristics x + t = const for the first-order derivatives of the uknown solution u, the
relations

dut = utxdx+ uttdt = (utt − utx)dt

and

dux = uxxdx+ uxtdt = (uxt − uxx)dt = (uxt + F − utt)dt = (uxt − utt)dt+ Fdt

are valid. Whence we have

d(ux + ut) = Fdt,

the integration of which from the point (t, 0) to the point (0, t) along the corresponding characteristic
gives

(ux + ut)(0, t)− (ux + ut)(t, 0) =

t∫
0

F (t− τ, τ)dτ. (3.7)

Similar reasoning applied to the second family of characteristics x − t = const, by integrating the
corresponding relation d(ut − ux) = Fdt along the corresponding characteristic from the point (t, 0)
to the point (l, l − t) leads to the equality

(ut − ux)(l, l − t)− (ut − ux)(t, 0) =

l−t∫
0

F (t+ τ, τ)dτ. (3.8)
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Taking into account equalities (3.7) and (3.8), as well as the requirement of the first periodicity
condition (1.3), for µ := µ1 = µ2, we obtain

µ(t) =
1

2

{
φ(t) + φ(l − t) +

t∫
0

[ψ(τ) + ψ(l − τ)]dτ

+

t∫
0

dτ1

τ1∫
0

[F (τ1 − τ, τ) + F (l − τ1 + τ, τ)]dτ

}
, 0 ≤ t ≤ l. (3.9)

Substituting the obtained expression for the function µ according to formula (3.9) into equalities
(3.4)–(3.6), we have

u(x, t) =
1

2

{
φ(t+ x) + φ(l − t+ x) +

t+x∫
0

ψ(τ)dτ +

t−x∫
0

ψ(l − τ)dτ

+

t−x∫
0

dτ1

τ1∫
0

[F (τ1 − τ, τ) + F (l − τ1 + τ, τ)]dτ +

∫
Ω2

x,t

F (ξ, τ)dξdτ

}
, (x, t) ∈ ∆2, (3.10)

u(x, t) =
1

2

{
φ(x− t) + φ(x+ t− l) +

x+t−l∫
0

[
ψ(τ) + ψ(l − τ)

]
dτ +

2l−x−t∫
x−t

ψ(τ)dτ

+

x+t−l∫
0

dτ1

τ1∫
0

[
F (τ1 − τ, τ) + F (l − τ1 + τ, τ)

]
dτ

+

∫
Ω3

x,t

F (ξ, τ)dξdτ

}
, (x, t) ∈ ∆3, (3.11)

u(x, t) =
1

2

{
φ(x− t+ l) + φ(x+ t− l) +

x+t−l∫
0

ψ(τ)dτ +

2l−t−x∫
0

ψ(τ)dτ

+

t−x∫
0

ψ(l − τ)dτ +

x+t−l∫
0

ψ(l − τ)dτ +

t−x∫
0

dτ1

τ1∫
0

[
F (τ1 − τ, τ) + F (l − τ1 + τ, τ)

]
dτ

+

x+t−l∫
0

dτ1

τ1∫
0

[
F (τ1 − τ, τ) + F (l − τ1 + τ, τ)

]
dτ

+

∫
Ω4

x,t

F (ξ, τ)dξdτ

}
, (x, t) ∈ ∆4. (3.12)

Remark 3.1. From the above reasoning it follows that the classical solution u ∈ C2(Dl) of problem
(1.1)–(1.3) for f = 0 is represented in the form

u = A1(φ,ψ) +A2F, (3.13)

where the operators Ai, i = 1, 2, act based on the formulas: (3.2) for (x, t) ∈ ∆1; (3.10) for (x, t) ∈ ∆2;
(3.11) for (x, t) ∈ ∆3; (3.12) for (x, t) ∈ ∆4.

Remark 3.2. From the structure of the operator A2 it follows that this operator acts continuously
from the space C(Dl) to the space C1(Dl). Now, taking into account that the embedding of the space
C1(Dl) into the space C(Dl) is compact [4], we obtain that the operator

A2 : C(Dl) → C(Dl)
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is compact.

Remark 3.3. Taking into account equality (3.13), it is easy to see that if u ∈ C2(Dl) is a classical
solution of the nonlinear problem (1.1)–(1.3), then it satisfies the following nonlinear integral equation

u = Au := A1(φ,ψ) +A2[F − f(u)]. (3.14)

In this case, any solution of the integral equation (3.14) of class C will belong to the space C2(Dl)
and satisfy problem (1.1)–(1.3), if the smoothness and second-order consistency conditions (1.4) are
satisfied for the data of this problem.

Remark 3.4. Note that by virtue of Remark 3.2, the operator

A : C(Dl) → C(Dl)

from (3.14) is continuous and compact.

Further, for λ ∈ [0, 1], let u = uλ be a continuous solution of the nonlinear integral equation

u = λAu.

It is easy to see that uλ is a classical solution of the nonlinear problem (1.1)–(1.3), when instead of
φ,ψ, F and f we take λφ, λψ, λF and λf , respectively. Therefore, since λ ∈ [0, 1], from the a priori
estimate (2.2) follows the inequality

∥uλ∥C(DT ) ≤ c1∥φ∥C1([0,l]) + c2∥ψ∥C([0,l]) + c3∥f∥C([−∥φ∥C(ω0),∥φ∥C(ω0)]) + c4∥F∥C(DT ) + c5.

From here, by virtue of Remark 3.4 of the Leray–Schauder theorem [15], it follows that there exists
a continuous solution to equation (3.14), which, by virtue of Remark 3.3, is also a classical solution
to the original problem (1.1)–(1.3).

Thus the following theorem is true.

Theorem 3.1. Let conditions (1.4) and (2.1) be satisfied. Then there exists at least one classical
solution u ∈ C2(Dl) of problem (1.1)–(1.3).

Remark 3.5. Applying the linearization method and using the reasoning given in the proof of a
priori estimate (2.2), we easily obtain the uniqueness of the solution to problem (1.1)–(1.3).

4. Cases of Violation of the Solvability of Problem (1.1)–(1.3)

Below, using the method of test functions [12], we will show that violation of condition (2.1) may,
generally speaking, lead to the absence of a solution to problem (1.1)–(1.3).

Indeed, let it be
f(s) ≥ λ|s|p, λ > 0, p > 1, s ∈ R. (4.1)

It is easy to see that if inequality (4.1) is satisfied, then condition (2.1) is violated.
Multiplying both sides of equation (1.1) by a test function χ ∈ C2(DT ) such that

χ
∣∣
DT

> 0, χ, χt, χx

∣∣
∂DT

= 0, (4.2)

after integration by parts, we get∫
DT

u□χdxdt+

∫
DT

f(u)χdxdt =

∫
DT

Fχdxdt, (4.3)

where u ∈ C2(DT ) is the classical solution to problem (1.1)–(1.3).
By virtue of (4.1)–(4.3), we have

λ

∫
DT

|u|pχdxdt ≤
∫
DT

|u□χ|dxdt+
∫
DT

Fχdxdt. (4.4)

If in Young’s inequality with parameter ε > 0

ab ≤ ε

p
ap +

1

p′εp′−1
bp

′
; a, b ≥ 0,

1

p
+

1

p′
= 1, p > 1
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and letting a = |u|χ
1
p , b = |□χ|

χ
1
p

, then taking into account that p′

p = p′ − 1, we obtain

|u□χ| = |u|χ
1
p
|□χ|
χ

1
p

≤ ε

p
|u|pχ+

1

p′εp′−1

|□χ|p′

χp′−1
. (4.5)

By virtue of (4.4) and (4.5), we have(
λ− ε

p

) ∫
DT

|u|pχdxdt ≤ 1

p′εp′−1

∫
DT

|□χ|p′

χp′−1
dxdt+

∫
DT

Fχdxdt,

whence for ε < λp, we get∫
DT

|u|pχdxdt ≤ p

(λp− ε)p′εp′−1

∫
DT

|□χ|p′

χp′−1
dxdt+

p

λp− ε

∫
DT

Fχdxdt. (4.6)

Taking into account that p′ = p
p−1 , p = p′

p′−1 and min
0<ε<λp

p

(λp−ε)p′εp′−1 = 1
λp′ , which is achieved

when ε = λ, it follows from (4.6) that∫
DT

|u|pχdxdt ≤ 1

λp′

∫
DT

|□χ|p′

χp′−1
dxdt+

p′

λ

∫
DT

Fχdxdt. (4.7)

Below we will assume that, along with (4.2), the condition

κ :=

∫
DT

|□χ|p′

|χ|p′−1
dxdt < +∞ (4.8)

is satisfied. A simple check shows that as a function χ satisfying conditions (4.2) and (4.8) we can
take, for example, the function

χ(x, t) = [xt(l − x)(T − t)]n, (x, t) ∈ DT ,

with a sufficiently large natural n.
Assuming

F = −µF0, F0 ≥ 0, F0 ̸≡ 0, µ = const > 0, (4.9)

and taking into account (4.8), we rewrite inequality (4.7) in the form∫
DT

|u|pχdxdt ≤ κ

λp′ −
µp′

λ

∫
DT

F0χdxdt. (4.10)

Due to the requirements imposed on the functions χ and F0, we have

0 ≤
∫
DT

|u|pχdxdt,
∫
DT

F0χdxdt > 0. (4.11)

Therefore, under the assumption that problem (1.1)–(1.3) has a classical solution u and

µ > µ0 :=
κ

λp′−1p′

( ∫
DT

F0χdxdt

)−1

, (4.12)

we arrive at a contradiction, since by virtue of (4.11), the left-hand side of (4.10) is non-negative, and
the right-hand side is negative.

Thus the following theorem is true.

Theorem 4.1. Let conditions (4.1), (4.9) and (4.12) be satisfied. Then problem (1.1)–(1.3) has no
classical solution.
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