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HIERARCHICAL MODELS FOR MICROPOLAR FLUIDS

GEORGE JAIANI

Dedicated to the memory of Professor Elene Obolashvili

Abstract. Applying Ilia Vekua’s Dimension Reduction Method, the hierarchical models are con-
structed for micropolar fluids occupying containers having prismatic shell-like forms with three-

dimensional angular edges, in general.

1. Introdaction

In [3, 9], mathematical hierarchical models for shallow fluids occupying non-Lipschitz, in general,
prismatic shell-like 3D domains Ω (see also the end of Subsection 2.2 below) are constructed within the
scheme of small displacements, linearized with respect to the rest state. Based on this, the hierarchical
models have been constructed using the Lagrangian coordinates. In contrast, the aim of paper [12]
was to construct mathematical hierarchical models for the Newtonian fluid flow without restricting
the smallness of displacements with respect to the rest state. In other words, in [7], we constructed
mathematical hierarchical models in the Eulerian coordinates for a Newtonian viscous fluid flow in
prismatic shell-like domains (containers).

In [4], applying Ilia Vekua’s Dimension Reduction Method [12] (see also [3, 6, 8]), the hierarchical
models were constructed for micropolar elastic prismatic shells. The aim of the present paper is to
construct, using that method, the hierarchical models for micropolar fluids occupying containers in
the form of a prismatic shell, generally with three-dimensional angular edges.

2. About Prismatic Shell-like Containers of Fluids

LetOx1x2x3 be an anticlockwise-oriented rectangular Cartesian frame of originO. We conditionally
assume the x3-axis vertical.

The container Ω is called a prismatic shell-like if it is bounded from above and below by, corre-
spondingly, the surfaces (the so-called face surfaces)

x3 =
(+)

h (x1, x2) and x3 =
(−)

h (x1, x2), (x1, x2) ∈ ω,

laterally by a cylindrical surface Γ with a generatrix, parallel to the x3-axis, and its vertical dimension
is sufficiently small compared with the other dimensions of the body. ω := ω ∪ ∂ω is the so-called
projection of the prismatic shell onto x3 = 0.

Let the thickness of the prismatic shell be

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2)

{
> 0 for (x1, x2) ∈ ω,

≥ 0 for (x1, x2) ∈ ∂ω

and

2h̃(x1, x2) :=
(+)

h (x1, x2) +
(−)

h (x1, x2).

If the thickness of the prismatic shell-like container vanishes on some subset of ∂ω, it is called cusped
one.
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Let us note that the lateral boundary of the standard shell-like container is orthogonal to the “mid-
dle surface” of the shell, while the lateral boundary of the prismatic shell-like container is orthogonal
to the prismatic shell’s-like container projection ω on x3 = 0.

3. Governing Equations of the Newtonian Viscous Micropolar Fluid

Let t ∈ T := [0,+∞[ be time, T+ :=]0,∞[, Ω × T denote the Cartesian product, ui, and vi ∈
C2(Ω × T+), i = 1, 2, 3, be displacements and velocities, respectively, ω i and ω

i
∈ C2(Ω × T+),

i = 1, 2, 3, be microrotations and microrotation velocities, respectively, eij ∈ C1(Ω × T+) be the
symmetric strain tensor, uji ∈ C1(Ω × T+) be the asymmetric microstrain (torsion-flexure) tensor,
Xji ∈ C1(Ω× T+) be the asymmetric force-stress tensor, p be the presure, χji ∈ C1(Ω× T+) be the
asymmetric couple stress tensor, Φi ∈ C(Ω× T+) and Ψi ∈ C(Ω× T+) be the fields of volume forces
and volume couples, respectively, ρ be the density, I be the rotational inertia of the medium, λ, µ, α̃,

β̃, ν and ε be the physical constants of the fluid, µ > 0, 3λ+2µ > 0, α̃ > 0, β̃ > 0, ν > 0, 3ε+2ν > 0,
∈ijk be the Levi–Civita symbol. Here, C2 and C1 are the classes of twice and once continuously
differentiable functions in the domain under consideration; C is a class of continuous functions on the
sets we consider. Throughout the paper, the Einstein rule of summation is used for Latin indices from
1 to 3, and for Greek indices from 1 to 2.

The governing equations of the micropolar theory of fluids (see [5, pp. 422–423]) have the following
form:

Motion equations in the linearized case

Xji,j +Φi = ρv̇i, i=1,2,3, (3.1)

χji,j+ ∈ijk Xjk +Ψi = Iω̇
i
, i=1,2,3. (3.2)

Kinematic equations

uji = ui,j− ∈kji ωk = eji+ ∈kji (θk − ωk), i,j=1,2,3, (3.3)

i.e., vji = vi,j− ∈kji ωk
= l̇ji+ ∈kji (θ̇k − ω)

and ωji = ωi,j , i,j=1,2,3; (3.4)

i.e., ω
ji
= ω

ij.

Constitutive equations in the case of a viscous, homogeneous, isotropic, incomprosible microp-
olar fluid (see [1, p. 6], and also [11, p. 21] and [5, p. 423]),

Xij = −pδij + (µ+ α̃)vij + (µ− α̃)vji i,j = 1, 2, 3, (3.5)

χij = εδijωkk
+ (ν + β̃)ω

ij
+ (ν − β̃)ω

ji
i,j = 1, 2, 3, (3.6)

which we consider in the space domain (container), with the projection ω on the plane x3 = 0,

Ω := {x := (x1, x2, x3) ∈ R3 : (x1, x2) ∈ ω,
(−)

h (x1, x2) < x3 <
(+)

h (x1, x2)}
occupied by the fluid.

4. Construction of Hierarchical Models

4.1. Mathematical moments. Here, we follow Section 10 of [6].1

Let f(x1, x2, x3) be a given function on Ω having integrable partial derivatives, let fr denote its
r-th order moment defined as follows:

fr(x1, x2) :=

(+)

h (x1, x2)∫
(−)

h (x1, x2)

f(x1, x2, x3)Pr(ax3 − b)dx3, (4.1)

1where I. Vekua’s Dimension Reduction Method is reformulated and presented in the unified form. Those formulas

for arbitrary functions, independent of physical meaning, allow one to construct easily hierarchical models for any
physical model having the thickness or something like that as parameter.
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where (see Section 3 of [6])

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)

h(x1, x2)
,

2h(x1, x2) =
(+)

h (x1, x2)−
(−)

h (x1, x2) > 0,

2h̃(x1, x2) =
(+)

h (x1, x2) +
(−)

h (x1, x2) > 0,

and

Pr(τ) =
1

2rr!

dr(τ2 − 1)r

dτ r
, r = 0, 1, . . . ,

are the r-th order Legendre polynomials with the orthogonality property

+1∫
−1

Pm(τ)Pn(τ)dτ =
2

2m+ 1
δmn.

From here, substituting2

τ = ax3 − b =
2

(+)

h (x1, x2)−
(−)

h (x1, x2)

x3 −
(+)

h (x1, x2) +
(−)

h (x1, x2)
(+)

h (x1, x2)−
(−)

h (x1, x2)

,

we have

(
m+

1

2

)
a

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pm(ax3 − b)Pn(ax3 − b)dx3 = δmn.

Using the well-known formulas of integration by parts (with respect to x3) and differentiating with
respect to a parameter of integrals depending on the parameters (xα), taking into account Pr(1) = 1,
Pr(−1) = (−1)r, we deduce

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α −
(+)

f
(+)

h ,α + (−1)r
(−)

f
(−)

h ,α

−

(+)

h (x1, x2)∫
(−)

h (x1, x2)

P ′
r(ax3 − b)(a,α x3 − b,α )fdx3, α = 1, 2, (4.2)

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 = −a

(+)

h (x1, x2)∫
(−)

h (x1, x2)

P ′
r(ax3 − b)fdx3 +

(+)

f − (−1)r
(−)

f , (4.3)

where superscript prime means differentiation with respect to the argument ax3 − b, subscripts pre-

ceded by a comma mean partial derivatives with respect to the corresponding variables,
(±)

f :=

2

x3 = [
(+)

h (x1, x2) −
(−)

h (x1, x2)]
τ

2
+

(+)

h (x1, x2) +
(−)

h (x1, x2)

2
.
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f [x1, x2,
(±)

h (x1, x2)]. Applying the following relations from the theory of the Legendre polynomials
(see [7, pp. 197, 198], [13, p. 27], [3, p. 12], and [5, p. 299 or pp. 335-339], of the second edition)

P ′
r(τ) =

r∑
s=0

(2s+ 1)
1− (−1)r+s

2
Ps(τ),

3 (4.4)

τP ′
r(τ) = rPr(τ) + P ′

r−1(τ) = rPr(τ) +

r−1∑
s=0

(2s+ 1)
1 + (−1)r+s

2
Ps(τ)

4 (4.5)

and in view of
a,α
a

= (ln a),α = −h,α
h

,
a,α
a

b = h̃a,α , b,α = (h̃a),α , it is easily seen that

P ′
r(ax3 − b)(a,α x3 − b,α ) 5 =

a,α
a

(ax3 − b)P ′
r(ax3 − b) + (

a,α
a

b− b,α )P ′
r(ax3 − b)

= −h,α h−1(ax3 − b)P ′
r(ax3 − b)− h̃,α h−1P ′

r(ax3 − b) = − r
aαr Pr(ax3 − b)

−
r−1∑
s=0

r
aαs Ps(ax3 − b) = −

r∑
s=0

r
aαsPs(ax3 − b) 6 (4.6)

since, taking into account (4.5) and (4.4), it follows that

−h,αh
−1(ax3 − b)P ′

r(ax3 − b)− h̃,αh
−1P ′

r(ax3 − b) = −rh,αh
−1Pr(ax3 − b)

−h,αh
−1

r−1∑
s=0

(2s+ 1)
1 + (−1)r+s

2
Ps(ax3 − b)− h̃,αh

−1
r∑

s=0

(2s+ 1)
1− (−1)r+s

2
Ps(ax3 − b)

= −r
h,α
h

Pr(ax3 − b)−
r−1∑
s=0

(2s+ 1)

[
h,α +(−1)r+sh,α

2h
+

h̃,α −(−1)r+sh̃,α
2h

]
Ps(ax3 − b)

= −r
h,α
h

Pr(ax3 − b)−
r−1∑
s=0

(2s+ 1)

2h

( (+)

h ,α −
(−)

h ,α +
(+)

h ,α (−1)r+s −
(−)

h ,α (−1)r+s

2

+

(+)

h ,α +
(−)

h ,α −
(+)

h ,α (−1)r+s −
(−)

h ,α (−1)r+s

2

)
Ps(ax3 − b)

= −r
h,α
h

Pr(ax3 − b)−
r−1∑
s=0

(2s+ 1)

(+)

h ,α −(−1)r+s
(−)

h ,α
2h

Ps(ax3 − b) = −
r∑

s=0

s
aαsPs(ax3 − b),

because of

h,α =

(+)

h ,α −
(−)

h ,α
2

, h̃,α =

(+)

h ,α +
(−)

h ,α
2

.

3on the top of the symbol
∑

, both r − 1 and r are true, since the last term equals zero.
4on the top of the symbol

∑
, both r − 2 and r − 1 are true, since the last term equals zero.

5Clearly,

a,α x3 − b,α =
a,α

a
ax3 − b,α =

a,α

a
ax3 −

a,α

a
b +

a,α

a
b− b,α =

a,α

a
(ax3 − b) − h̃,α

1

h
,

because of
a,α

a
b− b,α = a,α h̃− (h̃a),α = h̃a,α −h̃a,α − h̃,αa = −h̃,αa.

6

r
aαs := (2s + 1)

(+)

h ,α −(−1)r+s
(−)

h ,α

2h
, s ̸= r,

r
aαr = r

h,α

h
.
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4.2. N-th order approximation. In order to construct the governing equations of the N -th ap-
proximation of hierarchical models, using Vekua’s Dimension Reduction Method, after multiplying

(3.1)–(3.6) by Pr(ax3− b) and then integrating within the limits
(−)

h ,
(+)

h with respect to the thickness
variable x3, we rewrite them in terms of mathematical moments for r = 0, 1, . . . . Substituting the
obtained kinematic relations into the obtained constitutive relations and the result into the obtained
motion (equilibrium) equations, we get an infinite system with respect to the mathematical moments.
Further, assuming all moments of greater than N -th order are equal to zero and retaining the first
3N + 3 equations of the infinite system with respect to the mathematical moments, we will have the
governing system of the N -th approximation of the hierarchical models, meanwhile we use formulas
(4.2) and (4.3) (with (4.6) and (4.4), respectively).

By the corresponding calculations, we take the prescribed values as the values of tractions and
couple stress vectors on the face surfaces, while for displacements and microrotations we use their
approximate values calculated from their Fourier–Legendre expansions (namely, their N + 1 partial
sum) on the face surfaces corresponding to the N -th approximation.

4.3. N = 0 approximation. The governing equations of the N = 0 approximation can be deduced
from the governing equations of the N -th approximation by taking N = 0.

On the other hand, the governing equations of the N = 0 approximation of hierarchical models can

be directly obtained by integrating the 3D governing equations (3.1)–(3.6) within the limits
(−)

h ,
(+)

h
with respect to the thickness variable x3.

From (3.1) and (3.2) we get

Xβi0,β +X0
i = ρv̇i0, i = α, 3, α = 1, 2, (4.7)

and

χβi0,β+ ∈ijk Xjk0 + χ0
i = Iω̇

i0
, i = α, 3, α = 1, 2, (4.8)

respectively, in ω, where

X0
i := Q(+)

ν i

·
√((+)

h ,1

)2

+
((+)

h ,2

)2

+ 1 +Q(−)
ν i

·
√((−)

h ,1

)2

+
((−)

h ,2

)2

+ 1 + Φi0,

χ0
j := Θ(+)

ν i

·
√((+)

h ,1

)2

+
((+)

h ,2

)2

+ 1 + Θ(−)
ν i

·
√((−)

h ,1

)2

+
((−)

h ,2

)2

+ 1 + Ψi0,

Q(±)
ν

and Θ(±)
ν

are the tractions and couple stress vectors prescribed on the face surfaces (in what

follows, the superscripts (+) and (−) mean the values on upper and lower face surfaces, correspond-
ingly).

From (3.3) and (3.4), taking into account (4.2) and (4.3), for r = 0, we get

vβi0 = vi0,β −
(+)
v i

(+)

h ,β +
(−)
v i

(−)

h ,β− ∈kβi ωk0
, β = 1, 2; i = 1, 2, 3, (4.9)

v3i0 =
(+)
v i −

(−)
v i− ∈k3i ωk0

=
(+)
v i −

(−)
v i− ∈γ3i ωγ0

, i = 1, 2, 3, (4.10)

and

ω
βi0

= ω
i0,β

−
(+)
ω

i

(+)

h ,β +
(−)
ω

i

(−)

h ,β , β = 1, 2, i = 1, 2, 3; (4.11)

ω
3i0

=
(+)
ω

i
−

(−)
ω

i
, i = 1, 2, 3, (4.12)

respectively. Under the indices 0 we mean integrated values of the corresponding quantities which are
called zero order mathematical moments (see (4.1)).
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In the N = 0 approximation, we assume approximately that

vi(x1, x2, x3, t) =
1

2
ṽi0(x1, x2, t) =

1

2

vi0(x1, x2, t)

h(x1, x2)
, (4.13)

ω
i
(x1, x2, x3, t) =

1

2
ηi0(x1, x2, t) =

1

2

ω
i0
(x1, x2, t)

h(x1, x2)
. (4.14)

Evidently, from (4.9), by virtue of (4.13), (4.14),

vβi0 = (hṽi0),β −ṽi0h,β − ∈kβi hηk0 = hṽi0,β− ∈kβi hηk0, (4.15)

from (4.10), in view of (4.13), (4.14),

v3i0 = − ∈γ3i hηγ0, (4.16)

whence
v330 = 0, v320 =∈123 ω

10
= η10, v310 = − ∈231 ω

20
= −η20. (4.17)

From (4.11), by virtue of (4.14),

ω
βi0

= (hηi0),β −ηi0h,β = hηi0,β , β = 1, 2, i = 1, 2, 3. (4.18)

From (4.12), in view of (4.14),
ω
3i0

= 0, i = 1, 2, 3. (4.19)

From (3.5) and (3.6), we obtain

Xij0 = −p0δij + (µ+ α̃)vij0 + (µ− α̃)vji0, i, j = 1, 2, 3, (4.20)

and
χij0 = εδijωkk0

+ (ν + β̃)ω
ij0

+ (ν − β̃)ω
ji0

, i, j = 1, 2, 3, (4.21)

respectively.
From (4.17) and (4.15), it follows that

vkk0 = vγγ0 = hṽγ0,γ . (4.22)

From (4.19) and (4.18), we obtain

ω
kk0

= ω
γγ0

= hηγ0,γ. (4.23)

Since
∈kαβ ηk0 =∈3αβ η30+ ∈2αβ η20+ ∈1αβ η10, (4.24)

we have
∈312 η30 = η30, ∈321 η30 = −η30.

From (4.20), taking into account (4.22), (4.15), (4.24), we find that

Xβα0 = −p0δβα + (µ+ α̃)h(ṽα0,β− ∈kβα ηk0) + (µ− α̃)h(ṽβ0,α− ∈kαβ ηk0)

= −p0δβα + (µ+ α̃)h(ṽα0,β− ∈3βα η30) + (µ− α̃)h(ṽβ0,α− ∈3αβ η30)

= −p0δβα + (µ+ α̃)hṽα0,β + (µ− α̃)hṽβ0,α + 2α̃h ∈3αβ η30, α, β = 1, 2. (4.25)

From (4.20), taking into account (4.15), (4.16), we find that

X3β0 = (µ+ α̃)h(− ∈γ3β ηγ0) + (µ− α̃)h(v30,β− ∈kβ3 ηk0)

= −(µ+ α̃)h ∈γ3β ηγ0 + (µ− α̃)h(v30,β− ∈γβ3 ηγ0)

= (µ− α̃)hv30,β + 2α̃h ∈γβ3 ηγ0. (4.26)

From (4.20), by virtue of (4.22), (4.16), we get

X330 = −p0.

From (4.20), in view of (4.16), (4.15), we obtain

Xβ30 = (µ+ α̃)h(ṽ30,β− ∈γβ3 ηγ0) + (µ− α̃)h(− ∈γ3β ηγ0)

= (µ+ α̃)hṽ30,β − 2α̃h ∈γβ3 ηγ0. (4.27)
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From (4.21), taking into account (4.23), (4.18), we have

χβα0 = εhηγ0,γδβα + (ν + β̃)hηα0,β + (ν − β̃)hηβ0,α, α, β = 1, 2. (4.28)

From (4.21), by virtue of (4.7), (4.18), we get

χ3β0 = (ν − β̃)hη30,β .

From (4.21), in view of (4.23), (4.19), we obtain

χ330 = εhηγ0,γ .

From (4.21), according to (4.18), (4.19), we have

χβ30 = (ν + β̃)hη30,β . (4.29)

Substituting (4.25) into (4.7), we arrive at the equation

−p0,βδβα + (µ+ α̃)(hṽα0,β),β + (µ− α̃)(hṽβ0,α),β

+2α̃ ∈3αβ (hη30),β +X0
α = ρh ˙̃vα0, α = 1, 2.

Hence,

−p0,α + (µ+ α̃)(hṽα0,β),β + (µ− α̃)(hṽβ0,α),β

+2α̃ ∈αβ3 (hη30),β +X0
α = ρh ˙̃vα0, α = 1, 2. (4.30)

Substituting (4.27) into (4.7), we obtain

(µ+ α̃)(hṽ30,β),β − 2α̃ ∈γβ3 (hηγ0),β +X0
3 = ρh ˙̃v30.

Therefore

(µ+ α̃)(hṽ30,β),β − 2α̃[(hη10),2 − (hη20),1] +X0
3 = ρh ˙̃v30. (4.31)

Substituting (4.28) into (4.8), for i = α = 1, 2, we get

ε(hηγ0,γ),α + (ν + β̃)(hηα0,β),β + (ν − β̃)(hηβ0,α),β

+ ∈αjk Xjk0 + χ0
α = Ihη̇α0, α = 1, 2. (4.32)

Substituting (4.29) into (4.8), for i = 3, we obtain

(ν + β̃)(hη30,β),β+ ∈3jk Xjk0 + χ0
3 = Ihη̇30. (4.33)

Since by virtue of (4.25)–(4.27),

∈1jk Xjk0 = ∈123 X230+ ∈132 X320 = X230 −X320 = 2α̃hṽ30,2 − 4α̃hη10,

∈2jk Xjk0 =∈213 X130+ ∈231 X310 = −X130 +X310 = −2α̃hṽ30,1 − 4α̃hη20,

∈3jk Xjk0 =∈312 X120+ ∈321 X210 = X120 −X210

= (µ+ α̃)hṽ20,1 + (µ− α̃)hṽ10,2 + 2α̃h ∈321 η30

− (µ+ α̃)hṽ10,2 − (µ− α̃)hṽ20,1 − 2α̃h ∈312 η30

= 2α̃h(ṽ20,1 − ṽ10,2)− 4α̃hη30,

from (4.32), (4.33), we get

ε(hηγ0,γ),1 +(ν + β̃)(hη10,β),β + (ν − β̃)(hηβ0,1),β + 2α̃hṽ30,2 − 4α̃hη10 + χ0
1 = Ihη̇10, (4.34)

ε(hηγ0,γ),2 +(ν + β̃)(hη20,β),β + (ν − β̃)(hηβ0,2),β − 2α̃hṽ30,1 − 4α̃hη20 + χ0
2 = Ihη̇20, (4.35)

(ν + β̃)(hη30,β),β + 2α̃h(ṽ20,1 − ṽ10,2)− 4α̃hη30 + χ0
3 = Ihη̇30. (4.36)



244 G. JAIANI

5. Analysis of the Constructed System

Dirichlet Problem. Find a solution u30 ∈ C2(ω)∩C(ω) of equation (5.1) in ω, satisfying the BC,

u(x1, x2) = φ(x1, x2), (x1, x2) ∈ ∂ω,

where φi is the given continuous on ∂ω function.
Keldysh Problem. Find a bounded solution u ∈ C2(ω)∩C(ω\ω0) of equation (5.1) in ω, satisfying

the BC,

u(x1, x2) = φ(x1, x2), (x1, x2) ∈ ∂ω\ω0, i = 1, 6,

where φ is the given continuous on (∂ω) \ ω0 function.
The following theorem is true [2] (compare with [10], where m1 = 0).

Theorem. If the coefficients aα, α = 1, 2, and c of the equation

xmα
2 u,αα +aα(x1, x2)u,α +c(x1, x2)u = 0, c ≤ 0, mα = const ≥ 0, α = 1, 2, (5.1)

are analytic in ω, bounded both by a sufficiently smooth arc (∂ω \ ω0), lying in the half-plane x2 ≥ 0,
and by a segment ω0 of the x1-axis, then

(i) if either m2 < 1, or m2 ≥ 1, a2(x1, x2) < xm2−1
2 in Īδ for some δ = const > 0, where

Iδ := {(x1, x2) ∈ ω : 0 < x2 < δ},

the Dirichlet problem is well-posed.
(ii) If m2 ≥ 1, a2(x1, x2) ≥ xm2−1

2 in Iδ and a1(x1, x2) = O(xm1
2 ), x2 → 0+ (O is the Landau

symbol), the Keldysh problem is well-posed.

Let us consider a prismatic shell-like container with a cusped edge ω0 ⊆ ∂ω, where the thickness
2h(x1, x2) vanishes:

ω0 := {(x1, x2) ∈ ∂ω : 2h(x1, x2) = 0}.

Evidently, ω0 is a closed set.
Let v20,1 = v10,2, then equation (4.36) will be separated from the system (4.30), (4.31), (4.34)–

(4.36).
Since, if on a part of the boundary of the container projection ω h = 0 equation (4.36) degenerates,

this may lead to peculiarities in posing boundary conditions for the weighted mathematical moment
of microrotation velocity η30 for the well-posedness of the problems under consideration. In order to
study this point, for the sake of simplicity, we assume

h(x2) = h0x
κ
2 , x2 ∈ [0, L], h0,κ = const > 0, L = const,

then from (4.36), for η10, we obtain

(ν + β̃)h0(x
κ
2 η30,11 + (xκ

2 η30,2)2)− 4αh0x
κ
2 η30 = 0,

i.e.,

xκ
2 η30,11 + xκ

2 η30,22 + κxκ−1
2 η30,2 −

4α

ν + β̃
= 0,

provided the applicates of the traction and couple stress vectors prescribed on face surfaces, and
volume forces are equal to zero.

So, in terms of the above Theorem, m1 = κ, m2 = κ, a2(x1, x2) = κxκ−1
2 ≥ xκ−1

2 for κ ≥ 1.
Therefore, the Dirichlet problem for κ < 1 and the Keldysh problem for κ ≥ 1 are well-posed. In
other words, for κ < 1, the microrotation velocity η30 should be prescribed at the cusped edge, while
for κ ≥ 1 η30, it cannot be prescribed at the cusped edge, and this boundary condition should be
replaced by its boundedness near the cusped edge.



HIERARCHICAL MODELS FOR MICROPOLAR FLUIDS 245

References

1. R. Chichinadze, Some Problems of Mechanics of Continua. Authors Abstract of the thesis for the Doctor Degree

in Physics and Mathematics, Tbilisi, 1993.

2. G. Jaiani, On a generalization of the Keldysh theorem. Georgian Math. J. 2 (1995), no. 3, 291–297.
3. G. Jaiani, Cusped Shell-like Structures. SpringerBriefs in Applied Sciences and Technology. Springer, Heidelberg,

2011.
4. G. Jaiani, On micropolar elastic cusped prismatic shells. Trans. A. Razmadze Math. Inst. 170 (2016), no. 3, 376-384.

5. G. Jaiani, Mathematical Models of Mechanics of Continua. (Georgian) Tbilisi University Press, Tbilisi, 2018.

6. G. Jaiani, Piezoelectric viscoelastic Kelvin-Voigt cusped prismatic shells. Lecture Notes of TICMI 19 (2018), 83 p.
7. G. Jaiani, Construction and investigation of differential hierarchical models for the Newtonian fluids. ZAMM

Z. Angew. Math. Mech. 104 (2024), no. 7, paper no. e202300251, 24 pp.

8. G. Jaiani, Hierarchical models for investigation of problems in angular 3D domeins. Lecture Notes of TICMI
26 (2025) (in print).

9. G. Jaiani, N. Chinchaladze, Hierarchical mathematical models for solid-fluid interaction problems. In: Materials

of the International Conference on Non-classic Problems of Mechanics, Kutaisi, Georgia, 25–27 October, 2007, 2,
59-64, Kutaisi, 2007.
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