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THE THIRD AND FOURTH BOUNDARY VALUE PROBLEMS OF

CONSOLIDATION THEORY WITH DOUBLE POROSITY

LEVAN GIORGASHVILI AND SHOTA ZAZASHVILI

Abstract. In this paper, we consider the boundary value problems of statics of a three-dimensional
version of the Aifantis equations of the theory of consolidation with double porosity for a half-space,

when either the limiting values of the tangential components of a stress vector and the normal

component of a displacement vector are given on the boundary, or the limiting values of the normal
components of a stress vector and the tangential components of a displacement vector are given on

the boundary. A new approach is developed which is based on the explicit solutions of the Dirichlet

and Neumann problems for the Laplace equation for a half-place. The solutions of the boundary
value problems are constructed explicitly in quadratures.

1. Introduction

The theory of consolidation with double porosity was proposed by E. C. Aifantis. The physical
and mathematical foundations of the theory were considered in papers [4, 8, 12]. Namely, in [12], the
detailed physical interpretations of the phenomenological coefficients appearing in the model are given
and several particular boundary value problems (BVP) are solved.

In [4], the uniqueness of solution for some standard boundary value problems is proved and the
variational principles for the equations of double porosity are considered. In [8], for the Aifantis equa-
tions, the finite element formulation is employed to obtain numerical results. The basic bibliographical
review concerning the theory of porous media can be found in R. De Boer’s paper [5].

The Dirichlet and Neumann type BVPs of the theory of consolidation with double porosity for
a half-space are solved explicitly in [3] by using the potential method and the theory of integral
equations.

For a wider overview of the subject area of applications we refer to [1, 2, 6, 7, 9, 11].
In this paper, we consider the so-called third and fourth BVPs of the theory of consolidation with

double porosity for a half-space.
In the case of the third problem, the limiting values of the tangential components of a stress

vector and the normal components of a displacement vector are given on the boundary along with the
Neumann conditions for the pleasure functions.

In the case of the forth problem, the limiting values of the normal components of a stress vector
and the tangential components of a displacement vector are given on the boundary along with the
Dirichlet conditions for the pleasure functions.

We offer an approach for solving the mentioned boundary value problems based on the Poison type
formulas for the Dirichlet and Neumann boundary value problems for the Laplace equation in the case
of a half-space. The solutions are represented explicitly in quadratures.

2. Basic Differential Equations and Formulation of Boundary Value Problems

Let Ω− be a half-space, Ω− := {x : x ∈ R3, x3 > 0 }, whose boundary ∂ Ω− is a plane
∂ Ω− = {x : x ∈ R3, x3 = 0 }. By n = (0, 0, 1)⊤ we denote the unit normal vector to ∂ Ω−.
The symbol (·)⊤ denotes transposition operation.
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The homogeneous system of partial differential equations of statics of the theory of consolidation
with double porosity reads as [4, 12]:

µ∆u(x)x+ (λ+ µ) grad div u(x)− grad(β1p1(x) + β2p2(x)) = 0, (2.1)

(m1∆− κ) p1(x) + κ p2(x) = 0, (2.2)

κ p1(x) + (m2∆− κ) p2(x) = 0, (2.3)

where u = (u1, u2, u3)
⊤ is the displacement vector, p1 is the fluid pressure within the primary pores

and p2 is the fluid pressure within the secondary pores, mj = kj/µ
∗, j = 1, 2, k1 and k2 are the

permeabilities of the primary and secondary systems of pores; µ∗ denotes the viscosity of the pore
fluid, constant κ measures the transfer of fluid from the secondary pores to the primary pores, λ
and µ are the Lame constants, β1 and β2 are measures of the change of porosities due to an applied
volumetric strain. The quantities λ, µ, κ, βj , kj , j = 1, 2, and µ∗ are positive constants; ∆ is the
tree-dimensional Laplace operator.

Definition 1. A vector-function U = (u1, u2, u3, p1, p2)
⊤ is said to be regular in a domain Ω−, if

U ∈ C2(Ω−) ∩ C1(Ω−) and at infinity satisfies the following conditions:

Uj(x) = O(|x|−1),
∂Uj

∂xi
= O(|x|−2), x3 > 0, |x| → ∞,

Uj(x) = o(1),
∂Uj

∂xi
= O(|x|−1), x3 = 0, |x| → ∞,

j = 1, 2, . . . , 5, i = 1, 2, 3; |x|2 = x21 + x22 + x23.

Here, we use the notation Uj = uj , j = 1, 2, 3, U4 = p1, U5 = p2.

For the system of equations (2.1)–(2.3) we consider the following boundary value problems.

Problem (III−). Find a regular vector-function U = (u1, u2, u3, p1, p2)
⊤ satisfying the system of

differential equations (2.1)–(2.3) in Ω− and the boundary conditions

{P (∂, n)U(z)}− − n(z) {n(z) · P (∂, n)U(z)}− = F (z), {n(z) · u(z)}− = f3(z), (2.4){
∂p1(z)

∂n(z)

}−

= f4(z),

{
∂p2(z)

∂n(z)

}−

= f5(z), z ∈ ∂ Ω−. (2.5)

We assume that the vector-function F = (f1, f2, 0)
⊤ and the functions fj , j = 3, 4, 5, are given on

the boundary ∂ Ω−; moreover, fj ∈ C 0,α(∂ Ω−), j = 1, 2, 4, 5, and f3 ∈ C 1,α(∂ Ω−) satisfy at infiniy
the following decay conditions:

|fj(z)| <
A

1 + |z|2
, j = 1, 2, 4, 5, |f3(z)| <

A

1 + |z|
, z ∈ ∂ Ω−, A = const > 0.

Problem (IV−). Find a regular vector-function U = (u1, u2, u3, p1, p2)
⊤ satisfying the system of

differential equations (2.1)–(2.3) in Ω− and the boundary conditions

{u(z)}− − n(z){n(z) · u(z)}− = F (z), {n(z) · P (∂, n)U(z)}− = f3(z), (2.6)

{p1(z)}− = f4(z), {p2(z)}− = f5(z), z ∈ ∂ Ω−, (2.7)

where P (∂, n)U is the stress vector of the form [12]

P (∂, n)U = 2µ
∂u

∂n
+ λn div u+ µ[n× rotu]− n (β1p1 + β2p2),

∂

∂n
=

3∑
j=1

nj
∂

∂xj
;

n = (n1, n2, n3)
⊤ is a unit vector; the vector-function F = (f1, f2, 0)

⊤ and the functions fj , j =
3, 4, 5, are given on the boundary ∂ Ω−; moreover, fj ∈ C 1,α(∂ Ω−), j = 1, 2, 4, 5, f3 ∈ C 0,α(∂ Ω−),
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0 < α < 1, satisfy at infinity the decay conditions

|fj(z)| <
A

1 + |z|
, j = 1, 2, 4, 5, |f3(z)| <

A

1 + |z|2
, z ∈ ∂ Ω−, A = const > 0.

Here and in what follows, the central dot denotes the real scalar product a · b =
∑3

k=1 akbk for
a, b ∈ R3, and the symbol [a × b] denotes a cross product of two vectors in R3. The symbol {·}−
denotes the limiting value on the boundary ∂Ω− from Ω−,

{w(z)}− = lim
Ω−∋x→z∈∂ Ω−

w(x),

{
∂w(z)

∂xj

}−

= lim
Ω−∋x→z∈∂ Ω−

∂w(x)

∂xj
, j = 1, 2, 3.

First of all, we will construct the fundamental matrix for the system of equations (2.2) and (2.3).
Introduce the following operator:

L(∂) =

[
m1∆− κ κ

κ m2∆− κ

]
2×2

.

Denote by

Γ(x) = [Γkj(x)]2×2

the matrix of fundamental solutions of the operator L(∂),

L(∂) Γ(x) = δ(x) I2. (2.8)

Here, δ( · ) is the Dirac delta distribution and I2 is the second order unit matrix.
Let Fx→ξ and F−1

ξ→x denote the generalized direct and inverse Fourier transforms. Then for an

arbitrary multi-index α = (α1, α2, α3) and a tempered distribution g, we have

Fx→ξ[∂
αg(x)] = (−i ξ)αFx→ξ[g(x)], F−1

ξ→x[ξ
αĝ(ξ) ] = (i ∂)αF−1

ξ→x[ĝ(ξ) ], (2.9)

where ĝ(ξ) = Fx→ξ[g(x)], |α| = α1 + α2 + α3, ξ
α = ξ α1

1 ξ α2
2 ξ α3

3 , and ∂ α = ∂ α1
1 ∂ α2

2 ∂ α3
3 with

∂j = ∂
∂xj

. Perform the Fourier transforms of equation (2.8) using the first formula in (2.9) and the

equality F [δ(·)] = 1 to get

L(−i ξ) Γ̂(ξ) = I2, (2.10)

where Γ̂(ξ) is the Fourier transform of fundamental matrix Γ(x).
If detL(−i ξ) ̸= 0, than from equation (2.10), we obtain

Γ̂(ξ) = L−1(−i ξ)

=
1

m1m2

−
m2

|ξ|2 + λ20
+

κ
λ20

(
1

|ξ|2 + λ20
− 1

|ξ|2

)
κ
λ20

(
1

|ξ|2 + λ20
− 1

|ξ|2

)
κ
λ20

(
1

|ξ|2 + λ20
− 1

|ξ|2

)
− m1

|ξ|2 + λ20
+

κ
λ20

(
1

|ξ|2 + λ20
− 1

|ξ|2

)

2×2

, (2.11)

where

λ20 =

(
1

m1
+

1

m2

)
κ > 0.

Using the relations

F−1
ξ→x

[
1

|ξ|2

]
=

1

4π|x|
, F−1

ξ→x

[
1

|ξ|2 + λ20

]
=
e−λ0|x|

4π|x|
,

from (2.11), we get the following representation of the fundamental matrix:

Γ(x) = F−1
ξ→x

[
Γ̂(ξ)

]

=
1

4πm1m2


−m2

e−λ0|x|

|x|
+

κ
λ20

e−λ0|x| − 1

|x|
κ
λ20

e−λ0|x| − 1

|x|

κ
λ20

e−λ0|x| − 1

|x|
−m1

e−λ0|x|

|x|
+

κ
λ20

e−λ0|x| − 1

|x|


2×2

.
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3. Solution of Problem (III)−.

Let’s start solving problem (III)
−

by defining a vector p = (p1, p2)
⊤ that satisfies equations (2.2)

and (2.3) in Ω− and the Neumann type boundary condition (2.5) on ∂ Ω−. We look for the vector
p = (p1, p2)

⊤ in the form of a single layer potential

p(x) =

∫
∂Ω−

Γ(x− y)h(y)dy1dy2, (3.1)

where h = (h1, h2)
⊤ is a two-dimensional unknown density vector.

Using the jump relations for the single layer potential [10] and taking into consideration the bound-
ary conditions (2.5) for the unknown density vector function h = (h1, h2)

⊤, we get the Fredholm
integral equation of the second kind

1

2m1m2

[
m2 0
0 m1

]
h(z) +

∫
∂Ω−

[ ∂

∂x3
Γ(x− y)

]
x=z

h(y) dy1 dy2 =

[
f4(z)
f5(z)

]
, (3.2)

z = (z1, z2, 0) ∈ ∂ Ω−.

Since [ ∂

∂x3
Γ(x− y)

]
x=z

= 0,

from (3.2), we conclude

h(z) = 2

[
m1f4(z)
m2f5(z)

]
.

Therefore (3.1) takes the form

p(x) = 2

∫
∂Ω−

Γ(x− y)

[
m1f4(y)
m2f5(y)

]
dy1 dy2, x ∈ Ω−. (3.3)

Thus, to determine the solution U = (u1, u2, u3, p1, p2)
⊤ of problem (III)

−
, it remains to find the

displacement vector u = (u1, u2, u3)
⊤.

Substitution p1(x) and p2(x) into equation (2.1) leads to the non-homogeneous differential equation
with respect to u(x),

µ∆u(x) + (λ+ µ) grad div u(x) = grad(β1p1(x) + β2p2(x)). (3.4)

Denote by u(0)(x) a particular solution of equation (3.4). Then a general solution of equation
(3.4) can be represented in the form u(x) = v(x) + u(0)(x), where v(x) is a general solution of the
homogeneous equation

µ∆v(x) + (λ+ µ) grad div v(x) = 0, (3.5)

and u(0)(x) is the particular solution of equation (3.4). We can construct u(0)(x) explicitly [10] as

u(0)(x) =

∫
Ω−

Γ(1)(x− y) grad (β1p1(y) + β2p2(y)) dy, x ∈ Ω−, (3.6)

where

Γ(1)(x− y) =
[
Γ
(1)
lj (x− y)

]
3×3

, Γ
(1)
lj (x− y) = λ′

δlj
|x− y|

− µ′ ∂
2|x− y|
∂xl∂xj

,

λ′ =
λ+ 3µ

4πµ(λ+ 2µ)
, µ′ =

λ+ µ

4πµ(λ+ 2µ)
.

The vector grad (β1p1(x)+β2p2(x)) is continues in Ω− along with its first order derivatives and satisfy
at infinity the following decay conditions:

grad (β1p1(x) + β2p2(x)) = O(|x|−2−α), α > 0.
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The boundary conditions (2.4) we can transform as follows:

{u3(z)}− = f3(z),

{
∂uj(z)

∂x3

}−

=
1

µ
fj(z)−

∂f3(z)

∂zj
, j = 1, 2, z ∈ ∂ Ω−, (3.7)

The boundary conditions (3.7) for the vector v(x) take the following form:

{v3(z)}− = f3(z)−
{
u
(0)
3 (z)

}−
,

{
∂ vj(z)

∂x3

}−

=
1

µ
fj(z)−

∂ f3(z)

∂zj
−

{
∂ u

(0)
j (z)

∂x3

}−

,

j = 1, 2, z ∈ ∂ Ω−.

From these conditions we find that

{[rot v(z)]j}− = φj(z), j = 1, 2, (3.8){
∂

∂x3
[rot v(z)]3

}−

= φ3(z), z ∈ ∂ Ω−, (3.9)

where

φ1(z) = − 1

µ
f2(z) + 2

∂f3(z)

∂z2
−

{
∂ u

(0)
3 (z)

∂z2

}−

+

{
∂ u

(0)
2 (z)

∂x3

}−

,

φ2(z) =
1

µ
f1(z)− 2

∂f3(z)

∂z1
+

{
∂ u

(0)
3 (z)

∂z1

}−

−

{
∂ u

(0)
1 (z)

∂x3

}−

,

φ3(z) =
1

µ

(
∂f2(z)

∂z1
− ∂f1(z)

∂z2

)
+

∂

∂z2

{
∂ u

(0)
1 (z)

∂x3

}−

− ∂

∂z1

{
∂ u

(0)
2 (z)

∂x3

}−

.

From equation (3.5), we get

∆ rot v(x) = 0, x ∈ Ω−.

Taking into consideration the boundary conditions (3.8) and (3.9), we obtain the Dirichlet problem
for the functions [rot v(x)]j , j = 1, 2, and the Neumann problem for [rot v(x)]3.

The solutions of the Dirichlet and Neumann problems can be written explicitly as [7]

[rot v(x)]j = − 1

2π

∫
∂ Ω−

∂

∂x3

1

|x− y|
φj(y) dy1 dy2, j = 1, 2, (3.10)

[rot v(x)]3 = − 1

2π

∫
∂ Ω−

1

|x− y|
φ3(y) dy1 dy2. (3.11)

From equalities (3.10) and (3.11), for the vector x× rot v(x), we have

[x× rot v(x)]j =
1

2π

∫
∂ Ω−

x1δ2j − x2δ1j
|x− y|

φ3(y) dy1 dy2

+
1

2π

∫
∂ Ω−

x3
∂

∂x3

δ1jφ2(y)− δ2jφ1(y)

|x− y|
dy1 dy2, j = 1, 2, (3.12)

[x× rot v(x)]3 =
1

2π

∫
∂ Ω−

∂

∂x3

x2φ1(y)− x1φ2(y)

|x− y|
dy1 dy2. (3.13)

Using the identity grad div v = ∆v + rot rot v, from (3.5), we get

(λ+ 2µ )∆v(x) + (λ+ µ) rot rot v(x) = 0. (3.14)

Since ∆ rot v = 0, the equality ∆ [x× rot v] = 2 rot rot v holds, and from equation (3.14), we deduce

∆w(x) = 0, x ∈ Ω−,
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where
w(x) = 2(λ+ 2µ) v(x) + (λ+ µ)[x× rot v(x)]. (3.15)

Using the boundary conditions (3.7), (3.8) and (3.9), for the vector w(x), we obtain the following
boundary conditions:

{w3(z)}− = φ4(z), z ∈ ∂ Ω−,{
∂

∂x3
w1(z)

}−

= φ5(z),

{
∂

∂x3
w2(z)

}−

= φ6(z), z ∈ ∂ Ω−,

where

φ4(z) = 2(λ+ 2µ)

(
f3(z)−

{
u
(0)
3 (z)

}−
)
+ (λ+ µ) (z1φ2(z)− z2φ1(z)) ,

φ5(z) = 2(λ+ 2µ)

 1

µ
f1(z)−

∂f3(z)

∂z1
−

{
∂ u

(0)
1 (z)

∂x3

}−
+ (λ+ µ) (z2φ3(z)− φ2(z)) ,

φ6(z) = 2(λ+ 2µ)

 1

µ
f2(z)−

∂f3(z)

∂z2
−

{
∂ u

(0)
2 (z)

∂x3

}−


+ (λ+ µ) (φ1(z)− z1φ3(z)) , z ∈ ∂ Ω−.

As we see, for the components of the vector w(x) we have the Dirichlet and Neumann problems in
the domain Ω−. The solutions to these problems can be written explicitly:

w3(x) = − 1

2π

∫
∂ Ω−

∂

∂x3

1

|x− y|
φ4(y) dy1 dy2,

w1(x) = − 1

2π

∫
∂ Ω−

1

|x− y|
φ5(y) dy1 dy2, (3.16)

w2(x) = − 1

2π

∫
∂ Ω−

1

|x− y|
φ6(y) dy1 dy2, x ∈ Ω−.

From equation (3.15), we get

v(x) =
1

2(λ+ 2µ)
w(x)− λ+ µ

2(λ+ 2µ)
[x× rot v(x)] . (3.17)

Let a function ν satisfy the following conditions: ν ∈ C 1,α(∂ Ω−) and, at infinity, ν(x) = O(|x|−α),
ν(x)
∂xj

= O(|x|−1−α), α > 0, j = 1, 2. Then, for x ∈ Ω−, the following identities hold:∫
∂ Ω−

1

|x− y|
∂ν(y)

∂yl
dy1 dy2 =

∫
∂ Ω−

∂

∂xl

1

|x− y|
ν(y) dy1 dy2, (3.18)

∫
∂ Ω−

(xl − yl)
∂

∂x3

1

|x− y|
∂ν(y)

∂yj
dy1 dy2 =

∫
∂ Ω−

∂3|x− y|
∂xl ∂xj ∂x3

ν(y) dy1 dy2, l, j = 1, 2, (3.19)

lim
Ω−∋x→z ∈ ∂ Ω−

1

2π

∫
∂ Ω−

∂

∂x3

1

|x− y|
ν (y) dy1 dy2 = − ν (z), z ∈ ∂ Ω−. (3.20)

With the help of formulas (3.12), (3.13), (3.16), (3.17), (3.18) and (3.19), for the vector v, we get the
following final expression:

v(x) =
1

2π

∫
∂ Ω−

K(x, y)f(y) dy1 dy2 +
1

2π

∫
∂ Ω−

M(x, y)ũ(0)(y) dy1 dy2, x ∈ Ω−, (3.21)

where
K(x, y) = [Klj(x, y)]3×3 , M(x, y) = [Mlj(x, y)]3×3 ,
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Klj(x, y) = − δlj
µ|x− y|

+ a
∂2|x− y|
∂xl∂xj

, K3j(x, y) = a
∂2|x− y|
∂x3∂xj

,

Kl3(x, y) = (1− 4aµ)
∂

∂xl

1

|x− y|
+ 2aµ

∂3|x− y|
∂xl∂x23

,

K33(x, y) = −(1 + 4aµ)
∂

∂x3

1

|x− y|
+ 2aµ

∂3|x− y|
∂x33

,

Mlj(x, y) = −µKlj(x, y), M3j(x, y) = −µK3j(x, y), l, j = 1, 2,

Ml3(x, y) =
1

2

∂

∂xl

1

|x− y|
− 1

2
Kl3(x, y), l = 1, 2, 3,

f = (f1, f2, f3)
⊤, a =

λ+ µ

2µ(λ+ 2µ)
; ũ(0) =

{
∂ u

(0)
1

∂x3

}−

,

{
∂ u

(0)
2

∂x3

}−

,
{
u
(0)
3

}−
⊤

.

Using relations (3.3), (3.6), (3.20) and (3.21), one can prove that the vector U = (u, p)⊤, where
u = v + u(0) and p = (p1, p2)

⊤, is a regular solution of problem (III)−.

4. Solution of Problem (IV)−.

We can solve problem (IV)− in a quite similar way. We start with finding an explicit form for the
vector p = (p1, p2)

⊤, satisfying differential equations (2.2) and (2.3) in Ω− and the Dirichlet boundary
conditions (2.7). We look for the vector p = (p1, p2)

⊤ in the form of a double layer potential

p(x) =

∫
∂ Ω−

∂

∂x3
Γ(x− y) g(y) dy1 dy2, x ∈ Ω−, (4.1)

where g = (g1, g2)
⊤ is a two-dimensional unknown vector.

Passing to the limit Ω− ∋ x → z ∈ ∂ Ω−, for the unknown vector g, we obtain the following
Fredholm integral equation of the second kind:

− 1

2m1m2

[
m2 0
0 m1

]
g(z) +

∫
∂ Ω−

[ ∂

∂x3
Γ(x− y)

]
x=z

g(y) dy1 dy2 =

[
f4(z)
f5(z)

]
, z ∈ ∂ Ω−. (4.2)

Taking into account that [ ∂

∂x3
Γ(x− y)

]
x3=0

= 0 for y ∈ ∂Ω−,

from (4.2), we find that

g(z) = −2

[
m1f4(z)
m2f5(z)

]
and (4.1) implies

p(x) = −2

∫
∂ Ω−

∂

∂x3
Γ(x− y)

[
m1f4(y)
m2f5(y)

]
dy1 dy2.

So, it remains to find the displacement vector u = (u1, u2, u3)
⊤. Remaind that the vector u satisfies

the non-homogeneous equation (3.4). We already know that a particular solution u(0)(x) to equation
(3.4) is given by formula (3.6). Then a general solution of equation (3.4) can be represented in the
form u(x) = v(x) + u(0)(x), where v(x) is a general solution of the homogeneous equation (3.5). To
find the vector v(x), we proceed as follows.

From equation (3.5), we have

∆div v(x) = 0, x ∈ Ω−. (4.3)



228 L. GIORGASHVILI AND S. ZAZASHVILI

From the boundary conditions (2.6), we deduce:

{v1(z)}− = f1(z)−
{
u
(0)
1 (z)

}−
, {v2(z)}− = f2(z)−

{
u
(0)
2 (z)

}−
, z ∈ ∂ Ω−, (4.4){

∂ v3(z)

∂x3

}−

= ψ1(z), z ∈ ∂ Ω−, (4.5)

where

ψ1(z) =
1

λ+ 2µ
(f3(z) + β1f4(z) + β2f5(z))−

λ

λ+ 2µ

(
∂f1(z)

∂z1
+
∂f2(z)

∂z2

)
−

{
∂u

(0)
3 (z)

∂x3

}−

.

From these conditions, we get

{div v(z)}− = ψ2(z), z ∈ ∂ Ω−, (4.6)

where

ψ2(z) =
1

λ+ 2µ
(f3(z) + β1f4(z) + β2f5(z)) +

2µ

λ+ 2µ

(
∂f1(z)

∂z1
+
∂f2(z)

∂z2

)
−

{
div u(0)(z)

}−
.

The Dirichlet problem (4.3), (4.6) with respect to div v(x) has the following solution:

div v(x) = − 1

2π

∫
∂ Ω−

∂

∂x3

1

|x− y|
ψ2(y) dy1 dy2, j = 1, 2, x ∈ Ω−. (4.7)

By the relation ∆(x div v(x)) = 2 grad div v(x), from equation (3.5), we obtain

∆w(x) = 0, x ∈ Ω−, (4.8)

where

w(x) = 2µv(x) + (λ+ µ)[x div v(x)]. (4.9)

For the components of the vector w, from (4.8), we have

∆wj(x) = 0, j = 1, 2, 3, x ∈ Ω−. (4.10)

On the other hand, bearing in mind the boundary conditions (4.4) and (4.6), we find

{wj(z)}− = ϕj(z), j = 1, 2, z ∈ ∂ Ω−, (4.11)

where

ϕj(z) = 2µfj(z) + (λ+ µ) zj ψ2(z)− 2µ
{
u
(0)
j (z)

}−
, j = 1, 2, z ∈ ∂ Ω−.

The Dirichlet problems (4.10), (4.11) with respect to the components wj(x), j = 1, 2, have the following
solutions:

wj(x) = − 1

2π

∫
∂ Ω−

∂

∂x3

1

|x− y|
ϕj(y) dy1 dy2, j = 1, 2, x ∈ Ω−. (4.12)

Using relations (4.5) and (4.6), for w3(x), we get the following Neumann boundary condition:{
∂w3(z)

∂x3

}−

= ϕ3(z), z ∈ ∂ Ω−,

where

ϕ3(z) = 2µψ1(z) + (λ+ µ)ψ2(z), z ∈ ∂ Ω−.

Therefore, for w3, we have the following explicit form:

w3(x) = − 1

2π

∫
∂ Ω−

1

|x− y|
ϕ3(y) dy1 dy2, x ∈ Ω−. (4.13)

From (4.9), we have

v(x) =
1

2µ
w(x)− λ+ µ

2µ
x div v(x), x ∈ Ω−. (4.14)
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Using relations (4.7), (4.12), (4.13), (3.18) and (3.19), from (4.14), we get

v(x) =
1

2π

∫
∂ Ω−

K̃(x, y)f(y) dy1 dy2 +
1

2π

∫
∂ Ω−

M̃(x, y)ũ(0)(y) dy1 dy2, x ∈ Ω−,

where

K̃(x, y) =
[
K̃lj(x, y)

]
3×5

, M̃(x, y) =
[
M̃lj(x, y)

]
3×3

,

K̃lj(x, y) =
∂

∂x3

(
− δlj
|x− y|

+ 2µa
∂2|x− y|
∂xl∂xj

)
, K̃l3(x, y) = a

∂2|x− y|
∂xl∂x3

,

K̃l4(x, y) = a β1
∂2|x− y|
∂xl∂x3

, K̃l5(x, y) = a β2
∂2|x− y|
∂xl∂x3

,

K̃3j(x, y) =
∂

∂xj

(
− 1

|x− y|
+ 2aµ

∂2|x− y|
∂x23

)
,

K̃33(x, y) = − 1

µ

1

|x− y|
+ a

∂2|x− y|
∂x23

,

K̃34(x, y) = β1K̃33(x, y), K̃35(x, y) = β2K̃33(x, y),

M̃lj(x, y) =
∂

∂x3

(
δlj

1

|x− y|
− λ+ µ

2µ

∂2|x− y|
∂xl∂xj

)
,

M̃13(x, y) = −λ+ µ

2µ

∂2|x− y|
∂xl∂x3

,

M̃3j(x, y) =
λ+ µ

2µ

∂

∂xj

(
2

|x− y|
− ∂2|x− y|

∂x23

)
, l, j = 1, 2,

M̃33(x, y) =
λ+ 2µ

µ

1

|x− y|
− λ+ µ

2µ

∂2|x− y|
∂x23

,

f = (f1, f2, f3, f4, f5)
⊤, ũ(0) =

{
u
(0)
1

}−
,
{
u
(0)
2

}−
,

{
∂u

(0)
3

∂x3

}−
 .

As in the previous case, one can prove that the vector U = (u, p)⊤, where u = v+ u(0), p = (p1, p2)
⊤,

is a regular solution of problem (IV )−.
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