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ON THE PROXIMITY OF SEQUENCES OF DISTRIBUTIONS OF SUMS OF

INDEPENDENT RANDOM VARIABLES (IN A SERIES SCHEME)

SHAKIR KASIMOVICH FORMANOV

Abstract. Many problems in probability theory and mathematical statistics are reduced to the
summation of independent random variables. In turn, the latter is closely connected with the

study of sequences of distribution functions for sums of independent random variables. It is well

known that the distribution function of the sum of independent random variables is a convolution
(composition) of the distribution functions of the summands. It is natural to consider sequences of

distribution functions {Fn, n ≥ 1} and {Gn, n ≥ 1} to be close if Fn −Gn → 0 properly or weakly.

In the proposed work, using modifications of the Rotar numerical characteristic introduced by the
author of the paper, we study problems related to the proximity of sequences of convolutions of

distributions {Fn} and {Gn} generated by the corresponding sums of independent random variables
forming “a triangular array”.

1. Numerical Characteristics of Sequences of Convolutions

The results of the theory of weak convergence related to the validity of the Central Limit Theorem
for sequences of independent random variables are given in the monographs [2,12,14] ( [2, Chapter 6,
§1, §2, §3, p. 14–29]; [14, Chapter III, §1, §2, p. 427–437]; [12, Chapter 2, §8, p. 163–181]). In this
connection, the numerical Lindeberg and Rotar characteristics, given in these books, play an essential
role. In [7, 10], general generalized variants of the numerical Lindeberg and Rotar characteristics are
proposed, which are used in proving the results of works [7, 9–11]. In [16] and [1], Ch. Stein created
a “powerful method” of proof in limit theorems on the convergence of the distribution of sums of
independent and weakly dependent random variables to the normal distribution law. This method
is based on one characteristic property of the normal distribution, discovered by Ch. Stein, which
is defined in terms of distribution functions. The main results of works [3, 4, 6, 8] are established by
direct application of the Stein method. In [4] the Stein method is modified using the characterization
property of the normal distribution law in terms of characteristic functions (the Stein-Tikhomirov
method). This method is used to prove the results of the works [13, 15]. In [5], the problems on the
validity of the strong law of large numbers for sequences of sums of independent random variables are
investigated.

Let in a probability space (Ω,F , P ) , for each n ≥ 1, be given two sequences of random variables
(r. v.’s)

Xn1, Xn2, . . . , Xnn, (1.1)

Yn1, Yn2, . . . , Ynn (1.2)

with the corresponding distribution functions (d. f.’s)

Fnj(x) = P (Xnj < x) , Gnj(x) = P (Ynj < x) , j = 1, 2, . . . , n.

In most cases, it is said that the sequences of independent r. v.’s (1.1) and (1.2) forming “triangular
arrays” are given (see [2, Chapter 8, §3, p. 157], [14, Chapter III, §5, p. 463], [12, Chapter 4, §16,
p. 266]).
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Recall that the convolution (or composition) of d. f’s F (x) and G(x) is the distribution function

(F ∗G)(x) =

∞∫
−∞

F (x− u)dG(u) = F ∗G =

∞∫
−∞

G(x− u)dF (u) = (G ∗ F )(x) = G ∗ F.

Then by virtue of the last equalities,

Fn(x) = P (Xn1 + . . .+Xnn < x) =

( n∏
j=1

(∗)Fnj

)
(x)

= (Fn1 ∗ . . . ∗ Fnn) (x) = Fn1 ∗ . . . ∗ Fnn = Fn,

Gn(x) = P (Yn1 + . . .+ Ynn < x) =

( n∏
j=1

(∗)Gnj

)
(x)

= (Gn1 ∗ . . . ∗Gnn) (x) = Gn1 ∗ . . . ∗Gnn = Gn.

Distributions Fn and Gn are called n-fold convolutions of sequences {Fnj , 1 ≤ j ≤ n} and
{Gnj , 1 ≤ j ≤ n} , respectively. The terms of these sequences are called components of n-fold con-

volutions Fn and Gn, respectively.
Next, we put

SX
n = Xn1 + · · ·+Xnn, SY

n = Yn1 + · · ·+ Ynn

and suppose that r. v.’s included in triangular arrays (1.1) and (1.2) satisfy the conditions

EXnj = EYnj = 0, σ2
nj = EX2

nj =

∞∫
−∞

x2dFnj(x) = EY 2
nj

=

∞∫
−∞

x2dGnj(x) < ∞, j = 1, 2, . . . , n. (1.3)

Under conditions (1.3), without any loss of generality, we may assume that

DSX
n = DSY

n =

n∑
j=1

σ2
nj = 1.

The last equalities implies that
∞∫

−∞

x2dFn(x) =

∞∫
−∞

x2dGn(x) = 1.

Following the work by V. I. Rotar [12, Chapter 4, §16.5, p. 271], we introduce the numerical
characteristic

Rn(ε) =

n∑
j=1

∫
|x|>ε

|x| |Fnj(x)−Gnj(x)| dx, ε > 0.

The limit relation
Rn(ε) → 0, n → ∞ (1.4)

for any ε > 0 is said to be the Rotar condition. In [10], the authors proved that the Rotar numerical
characteristic can be written in a more general form. To do this, they introduced a class B of bounded
nonnegative functions b(x) on the real line R such that

lim
x→0

b(x) = 0, mb(δ) = inf
|x|>δ

b(x) > 0

for all δ > 0. Now, set

Rb
n =

n∑
j=1

∞∫
−∞

|x| |Fnj(x)−Gnj(x)| b(x)dx, (1.5)
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where the function b(x) belongs to the class B.
In particular, when

b(x) =

{
1 at |x| > ε,

0 at |x| ≤ ε,

we have Rb
n = Rn(ε).

Proposition A. The following three conditions are equivalent:
a) the Rotar condition (1.4) is satisfied;
b) lim

n→∞
Rb

n = 0 for some b(·) ∈ B;

c) lim
n→∞

Rb
n = 0 for all b(·) ∈ B.

We give one modification of the numerical Rotar characteristic Rn(ε). To do this, we put b(x) =
min (|x|, 1) in formula (1.5). It is easy to check that b(x) ∈ B. Then

Dn =

n∑
j=1

∞∫
−∞

|x| |Fnj(x)−Gnj(x)|min (|x|, 1) dx =

n∑
j=1

∫
|x|≤1

x2 |Fnj(x)−Gnj(x)| dx

+

n∑
j=1

∫
|x|>1

|x| |Fnj(x)−Gnj(x)| dx = Mn + Ln.

The limit relation

Dn → 0 (Mn → 0, Ln → 0) , n → ∞ (1.6)

is said to be the condition (D). Similarly, the convergence

sup
b∈B

Rb
n → 0, n → ∞ (1.7)

is said to be the condition (Rb).

Theorem 1.1. All three conditions (1.7), (1.4), and (1.6) are mutually equivalent.

Proof. By virtue of Proposition A, conditions (1.7) and (1.4) are mutually equivalent. Therefore, it
remains to prove the equivalence of conditions (1.4) and (1.6).

1) Let condition (1.4) be satisfied. Then

Ln = Rn(1) =

n∑
j=1

∫
|x|>1

|x| |Fnj(x)−Gnj(x)| dx → 0 (1.8)

as n → ∞. Further, for 0 < ε < 1

Mn =

n∑
j=1

∫
|x|≤1

x2 |Fnj(x)−Gnj(x)| dx ≤ ε

[ n∑
j=1

∫
|x|≤1

|x| (1− Fnj(x)) dx

+

n∑
j=1

∫
|x|≤1

|x| (1−Gnj(x)) dx

]
+

n∑
j=1

∫
ε<|x|≤1

|x| |Fnj(x)−Gnj(x)| dx

≤ 2ε

n∑
j=1

σ2
nj +

n∑
j=1

∫
|x|>ε

|x| |Fnj(x)−Gnj(x)| dx ≤ 2ε+Rn(ε).

Therefore, we have the estimate

Mn ≤ 2ε+Rn(ε) (1.9)

for any 0 < ε < 1.
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It should be noted that in proving estimate (1.9), we have used the equality

0∫
−∞

|x|F (x)dx+

∞∫
0

x (1− F (x)) dx =
1

2

∞∫
−∞

x2dF (x),

which is valid for any d. f. F (x).
Now estimate (1.9) implies

lim sup
n→∞

Mn ≤ 2ε

for any ε > 0. Therefore

Mn → 0, n → ∞, (1.10)

and it follows from (1.8) and (1.10) that condition (1.6) is valid.
Now, let condition (1.6) be satisfied. Then

Rn(ε) =

n∑
j=1

∫
|x|>ε

|x| |Fnj(x)−Gnj(x)| dx =

n∑
j=1

∫
ε<|x|≤1

|x| |Fnj(x)−Gnj(x)| dx

+

n∑
j=1

∫
|x|>1

|x| |Fnj(x)−Gnj(x)| dx ≤ 1

ε

n∑
j=1

∫
ε<|x|≤1

x2 |Fnj(x)−Gnj(x)| dx+ Ln

≤ Mn

ε
+ Ln → 0, n → ∞

for any 0 < ε < 1. Therefore, the validity of the implication (1.6) → (1.4) is proved. Earlier we proved
the implication (1.4) → (1.6). Thus Theorem 1.1 is proved. □

2. Definition of the Proximity of Sequences of Probability Distributions

Consider two sequences of probability distributions {Fn, n ≥ 1} and {Gn, n ≥ 1} . Suppose that one
needs to establish a weak convergence of {Fn, n ≥ 1} to a d. f. F, i.e., Fn ⇒ F. To achieve this, one
often proceeds as follows: a sequence of probability distributions {Gn, n ≥ 1} is considered, for which
the convergence Gn → F is almost obvious, and then the convergence Fn − Gn → 0 is proved in a
certain sense. The last problem (on the convergence Fn −Gn → 0) is more general than the problem
of the weak convergence of probability distributions, since {Fn, n ≥ 1} and {Gn, n ≥ 1} may be close
even if the sequences {Fn} and {Gn} have no limit.

It is well-known that any d. f. F (x) generates a probability measure F (A) (A is a Borel set on R)
by the formula

F (A) =

∫
R

IAdF =

∫
A

1dF = P (X ∈ A),

where IA(·) is the indicator of the event A, X is an r. v. with the d. f. F (x).
Recall that a set A is called F -continuous if Fδ(A)) = 0, where δ(A) is the topological boundary

of A.
Let Fn(·) be a probability measure generated by the d. f. Fn(x). Then the weak convergence

Fn ⇒ F is equivalent to the convergence

Fn(A) → F (A) (2.1)

for any F -continuous set A.
It is no longer easy to determine the convergence Fn −Gn → 0 (n → ∞) by the conditions similar

to condition (2.1), since it is not clear with respect to which distribution the set A should be declared
a set of continuity. The most universal condition is based on the general form of the weak convergence
of distributions.
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Definition 2.1. The difference of distributions Fn −Gn → 0 properly or weakly if

∞∫
−∞

u(x)d(Fn(x)−Gn(x)) → 0

for any continuous bounded function u(x).

This definition of weak convergence Fn − Gn → 0 is borrowed from [12, Chapter 4, §8.5, p.152],
and it generalizes the concept of weak (or proper) convergence of distributions Fn ⇒ F. The last is
obtained from Fn −Gn → 0, when

G1 = G2 = · · · = Gn = F (x) = F,

i.e., when the sequence {Gn, n ≥ 1} = {F, . . . , F} is stationary. It is easy to verify the existence of
such a sequence by setting

G1 = (F ∗ E0) (x) =

∞∫
−∞

F (x− u)dE0(u) = F (x),

where E0(x) is the unit distribution degenerate at zero.
Next, for n ≥ 2, we put

G2 = F ∗ E0 ∗ E0 = · · · = F ∗ En−1 ∗ E0 = F ∗ En = Gn = F,

where En = E0 ∗ · · · ∗ E0︸ ︷︷ ︸
n

= E0.

Therefore, from the above, taking into account Definition 2.1, we can come to the following con-
clusion: if the sequence of convolutions {Gn, n ≥ 1} consists of the same distribution F (x) (it means
that Gn = {F, . . . , F}), then the proper or weak convergence of the difference Fn−Gn → 0 turns into
a weak convergence of the sequence of d. f.’s {Fn, n ≥ 1} to the d. f. F (x) :

Fn ⇒ F, n → ∞. (2.2)

But the function F (x) in the limit relation (2.2) may not be a probability d.f. (see [12, Chapter 3,
§8.3, Examples 6 and 7, p.150]). To exclude such situations, the following definition is introduced.

Definition 2.2. A sequence of random variables {Xn, n ≥ 1} is called stochastically bounded, and
the corresponding sequence of distribution functions {Xn, n ≥ 1} is called dense if the relation

lim
N→∞

P (|Xn| > N) = lim
N→∞

[1− Fn(N) + Fn(−N)]

holds uniformly in n (see [12, Chapter 3, §8.3, Examples 6 and 7, p.150–151]).

3. Limit Distributions for Convolutions of Distributions

The asymptotic closeness of the convolutions of distributions Fn =
n∏

j=1

(∗)Fnj and Gn =
n∏

j=1

(∗)Gnj

can be studied independently of the sequences of random variables (1.1) and (1.2) (directly), as
convolutions of the distributions {Fnj , 1 ≤ j ≤ n} and {Gnj , 1 ≤ j ≤ n} . First of all, we introduce
the necessary notations for the characteristic functions (ch. f.’s) of random variables included in the
“triangular arrays” (1.1) and (1.2). Let

fnj(t) =

∞∫
−∞

eitxdFnj(x), gnj(t) =

∞∫
−∞

eitxdGnj(x),
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where the index j = 1, 2, . . . , n. Then the characteristic functions of the sums SX
n and SY

n of sequences
of r. v.s (1.1) and (1.2)

fn(t) = EeitS
X
n =

∞∫
−∞

eitxdFn(x) =

n∏
j=1

fnj(t),

gn(t) = EeitS
Y
n =

∞∫
−∞

eitxdGn(x) =

n∏
j=1

gnj(t).

In [12, Chapter 4, §15.7, p.265], the following generalized version of the continuity (convergence)
theorem is given.

Theorem C. Let one of the sequences of convolutions
{
Fn, n ≥ 1

}
and

{
Gn, n ≥ 1

}
be dense. Suppose

that for each t,

fn(t)− gn(t) → 0, n → ∞. (3.1)

Then Fn − Gn → 0 properly, and both sequences are dense. If the sequence
{
Gn, n ≥ 1

}
consists of

a single distribution F (G = {F, . . . , F}), then the convergence Fn − Gn → 0 turns properly into a
limit theorem

Fn(x) → F (x)
(
Fn ⇒ F

)
, n → ∞,

at each point of continuity of the function F (x).

Now, we are able to prove the following

Theorem 3.1. Let r. v.’s of the “triangular arrays” (1.1) and (1.2) be satisfied conditions (1.3)
and (1.6). Then for any continuous and bounded function u(x),

∞∫
−∞

u(x)d
(
Fn(x)−Gn(x)

)
→ 0, n → ∞,

i.e., Fn −Gn → 0 properly as n → ∞.

Proof. By virtue of condition (1.3),

DSX
n = DSY

n = E
(
SX
n

)2
= E

(
SY
n

)2
=

∞∫
−∞

x2dFn(x) =

∞∫
−∞

x2dGn(x) =

n∑
j=1

σ2
nj = 1.

Using the Chebyshev inequality, from the last equalities, we obtain∫
|x|>N

dFn(x) = 1− Fn(N) + Fn(−N) ≤ 1

N2
·

n∑
j=1

σ2
nj =

1

N2
,

∫
|x|>N

dGn(x) = 1−Gn(N) +Gn(−N) ≤ 1

N2
·

n∑
j=1

σ2
nj =

1

N2
.

Therefore

lim
N→∞

∫
|x|>N

dFn(x) = 0,

lim
N→∞

∫
|x|>N

dGn(x) = 0

(3.2)

uniformly in n. These equalities (3.2) imply that the sequences of the sums
{
SX
n , n≥1

}
and

{
SY
n , n≥1

}
are stochastically bounded, and the corresponding sequences of d. f.’s

{
Fn, n ≥ 1

}
and

{
Gn, n ≥ 1

}
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are dense. Taking into account these considerations, we can come to the following conclusion: to prove
Theorem 3.1, it suffices to check the validity of condition (3.1) of Theorem 3. First, we prove some
auxiliary statements. □

Let the numbers a1, a2, . . . , an and b1, b2, . . . , bn be such that

max
j

(|aj , | , |bj |) ≤ 1.

Using the method of induction for n ≥ 2, one can verify the validity of the equality∣∣∣∣ n∏
j=1

aj −
n∏

j=1

bj

∣∣∣∣ = ∣∣∣∣ n∑
k=1

k−1∏
j=1

aj(ak − bk)

n∏
j=k+1

bj

∣∣∣∣
in which

0∏
j=1

aj =

n∏
j=n+1

bj = 1

is considered. Now, using formula (22) and Lemma 3 given in the book by A. A. Borovkov (Chapter
7, §6, p. 143) we obtain ∣∣∣∣ n∏

j=1

aj −
n∏

j=1

bj

∣∣∣∣ ≤ n∑
j=1

|aj − bj | .

Thus, if fnj(t) and gnj(t) are characteristic functions, then from the last inequality we obtain∣∣∣∣ n∏
j=1

fnj(t)−
n∏

j=1

gnj(t)

∣∣∣∣ ≤ n∑
j=1

|fnj(t)− gnj(t)| (3.3)

for any t ∈ R.

Lemma 3.1. If condition (1.3) is satisfied, then the estimate
n∑

j=1

|fnj(t)− gnj(t)| ≤ 4max
(
t2, |t|3

)
Dn

holds for any t ∈ R.

Proof. By virtue of condition (1.3), it can be seen that

n∑
j=1

|fnj(t)− gnj(t)| =
n∑

j=1

∣∣∣∣∣∣
∞∫

−∞

eitxd (Fnj −Gnj)

∣∣∣∣∣∣
=

n∑
j=1

∣∣∣∣∣∣
∞∫

−∞

(
eitx − 1− itx− (itx)2

2

)
d (Fnj(x)−Gnj(x))

∣∣∣∣∣∣ .
After integrating by parts here and using the limit relations

lim
x→∞

x (1− Fnj(x) + Fnj(−x)) = lim
x→∞

x (1−Gnj(x) +Gnj(−x)) = 0,

that are valid for j = 1, . . . , n, we obtain

n∑
j=1

|fnj(t)− gnj(t)| =
n∑

j=1

∣∣∣∣∣∣t
∞∫

−∞

(
eitx − 1− itx

)
(Fnj(x)−Gnj(x)) dx

∣∣∣∣∣∣
≤ |t|3

2

n∑
j=1

∫
|x|≤1

x2 |Fnj(x)−Gnj(x)| dx+ 2t2
n∑

j=1

∫
|x|>1

|x| |Fnj(x)−Gnj(x)| dx

=
|t|3

2
Mn + 2t2Ln ≤ 2

(
t2 + |t|3

)
(Mn + Ln) ≤ 4max

(
t2, |t|3

)
Dn. (3.4)

The chain of inequalities (3.4) proves the validity of Lemma 1. □
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Now, the proof of Theorem 3.1 follows easily from Lemma 2 and from equation (3.3). From equation
(3.3), we have

∣∣fn(t)− gn(t)
∣∣ =

∣∣∣∣∣∣
n∏

j=1

fnj(t)−
n∏

j=1

gnj(t)

∣∣∣∣∣∣ ≤
n∑

j=1

|fnj(t)− gnj(t)| . (3.5)

Therefore, by Lemma 1 (estimate (3.5)),∣∣fn(t)− gn(t)
∣∣ ≤ 4max

(
t2, |t|3

)
Dn → 0, (3.6)

as n → ∞ for any t ∈ R.
Thus, by virtue of relations (3.2) and (3.6), all the conditions of Theorem 3 are satisfied, and by

the conclusion of this theorem,
Fn −Gn → 0

properly, as n → ∞. Theorem 3.1 is proved.
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