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DEFERRED STATISTICAL CONVERGENCE AND DEFERRED STRONG

P-CESÀRO SUMMABILITY ON TIME SCALES

HEMEN DUTTA∗ AND PALLAV BHATTARAI

Abstract. The concepts of deferred statistical convergence and deferred strong p-Cesàro summa-
bility of ∆-measurable real valued functions on an arbitrary time scale are introduced via a pair of

increasing functions in the interval [1,∞). The relationships between the sets of deferred statistical

convergence and the set of deferred strong p-Cesàro summability on time scales are investigated
under certain conditions. Many inclusion theorems relating these concepts are established. The

obtained results are expected to contribute to viewing deferred statistical convergence as a type of
deferred summability method in the time scale framework.

1. Introduction

The idea of statistical convergence was studied by Zygmund [20] in 1935. Later statistical conver-
gence of number sequences was formally introduced by Fast [9] and Steinhaus [16] independently in
1951. Agnew [1] defined deferred Cesàro mean in 1932. In connection with the present paper, some
works on statistical convergence can be found in [7, 10, 11], and there are many interesting works on
statistical convergence and statistical summability in various directions.

A time scale is an arbitrary non-empty closed subset of the real numbers. It is denoted by the
symbol T. The time scale calculus was introduced by Stefan Hilger in his PhD thesis supervised by
Bernd Aulbach in 1988 [13,14]. It allowed to unify discrete and continuous analysis. There are many
applications of time scales in dynamic equations [4]. The notion of statistical convergence on time
scales was first studied in [15] and [17] independently. Turan and Duman introduced the notion of
lacunary statistical convergence on time scales in [19]. Seyyidoglu and Tan [15] put forwarded the
notions of ∆-convergence and ∆-Cauchy sequences using ∆-density and investigated their relations.
Several other studies on time scale calculus have been presented in [2, 3, 5, 6, 12,18] and many others.

We first discuss some important terms and notions on time scales [12]:
For t ∈ T, the forward jump operator σ : T → T is given by

σ(t) = inf {s ∈ T : s > t},

the backward jump operator ρ : T → T is given by

ρ(t) = sup {s ∈ T : s < t},

and the graininess function µ : T → [0,∞) is given by

µ(t) = σ(t)− t.

Here, we put inf ∅ = sup T (i.e., σ(t) = t, if T has a maximum t) and sup ∅ = inf T (i.e., ρ(t) = t, if
T has a minimum t), where ∅ is the empty set.

A closed interval, open interval and semi-closed (or semi-open) interval on a time scale T are given
by [a, b]T = {t ∈ T : a ≤ t ≤ b}, (a, b)T = {t ∈ T : a < t < b} and [a, b)T = {t ∈ T : a ≤ t < b},
respectively.

Next, let S be the collection all left closed and right open intervals of the form [a, b)T. Then the
set function m : S → [0,∞) defined by m ([a, b)) = b − a is a countably additive measure. An outer
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measure m∗ : P (T) → [0,∞) generated by m is defined as follows:

m∗ (A) = inf

{ ∞∑
n=1

m(An) : (An) is a sequence of S with A ⊂
∞⋃

n=1

An

}
.

If there exists no sequence (An) of S such that A ⊂
∞⋃

n=1
An, then we consider m∗(A) = ∞. Now, the

family M(m∗) of all m∗-measurable (or ∆-measurable) subsets of T is considered, i.e.,

M(m∗) = {E ⊂ T : m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec) for all A ⊂ T} .

The collection M (m∗) of all m∗-measurable subsets of T is a σ-algebra and the restriction of m∗

to M (m∗) is a countable additive measure on M (m∗), which is denoted by µ∆. This measure µ∆,
which is the Carathéodory extension of the set function m associated with the family S, is called the
Lebesgue ∆-measure on T [12].

We say that a function f : T → R is ∆-measurable if the set f−1(A) is ∆-measurable for every
open subset A of R.

Theorem 1.1 ([12]). For each a ∈ T−{max T}, the singleton point set {a} is ∆-measurable, and its
∆-measure is given by

µ∆(a) = σ(a)− a.

Theorem 1.2 ([12]). If a, b ∈ T and a ≤ b, then

µ∆ ([a, b)) = b− a, and µ∆ ((a, b)) = b− σ(a).

If a, b ∈ T− {max T} and a ≤ b, then

µ∆ ((a, b]) = σ(b)− σ(a) and µ∆ ([a, b]) = σ(b)− a.

Definition 1.1 ([17]). Let Ω be a ∆-measurable subset of T. Then for t ∈ T, we define the set Ω(t)
by

Ω(t) = {s ∈ [to, t]T : s ∈ Ω} .
The density of the set Ω on T, denoted by δT(Ω), is defined as

δT (Ω) = lim
t→∞

µ∆(Ω(t))

µ∆([t0, t]T)
,

provided the above limit exists.

Here, if T = N, then the concept reduces to asymptotic density (or natural density) and if T =
[0,∞), then the concept implies approximate density. In this paper, we shall mainly use the Lebesgue
∆-measure µ∆ introduced by Guseinov in [12]. Here, T is a time scale satisfying inf T = t0 > 0 and
sup T = ∞.

Definition 1.2 ([17]). Let f : T → R be a ∆-measurable function. Then f is said to be statistically
convergent on T to a real number L if for every ε > 0,

lim
t→∞

µ∆({s ∈ [t0, t]T : |f(s)− L| ≥ ε})
µ∆([t0, t]T)

= 0.

Definition 1.3 ([17]). Let f : T → R be a ∆-measurable function and 0 < p < ∞. Then f is said to
be strongly p-Cesàro summable on time scale T if there exists L ∈ R such that

lim
t→∞

1

µ∆([t0, t]T)

∫
[t0,t]T

|f(s)− L|p∆s = 0.

Let θ = (kr) be an increasing sequence of non-negative numbers with k0 = 0 and σ (kr)−σ(kr−1) →
∞ as r → ∞, where σ : R → T is the forward jump operator defined as σ(s) = inf {t ∈ T : t > s}.
Then θ is called a lacunary sequence with respect to T [17]. Using this definition of lacunary sequence
on T, the following notions have been defined.
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Definition 1.4 ([19]). Let θ = (kr) be a lacunary sequence on T. A ∆-measurable function f : T → R
is said to be lacunary statistical convergent to a number L if for every ε > 0,

lim
r→∞

µ∆({s ∈ (kr−1, kr]T : |f(s)− L| ≥ ε})
µ∆((kr−1, kr]T)

= 0.

Definition 1.5 ( [19]). Let f : T → R be a ∆-measurable function and θ = (kr) be a lacunary
sequence. Then f is said to be strongly lacunary Cesàro summable on time scale T if there exists
L ∈ R such that

lim
r→∞

1

µ∆((kr−1, kr]T)

∫
(kr−1,kr]T

|f(s)− L|∆s = 0.

2. Deferred Statistical Convergence and Deferred Strongly p-Cesàro Summability
on Time Scales

In this section, we define two notions, namely, deferred OPF statistical convergence and strongly
OPF deferred k -Cesàro summability on time scales and discuss some results.

Following [8], we consider a pair of functions (p, q), where p, q : [1,∞) → [1,∞) such that
p (u) < q(u) and lim

u→∞
q(u) = ∞. The set of all such ordered pairs of functions will be denoted

by OPF , i.e.,

OPF =
{
(p, q) : p, q are increasing functions, p(u) < q(u) and lim

u→∞
q(u) = ∞

}
.

We shall also use Ip,q(u) = (p(u), q(u)]T.

Definition 2.1. Let (p, q) ∈ OPF be an arbitrary pair of functions and A ⊂ T. If the limit

lim
u→∞

µ∆ (A ∩ Ip,q (u))

µ∆ (Ip,q (u))

or equivalently, the limit

lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : t ∈ A})
µ∆ ((p(u), q(u)]T)

exists, then it is called deferred OPF density of the set A, denoted by δT(A).

Let f : T → R be a ∆-measurable function and L ∈ R. For any ε > 0, we denote the sets as

Af
ε = { t ∈ T : |f(t)− L| ≥ ε} ,

and
Bf

ε = { t ∈ T : |f(t)− L| < ε} .
Then, clearly, Af

ε ∪Bf
ε = T and Af

ε ∩Bf
ε = ∅.

Definition 2.2. Let (p, q) ∈ OPF be an arbitrary pair of functions and f : T → R be a ∆-measurable
function. Then f is said to be deferred OPF statistical convergent to a real number L if for each
ε > 0,

lim
u→∞

µ∆

(
Af

ε ∩ Ip,q(u)
)

µ∆ (Ip,q(u))
= 0,

or equivalently,

lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε})
µ∆ ((p(u), q(u)]T)

= 0.

We denote it by [DSp,q
T ]− lim

t→∞
f(t) = L. The set of all deferred OPF statistical convergent functions

on T we denote by [DSp,q
T ].

Remark 2.1. (i) Taking p, q : N → N instead of p, q : [1,∞) → [1,∞), we get the definition for
deferred statistical convergence introduced in [6].

(ii) If p (u) = t0 ≥ 1, q (u) = t in Definition 2.2, then we get statistical convergence on T [17].
(iii) If p (u) = kr−1, q(u) = kr in Definition 2.2, where, (kr) is a lacunary sequence, then we get

lacunary statistical convergence on T defined in [19].
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Definition 2.3. Let (p, q) ∈ OPF be an arbitrary pair of functions and 0 < k < ∞. Then a
∆-measurable function f : T → R is said to be strongly OPF deferred k-Cesàro summable to a real
number L if

lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(s)− L|k∆s = 0.

We denote it by [DW p,q
T ]− lim

s→∞
f(s) = L. The set of all strongly OPF deferred k-Cesàro summable

functions on T we denote by [DW p,q
T ].

Remark 2.2. (i) Here we use strongly OPF deferred k-Cesàro summable functions in place of strongly
OPF deferred p-Cesàro summable functions to avoid confusion with the use of OPF function (p, q).

(ii) If we take p, q : N → N instead of p, q : [1,∞) → [1,∞) and k = 1, then we get strongly deferred
Cesàro summable functions introduced in [6].

(iii) If p(u) = t0 ≥ 1, q(u) = t, then we get strongly k-Cesàro summable functions on T [17].
(iv) If p(u) = kr−1, q(u) = kr, where (kr) is a lacunary sequence, then we get strongly lacunary

Cesàro summable functions on T defined in [18].

Definition 2.4. Let (p, q) ∈ OPF be an arbitrary pair of functions and f, g : T → R be
∆-measurable functions. If the set M = { t ∈ T : f(t) ̸= g(t)} has deferred OPF density 0 (zero),
then f and g are called equivalent functions with respect to (p, q), denoted by f ∼ g (w.r.t. (p, q)).

Theorem 2.1. Let (p, q) ∈ OPF and f ∼ g (w.r.t. (p, q)). Then f ∈ [DSp,q
T ] if and only if

g ∈ [DSp,q
T ].

Proof. We assume that f ∈ [DSp,q
T ] and using the fact that f ∼ g (w.r.t. (p, q)), the set M =

{t ∈ T : f(t) ̸= g(t)} has zero deferred OPF density. Considering

Ag
ε = {t ∈ T : |g(t)− L| ≥ ε} ,

and Ip,q(u) = (p(u), q(u)]T, we have

Ag
ε ∩ Ip,q(u) = (Ag

ε ∩Mp,q) ∪
(
Ag

ε ∩M c
p,q

)
,

where Mp,q = Ip,q(u) ∩M and M c
p,q = Ip,q(u) ∩M c. Then we obtain

Ag
ε ∩ Ip,q(u) ⊂ (Ag

ε ∩Mp,q) ∪
(
Af

ε ∩ Ip,q(u)
)
.

This implies

µ∆ (Ag
ε ∩ Ip,q(u))

µ∆ (Ip,q(u))
≤ µ∆ (Ag

ε ∩Mp,q)

µ∆ (Ip,q(u))
+

µ∆

(
Af

ε ∩ Ip,q(u)
)

µ∆ (Ip,q(u))
.

Taking u → ∞, we get g ∈ [DSp,q
T ]. The converse can also be proved in a similar manner. □

Theorem 2.2. Let (p, q) ∈ OPF and f : T → R be a ∆-measurable function. Then [DSp,q
T ] −

lim
t→∞

f(t) = L if and only if there exists a ∆-measurable set K ⊂ T with deferred OPF density 1 and

lim
t→∞(t∈K)

f(t) = L.

Proof. We consider the sets

Kj =

{
t ∈ (p(u), q(u)]T : |f(t)− L| < 1

j

}
, j = 1, 2, 3, . . . .

From the hypothesis, we get δT(Kj) = 1, for each j ∈ N. Also, from the construction of the sets, it
can be seen that for all j ∈ N, Kj+1 ⊂ Kj holds.

For j = 1, we can choose t1 ∈ K1. Since δT(K1) = 1, there exists t2 ∈ K2 with t2 > t1 such that
µ∆(K2(t))

µ∆((p(u),q(u)]T)
> 1

2 holds for each t ≥ t2 with t ∈ T.

For t2 ∈ K2 and since δT(K2) = 1, there exists t3 ∈ K3 with t3 > t2 such that µ∆(K3(t))

µ∆((p(u),q(u)]T)
> 2

3

holds for each t ≥ t3 with t ∈ T.
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If we continue this repeatedly, we get an increasing sequence t1 < t2 < t3 < · · · such that tj ∈ Kj

and for each t ≥ tj and t ∈ T,

µ∆(Kj(t))

µ∆ ((p(u), q(u)]T)
>

j − 1

j
, where j ∈ N,

and Kj (t) = {s ∈ (p (u) , t]T : s ∈ Kj}.
Using the sets Kj , we can construct a set K in the following manner:

If t ∈ (p (u) , t1]T, then t ∈ K.
If t ∈ Kj ∩ [t1, tj+1]T, for j = 1, 2, 3, . . . , then t ∈ K.
Hence, we obtain the set K as

K =
{
t ∈ (p (u) , q (u)]T : t ∈ (p (u) , t1]T or t ∈ Kj ∩ [t1, tj+1]T, j = 1, 2, 3, . . .

}
.

So,
µ∆(K(t))

µ∆ ((p(u), q(u)]T)
≥ µ∆(Kj(t))

µ∆ ((p(u), q(u)]T)
≥ j − 1

j

holds for each t ∈ [t1, tj+1]T, j ∈ N. This gives δT(K) = 1. Next, we show that lim
t→∞(t∈K)

f(t) = L.

Let ε > 0, then ∃ j ∈ N such that 1
j < ε holds. Let t ≥ tj with t ∈ K. Then ∃ n ≥ j such that

t ∈ [tn, tn+1]T. From the construction of K, we see that t ∈ Kn and so, |f(t)− L| < 1
n ≤ 1

j < ε, i.e.,

|f(t)− L| < ε for each t ∈ K with t ≥ tj . This gives lim
t→∞(t∈K)

f(t) = L.

Conversely, from the given condition, for a given ε > 0, there exists a number t∗ ∈ (p(u), q(u)]T
such that for any t ≥ t∗ with t ∈ K, we obtain |f(t)− L| < ε.
Hence, if we take A(ε) = {t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε} and B = K ∩ (t∗, q(u)]T, then we get
A(ε) ⊂ (p(u), q(u)]T\B. Using the facts that

K = (K ∩ (p(u), t∗]T) ∪B, δT(K) = 1,

and δT (K ∩ (p(u), t∗]T) = 0, for the boundedness, we have δT(B) = 1 and so, δT (A(ε)) = 0. This
completes the proof. □

Theorem 2.3. Let (p, q) ∈ OPF and f, g : T → R be a ∆-measurable function. Then the following
statements hold:

(i) If [DSp,q
T ]− lim

t→∞
f(t) = L and c ∈ R, then [DSp,q

T ]− lim
t→∞

cf(t) = cL,

(ii) If [DSp,q
T ]− lim

t→∞
f(t) = L1 and [DSp,q

T ]− lim
t→∞

g(t) = L2, then

[DSp,q
T ]− lim

t→∞
[f(t) + g(t)] = L1 + L2,

(iii) If [DW p,q
T ]− lim

t→∞
f(t) = L and c ∈ R, then [DW p,q

T ]− lim
t→∞

cf(t) = cL,

(iv) If [DW p,q
T ]− lim

t→∞
f(t) = L1 and [DW p,q

T ]− lim
t→∞

g(t) = L2, then

[DW p,q
T ]− lim

t→∞
[f(t) + g(t)] = L1 + L2.

Proof. (i) Since [DSp,q
T ]− lim

t→∞
f (t) = L, so,

lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε})
µ∆ ((p(u), q(u)]T)

= 0.

Therefore

lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |cf(t)− cL| ≥ ε})
µ∆ ((p(u), q(u)]T)

= lim
u→∞

µ∆

({
t ∈ (p (u) , q(u)]T : |f(t)− L| ≥ ε

c

})
µ∆ ((p(u), q(u)]T)

.

Considering ε
c = ε

′
, we get our desired result.
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(ii) Since [DSp,q
T ]− lim

t→∞
f(t) = L1 and [DSp,q

T ]− lim
t→∞

g(t) = L2 so,

lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |f(t)− L1| ≥ ε})
µ∆ ((p(u), q(u)]T)

= 0

and

lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |g(t)− L2| ≥ ε})
µ∆ ((p(u), q(u)]T)

= 0,

respectively. Therefore

lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |{f(t) + g(t)} − (L1 + L2)| ≥ ε})
µ∆ ((p(u), q(u)]T)

= lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |{f(t)− L1}+ {g(t)− L2}| ≥ ε})
µ∆ ((p(u), q(u)]T)

≤ lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |f(t)− L1| ≥ ε})
µ∆ ((p(u), q(u)]T)

+ lim
u→∞

µ∆ ({t ∈ (p(u), q(u)]T : |g(t)− L2| ≥ ε})
µ∆ ((p(u), q(u)]T)

.

This completes the proof.
(iii) Since [DW p,q

T ]− lim
t→∞

f(t) = L, so,

lim
u→∞

1

µ∆ ((p (u) , q(u)]T)

∫
(p(u),q(u)]T

|f (t)− L|k∆t = 0.

Therefore

lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|cf(t)− cL|k∆t

= lim
u→∞

|c|k

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(t)− L|k∆t.

This completes the proof.
(iv) Since [DW p,q

T ]− lim
t→∞

f(t) = L1 and [DW p,q
T ]− lim

t→∞
g(t) = L2, so,

lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(t)− L1|k∆t = 0

and

lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|g(t)− L2|k∆t = 0,

respectively. Therefore

lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|{f(t) + g(t)} − {L1 + L2}|k∆t

≤ lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(t)− L1|k∆t

+ lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|g(t)− L2|k∆t.

This completes the proof. □

Next, we need a lemma which gives the Markov inequality in deferred sense on time scales.
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Lemma 2.1. Let (p, q) ∈ OPF and f : T → R be a ∆-measurable function. For ε > 0, consider the
set K = {s ∈ (p(u), q(u)]T : |f(s)− L| ≥ ε}, then

µ∆(K) ≤ 1

ε

∫
K

|f(s)− L|∆s ≤ 1

ε

∫
(p(u),q(u)]T

|f(s)− L|∆s.

Proof. For all s ∈ (p(u), q(u)]T and ε > 0, we have

0 ≤ εχK(s) ≤ |f(s)− L|χK(s) ≤ |f(s)− L| .

This gives

ε

∫
K

∆s ≤
∫
K

|f(s)− L|∆s ≤
∫

(p(u),q(u)]T

|f(s)− L|∆s.

So, we obtain

ε µ∆(K) ≤
∫
K

|f(s)− L|∆s ≤
∫

(p(u),q(u)]T

|f(s)− L|∆s.

This produces the required result. □

Theorem 2.4. Let (p, q) ∈ OPF and f : T → R be a ∆-measurable function, L ∈ R and 0 < k < ∞.
Then

(i) [DW p,q
T ]− lim

t→∞
f(t) = L, then [DSp,q

T ]− lim
t→∞

f(t) = L,

(ii) [DSp,q
T ]− lim

t→∞
f(t) = L and f is a bounded function, then [DW p,q

T ]− lim
t→∞

f(t) = L.

Proof. (i) Suppose that [DW p,q
T ]− lim

t→∞
f(t) = L. For a given ε > 0, we consider the set

K = {s ∈ (p(u), q(u)]T : |f(s)− L| ≥ ε} .

Then from Lemma 2.1, we get

εkµ∆(K) ≤
∫

(p(u),q(u)]T

|f(s)− L|k∆s.

Dividing both sides of this inequality by µ∆ ((p(u), q(u)]T) and taking limits as u → ∞, we get

lim
u→∞

µ∆(K)

µ∆ ((p(u), q(u)]T)
≤ 1

εk
lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(s)− L|k∆s.

From the given assumption, the RHS of this inequality vanishes. So, we obtain

lim
u→∞

µ∆(K)

µ∆ ((p(u), q(u)]T)
= 0.

This implies [DSp,q
T ]− lim

t→∞
f(t) = L.

(ii) Suppose that [DSp,q
T ] − lim

t→∞
f(t) = L and f is bounded. Then there exists a real number M

such that |f(s)| ≤ M for all s ∈ (p(u), q(u)]T, and

lim
u→∞

µ∆(K)

µ∆ ((p(u), q(u)]T)
= 0,

where K = {s ∈ (p(u), q(u)]T : |f(s)− L| ≥ ε}, which was defined in the previous proof. Now,



202 H. DUTTA AND P. BHATTARAI

∫
(p(u),q(u)]T

|f(s)− L|k∆s =

∫
K

|f(s)− L|k∆s+

∫
(p(u),q(u)]T⧹K

|f(s)− L|k∆s

≤ (M + |L|)k
∫
K

∆s+ εk
∫

(p(u),q(u)]T

∆s

≤ (M + |L|)k µ∆ (K) + εk µ∆ ((p (u) , q (u)]T) .

This gives

lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(s)− L|k∆s ≤ (M + |L|)k lim
u→∞

µ∆(K)

µ∆ ((p(u), q(u)]T)
+ εk.

ε being arbitrary, the RHS of this inequality vanishes. So, we obtain

lim
u→∞

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(s)− L|k∆s = 0.

This proves our theorem. □

Theorem 2.5. Let (p, q), (r, s) ∈ OPF be two pairs of functions such that p(u) ≤ r(u) < s(u) ≤ q(u)
holds for all u ∈ [1,∞). Let f : T → R be a ∆-measurable function. If

lim
u→∞

µ∆ ((p(u), r(u)]T)

µ∆ ((r(u), s(u)]T)
= 0 and lim

u→∞

µ∆ ((s(u), q(u)]T)

µ∆ ((r(u), s(u)]T)
= 0 (2.1)

and f is bounded, then f ∈ [DSr,s
T ] implies f ∈ [DW p,q

T ].

Proof. Suppose that [DSr,s
T ]− lim

t→∞
f(t) = L. Since f is bounded, there exists a number M > 0 such

that |f(t)− L| ≤ M . So, we get the following:

1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(t)− L|k∆t

=
1

µ∆ ((p(u), q(u)]T)


∫

(p(u),r(u)]T

|f(t)− L|k∆t+

∫
(r(u),s(u)]T

|f(t)− L|k∆t+

∫
(s(u),q(u)]T

|f(t)− L|k∆t


≤ 1

µ∆ ((r(u), s(u)]T)


∫

(p(u),r(u)]T

|f(t)− L|k∆t+

∫
(r(u),s(u)]T

|f(t)− L|k∆t+

∫
(s(u),q(u)]T

|f(t)− L|k∆t


≤ Mk

µ∆ ((r(u), s(u)]T)


∫

(p(u),r(u)]T

∆t+

∫
(s(u),q(u)]T

∆t

+
1

µ∆ ((r(u), s(u)]T)

∫
(r(u),s(u)]T

|f(t)− L|k∆t

=
Mk

µ∆ ((r(u), s(u)]T)
{σ (r(u))− σ (p(u)) + σ (q(u))− σ(s(u))}

+
1

µ∆ ((r(u), s(u)]T)


∫

{t∈(r(u),s(u)]T:|f(t)−L|≥ε}

|f(t)− L|k∆t+

∫
{t∈(r(u),s(u)]T:|f(t)−L|<ε}

|f(t)− L|k∆t


≤

Mk {µ∆ ((p(u), r(u)]T) + µ∆ ((s(u), q(u)]T)}
µ∆ ((r(u), s(u)]T)



DEFERRED STATISTICAL CONVERGENCE AND STRONG SUMMABILITY ON TIME SCALES 203

+
Mk

µ∆ ((r(u), s(u)]T)
µ∆ ({t ∈ (r(u), s(u)]T : |f(t)− L| ≥ ε})

+
εk

µ∆ ((r(u), s(u)]T)
µ∆ ((r(u), s(u)]T) .

Taking limits as u → ∞ and using condition (2.1) and the fact that [DSr,s
T ]− lim

t→∞
f(t) = L, we get

[DW p,q
T ]− lim

t→∞
f(t) = L. This completes the proof. □

Theorem 2.6. Let (p, q), (r, s) ∈ OPF be two pairs of functions with the condition

p(u) ≤ r(u) < s(u) ≤ q(u) (2.2)

such that

lim
u→∞

inf
µ∆ ((r(u), s(u)]T)

µ∆ ((p(u), q(u)]T)
> 0 (2.3)

holds. Let f : T → R be a ∆-measurable function. Then
(i) If [DSp,q

T ]− lim
t→∞

f(t) = L, then [DSr,s
T ]− lim

t→∞
f(t) = L,

(ii) If [DW p,q
T ]− lim

t→∞
f(t) = L, then [DW r,s

T ]− lim
t→∞

f(t) = L.

Proof. (i) Suppose that [DSp,q
T ]− lim

t→∞
f (t) = L. Using (2.2), for any ε > 0, we have

{ t ∈ (r(u), s(u)]T : |f(t)− L| ≥ ε} ⊆ { t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε} .

This implies

1

µ∆ ((p(u), q(u)]T)
µ∆ ({t ∈ (r(u), s(u)]T : |f(t)− L| ≥ ε})

≤ 1

µ∆ ((p(u), q(u)]T)
µ∆ ({ t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε}) ,

or

µ∆ ((r(u), s(u)]T)

µ∆ ((p(u), q(u)]T)

1

µ∆ ((r(u), s(u)]T)
µ∆ ({ t ∈ (r(u), s(u)]T : |f(t)− L| ≥ ε})

≤ 1

µ∆ ((p(u), q(u)]T)
µ∆ ({ t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε}) .

Using the assumption [DSp,q
T ]− lim

t→∞
f(t) = L and condition (2.3), we get

lim
u→∞

1

µ∆ ((r(u), s(u)]T)
µ∆ ({ t ∈ (r(u), s(u)]T : |f(t)− L| ≥ ε}) = 0.

Hence [DSr,s
T ]− lim

t→∞
f(t) = L.

(ii) Suppose that [DW p,q
T ]− lim

t→∞
f(t) = L. Since (r(u), s(u)]T ⊆ (p(u), q(u)]T, we have∫

(r(u),s(u)]T

|f(s)− L|k∆s ≤
∫

(p(u),q(u)]T

|f(s)− L|k∆s.

This implies

1

µ∆ ((p(u), q(u)]T)

∫
(r(u),s(u)]T

|f(s)− L|k∆s ≤ 1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(s)− L|k∆s,
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or

µ∆ ((r(u), s(u)]T)

µ∆ ((p(u), q(u)]T)

1

µ∆ ((r(u), s(u)]T)

∫
(r(u),s(u)]T

|f(s)− L|k∆s

≤ 1

µ∆ ((p(u), q(u)]T)

∫
(p(u),q(u)]T

|f(s)− L|k∆s.

Using the assumption [DW p,q
T ]− lim

t→∞
f(t) = L and condition (2.3), we get

lim
u→∞

1

µ∆ ((r(u), s(u)]T)

∫
(r(u),s(u)]T

|f(s)− L|k∆s = 0.

Hence [DW r,s
T ]− lim

t→∞
f(t) = L. This proves the theorem. □

Theorem 2.7. Let (p, q), (r, s) ∈ OPF be two pairs of functions such that

p(u) < r(u) < s(u) < q(u)

holds for all u ∈ [1,∞). If f : T → R is a ∆-measurable function such that f ∈ [DSp,r
T ] ∩ [DSr,s

T ] ∩
[DSs,q

T ] and if f is bounded, then f ∈ [DSp,q
T ] and f ∈ [DW p,q

T ].

Proof. For any ε > 0, we have

{t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε} = {t ∈ (p(u), r(u)]T : |f(t)− L| ≥ ε}
∪ {t ∈ (r(u), s(u)]T : |f(t)− L| ≥ ε}
∪ {t ∈ (s(u), q(u)]T : |f(t)− L| ≥ ε} .

From this equality, we get the following:

µ∆ ({t ∈ (p(u), q(u)]T : |f(t)− L| ≥ ε})
µ∆ ((p(u), q(u)]T)

≤
µ∆ ({t ∈ (p(u), r(u)]T : |f(t)− L| ≥ ε})

µ∆ ((p(u), r(u)]T)

+
µ∆ ({t ∈ (r(u), s(u)]T : |f(t)− L| ≥ ε})

µ∆ ((r(u), s(u)]T)

+
µ∆ ({t ∈ (s(u), q(u)]T : |f(t)− L| ≥ ε})

µ∆ ((s(u), q(u)]T)
.

This is possible because µ∆ ((p(u), q(u)]T)≥ µ∆ ((p(u), r(u)]T), µ∆ ((p(u), q(u)]T)≥ µ∆ ((r(u), s(u)]T)
and µ∆ ((p(u), q(u)]T) ≥ µ∆ ((s(u), q(u)]T).

From the above inequality, using f ∈ [DSp,r
T ] ∩ [DSr,s

T ] ∩ [DSs,q
T ], we get f ∈ [DSp,q

T ].
For the second part of the theorem, we use the boundedness condition of f .
Since f ∈ [DSp,r

T ] ∩ [DSr,s
T ] ∩ [DSs,q

T ] , f is bounded. So, f ∈ [DW p,r
T ] ∩ [DW r,s

T ] ∩ [DW s,q
T ] by

Theorem 2.4. Now,∫
(p(u),q(u)]T

|f(t)− L|k∆t =

∫
(p(u),r(u)]T

|f(t)− L|k∆t+

∫
(r(u),s(u)]T

|f(t)− L|k∆t+

∫
(s(u),q(u)]T

|f(t)− L|k∆t.

This implies

1

(p(u), q(u)]T

∫
(p(u),q(u)]T

|f(t)− L|k∆t ≤ 1

(p(u), r(u)]T

∫
(p(u),r(u)]T

|f(t)− L|k∆t

+
1

(r(u), s(u)]T

∫
(r(u),s(u)]T

|f(t)− L|k∆t

+
1

(s(u), q(u)]T

∫
(s(u),q(u)]T

|f (t)− L|k∆t.
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Using f ∈ [DW p,r
T ] ∩ [DW r,s

T ] ∩ [DW s,q
T ], we get f ∈ [DW p,q

T ].
This completes the proof. □
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15. M. S. Seyyidoglu, N. Ö. Tan, A note on statistical convergence on time scale. J. Inequal. Appl. 2012, 2012:219,
8 pp.

16. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. In Colloq. math. 2 (1951), no. 1, 73–74.
17. C. Turan, O. Duman, Statistical convergence on timescales and its characterizations. In: Advances in applied

mathematics and approximation theory, 57–71, Springer Proc. Math. Stat., 41, Springer, New York, 2013.

18. C. Turan, O. Duman, Convergence methods on time scales, In: 11th international conference of numerical analysis
and Applied Mathematics, 1120–1123, ICNAAM 2013, vol. 1558, no. 1, 2013.

19. C. Turan, O. Duman, Fundamental properties of statistical convergence and lacunary statistical convergence on

time scales. Filomat 31 (2017), no. 14, 4455–4467.
20. A. Zygmund, Trigonometric Series. Monogr. Mat. vol. 5, Warszawa, Lwów, 1935.

(Received 24.03.2023)

Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India
Email address: hemen dutta08@rediffmail.com

Email address: pallavbhattarai11@gmail.com


