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UNIQUENESS THEOREMS IN THE STEADY VIBRATION PROBLEMS OF
THE MOORE-GIBSON-THOMPSON THERMOELASTICITY FOR MATERIALS
WITH VOIDS
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Dedicated to the memory of Professor Elene Obolashvili

Abstract. In this paper, the linear Moore—Gibson—Thompson thermoelasticity model for materials
with voids is considered. The governing equations of motion and steady vibrations of this model
are proposed. The basic system of equations of steady vibrations is expressed in terms of the
displacement vector, temperature change and volume fraction of pores. The radiation conditions
are established and the first Green’s identity is obtained. Finally, on the basis of this identity, the
uniqueness theorems for classical solutions of boundary value problems of steady vibrations in the
theory under consideration are proved.

1. INTRODUCTION

In the past century, mathematical theories of porous media have been developed and intensively
studied. These theories are mainly based on Darcy’s law for fluid flows in pores or on the concept
of the volume fraction of the pore network. Namely, Biot [2] presented a theory of poroelasticity
based on Darcy’s law in which the governing quasi-static equations are written with respect to the
displacement vector and the change of fluid pressure in the pores. Nowadays, this theory has been
generalized to take into account various mechanical effects and material structures. The main results
obtained in this direction of research and an extensive review of the references are given in the books
by Cheng [9], Selvadurai and Suvorov [38], Straughan [40,42], Svanadze [46] and Wang [60].

On the other hand, on the basis of the concept of pore volume fraction, the theory of elastic
materials with voids was introduced by Nunziato and Cowin [11,35]. The basic equations of this
theory involve the displacement vector field and the change in the pore volume fraction. The Nunziato-
Cowin theory was generalized by Iesan [18] and based on the classical Fourier law of heat conduction,
he proposed the theory of thermoelasticity for materials with voids. Over the past three decades,
more general models of the theories of elasticity and thermoelasticity for materials with voids have
been introduced and intensively investigated by several authors. The basic results in the theories
for materials with single voids can be found in the books by Ciarletta and Iegan [10], Tesan [19],
Straughan [40], while the main conclusions in the theories for materials with multiple voids are given
in the series of papers by Ferndndez and Quintanilla [12], Iesan and Quintanilla [20,21], Kumar and
Vohra [26,27], Svanadze [43-45], Tsagareli [56] (see also references therein).

Moreover, Svanadze [47,48] presented the mathematical models of elasticity and thermoelasticity
for single porosity materials, which simultaneously take into account Darcy’s law and the concept of
volume fraction. These related theories have been generalized to solids with double porosity [49, 50]
and triple porosity [51], and a wide class of problems has been studied in the papers by Bitsadze [4],
Mikelashvili [31-33], Svanadze [52], and Tsagareli [57].

In the second half of the past century, the non-Fourier laws of heat conduction and relevant the-
ories of generalized thermoelasticity began to be proposed and intensively investigated. Namely,
Cattaneo [5,6] and Vernotte [59] presented a hyperbolic heat conduction equation by introducing a
positive relaxation parameter. On the basis of Cattaneo—Vernotte equation, Lord and Shulman [29]
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developed a generalized thermoelasticity theory, which is an extension of the Biot [3] classical theory
of thermoelasticity based on the Fourier law.

Furthermore, Green and Naghdi [14-16] presented three theories of generalized thermoelasticity
based on an entropy-balance equation and in which the thermal displacement variable is introduced.
The linear version of the first of these theories is similar to the Biot classical thermoelasticity. The
second theory (GN type II thermoelasticity) does not involve energy dissipation and the third (GN
type III thermoelasticity) proposes a more general one.

Recently, Quintanilla [36] used the Moore-Gibson—Thompson [34, 55] equation and developed a
new theory of thermoelasticity (called the MGT thermoelasticity), which turned out to be more
general than the aforementioned thermoelasticity theories. Accordingly, this theory has attracted
much attention from researches and various important problems of this theory are currently being
investigated. For details, see the series of papers by Bazarra et al. [1], Florea and Bobe [13], Jangid and
Mukhopadhyay [23], Marin et al. [30], Quintanilla [37], Singh and Mukhopadhyay [39], Svanadze [53,54]
and references therein.

A wide historical information on the non-Fourier heat conduction laws is given in the papers by
Joseph and Preziosi [24,25]. An extensive review of the literature and the basic results obtained in the
generalised theories of thermoelasticity can be found in the books by Ignaczak and Ostoja—Starzewski
[22], Straughan [41] and in the papers of Chandrasekharaiah [7,8], Hetnarski and Ignaczak [17].

The aims of this paper are twofold. The first task is to introduce a linear mathematical model of the
MGT thermoelasticity for materials with voids, and the second is to prove the uniqueness theorems
for the classical solutions of the basic internal and external boundary value problems (BVPs) of steady
vibrations of this model.

This paper is articulated as follows. In Section 2, we present the governing equations of motion and
steady vibrations of the linear model of the MGT thermoelasticity for materials with voids. The basic
system of equations of steady vibrations is expressed in terms of the displacement vector, temperature
change and pores volume fraction. In Section 3, the radiation conditions (the conditions at infinity)
are established and the basic internal and external BVPs are formulated. In Section 4, the first
Green’s identity for the steady vibration equations is obtained. Finally, in Section 5, on the basis of
this identity, the uniqueness theorems for classical solutions of the BVPs of steady vibrations in the
theory under consideration are proved.

2. BAsic EQUATIONS

We consider a porous material occupying the region ) of the Euclidean three-dimensional space
R3, whose skeleton is an isotropic and homogeneous elastic solid and the pores are filled with a fluid.
Let x = (1,22, 23) be a point of R3 and let ¢ denote a time variable, t > 0.

In what follows, we assume that subscripts preceded by a comma denote partial differentiation
with respect to the corresponding Cartesian coordinate, repeated indices are summed over the range
(1,2,3), vectors and matrices will be marked with bold letters, functions and vectors that depend on
x and t will be denoted with the “hat” symbol, and a superposed dot denotes differentiation with
respect to t.

Let @ be the displacement vector in a solid skeleton, @t = (i1, 12, 43), ¢ be the change of the volume
fraction of pores from the initial configuration, 0 be the temperature measured from some constant
absolute temperature To(> 0), and U be the thermal displacement variable satisfying the condition [14]
b =4. (2.1)

Following Tegan [18] and Quintanilla [36], the governing system of field motion equations in the
linear theory of MGT thermoelasticity for materials with voids is composed of the next four sets of
equations:

1. Equations of motion

flj,j Zp(ﬁl—j:l) 5 &j7j+€:p1<,5—p§1, l=1,2,3, (22)
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where flj is the component of the total stress tensor, p(> 0) is the reference mass density, F =
(.7:"1, ]}2, ]}3) is the body force per unit mass; 6;, §; and p; (> 0) are the component of the equilibrated
stress, the extrinsic equilibrated body force and the coefficient of the equilibrated inertia of the pore
network, respectively; é is the intrinsic equilibrated body force defined as

£ = —bép — 1@ +e10, (2.3)
é1; is the component of the strain tensor and defined by

R 1, . .
€ = §(ul’j +a;y), 1,j=1,2,3. (2.4)

2. Constitutive equations
f1j = 2uéy; + Moy + (0 — 208)dyy, G =apy, 1j=1,2,3, (2.5)

where A and p are the Lamé constants, €g is the thermal expansion coefficient, ey # 0, b, @, a1 and &3
are the constitutive coefficients of the porous material, o > 0, d;; is the Kronecker delta.
3. Heat transfer equation _
divg = —Topi) — péa, (2.6)
where q = (1, §2, §3) is the heat flux vector and §» is the heat source, 7 is the entropy per unit mass
defined as R
pn = cl + gy + €19, (27)
and ¢(> 0) is the thermal capacity.
4. MGT equation

oG =— (k*&l n ké,l) . 1=1,2,3, (2.8)

where the non-negative constants k*, k and 7 are the conductivity rate parameter, the thermal con-
ductivity and the relaxation parameter, respectively.

Substituting equations (2.1), (2.3)—(2.5), (2.7) and (2.8) into (2.2) and (2.6), we obtain the following
system of equations of motion in the linear theory of MGT thermoelasticity for materials with voids
expressed in terms of the displacement vector field G, the change in the volume fraction ¢ of the pore
network and the change in temperature 6 of the porous material:

pAG + (A + ) Vdivia + bY@ — £V = p (u - 5:) :
AP — a1p — bdiva + 10 = p1§ — péi, (2.9)
KA+ kA) — ToM (cé +eodivii+e13) = —pMss,

where A is the Laplacian operator, and M is the differential operator defined as M = % + Tg—;.
If q, ¢, 6, F, 51, 3 are postulated to have a harmonic time variation, that is,

{ﬁ, P, é,j’, 31, §2} (x,t) =Re [{u7 0,0, F, 51,82} (%) e_i‘“t] ,
then system (2.9) is reduced to the following system of equations of steady vibrations:
(BA + pw?)u + (A + p)Vdiva 4+ bV — gVl = —pF,
(@A +1n)p —bdivu + €10 = —p; 51, (2.10)
(koA + mc)0 + meodiva + mey @ = iw(l — iwT)psa,
where w(> 0) is the oscillation frequency and
n=pw? — o, ko = k™ —iwk # 0, m = Tow?(1 — iwT).

Now, we consider special cases of the parameters k, k*, 7 and from (2.10), we obtain the systems
of equations of the different thermoelasticity theories for materials with voids. Clearly, only the last
equation of the system (2.10) will change by changing these parameters. We will have the following
cases:

1. Let

k—1k* #0. (2.11)
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In this case, we have the following 4 versions:
(i) If k* = 7 = 0, then from the last equation of (2.10) it follows that

kA + iwTy(ch + edivu + yp) = —pss.

Consequently, from (2.10), we get the system of steady vibration equations of Tegan’s [18] theory of
thermoelasticity for materials with voids based on the Fourier classical law.
(ii) If &* = 0 and 7 > 0, then the last equation of (2.10) is replaced by

kA + iwTo(1 — iwT)(cl 4 ediva + p) = (iwT — 1) psa.

Clearly, we get the system of equations of thermoelasticity based on the Cattaneo—Vernotte law of
heat conduction. Obviously, this system of equations is the extension of Lord—Shulman [29] equations
of thermoelasticity for materials with voids.

(iii) If k* > 0 and 7 = 0, then the last equation of (2.10) can be expressed as

koA + my(ch + edivu + vp) = iwpss.

In this case, we have the system of steady vibration equations of thermoelasticity for materials with
voids based on the Green—Naghdi type III equation of heat conduction.

(iv) If k* > 0 and 7 > 0, then we have system (2.10) of the MGT thermoelasticity for materials
with voids.

2. Let k — 7k* = 0. In this case, if £* > 0, then the last equation of (2.10) reduces now to

E*AO 4+ mq (cf + edivu + yp) = —iwpsa,

where m; = Tow?. Consequently, from (2.10), we obtain the system of steady vibration equations

of thermoelasticity for materials with voids based on the Green-Naghdi type II equation of heat
conduction.

The purpose of this article is to prove the uniqueness theorems for the classical solutions of the
basic BVPs of steady vibrations in the theories of MGT thermoelasticity for materials with voids
under condition (2.11).

Remark 1. The theory of thermoelasticity for materials with voids based on the Green-Naghdi type IT
equation of heat conduction is specific (this is a theory of thermoelasticity without energy dissipation,
the BVPs of steady vibrations are reduced to Fredholm integral equations of the second kind with a
symmetric kernel, etc.), therefore the uniqueness of the solutions to the steady vibration problems of
this theory will be investigated in another work.

3. BAsic BOUNDARY VALUE PROBLEMS

In this section, we introduce the class of five-component regular vector functions, in which we prove
the uniqueness of classical solutions to the basic BVPs of steady vibrations of the MGT thermoelas-
ticity for materials with voids. Then, we establish the radiation conditions and finally, we formulate
the 3D internal and external BVPs of steady vibrations.

Throughout this paper, we assume that the following conditions

>0, 3\ +2u > 0, k—71k* #0, ne—e2 #0 (3.1)
are fulfilled. We will need the following matrix differential operator A(Dy) = (A;;(Dx))5, 5, where
Aij(Dy) = (A + pw?)oi; + (A + p) > Aiu(Dy) =—A (D)—bi
lj x) = K P lj 14 &fclaxj ) 14 x) = 41 x) — 81'1 )
0 0
Ai5(Dx) = —05—, Asa(Dx) = aA +1, Ay5(Dx) = e1, As1(Dx) = meo5—,
Oy oz

o od 0

As4(Dy) =mey,  Ass(Dx) =koA+me,  Dy=(5—, 35— 75—
54(Dx) = mey 55(Dx) oA + mc (83@1 D2y’ s

)7 lvj:17273‘

Obviously, system (2.10) we can be rewritten in the form

A(Dy) U(x) = F(x), (3.2)
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where U = (u, ¢,0) and F = (—pF, —p151, iw(l — iwT)psz) are the five-component vector functions,
and x € Q.
Let B(Dy) be the following matrix differential operator:

woA + pw?  —bA megA
b alA+n meq ,
€0 €1 koA + mc

B(Dx) = (Bij(Dx))33 =
3x3
where g = A+ 2u. Let us introduce the notation

3
det B (A) = [[(A+¢),

j=1

A& = poarkg

where (7, (2 and (2 are the roots of the equation A(—y) = 0 (with respect to x).
We assume that the values (1, (2, (3 and (4 are distinct, Im{; > 0 for negative or complex number

¢? and ¢, >0 for ¢ >0 (I =1,2,3). Here, (4 = \/pw?u~1.
Let S be the surface of a finite domain QF inR3, S € C', 0 < v <1, QF = QtUS, O~ =R3)\QT,

0~ = Q7 US, n(z) be the external (with respect to Q1) unit normal vector to S at z, n = (n1,na, n3),
and 8% be the derivative along the vector n.

Definition 3.1. Vector function U = (U1, Uy, ..., Us) is called regular in Q= (or Q) if
(i) U, eC*(Q)nCHQ) (or U € C*QH)NCHOT));

4
(i) Ux) =Y UV, u¥=w? v, . v, v?ec?a)nci ()
j=1
(i) (A+ U (x) =0 and

(c‘?laxl —i@‘) U (x) = e Mo(x| ™) for x| > 1, (33

where U = U =0, |x| = /a2 + 22+ 22, =1,2,3,4, 1 =1,2,...,5.

It is worth noting that relation (3.3) ensures (for details, see Vekua [58])
UD(x) = SMOo(x|™Y) for [x| > 1, (3.4)

where j = 1,2,3,4, 1 = 1,2,...,5.
Relations (3.3) and (3.4) are the radiation conditions in the linear theory of MGT thermoelasticity
for materials with voids.
Let us introduce the matrix differential operator R(Dx, n), where
R(Dy,n) = (R;j(Dx,n)) R = (Yi—l— n‘i—l—)\ni
X 7 X 5X59 lj MO 4 on 14 Jal'l laxjv
0

Ry = bny, Rj5 = —eony, Ry = a—, Rss = ko—=—,
on on

Ryj = Rys = R5; = R54 =0, [,j=1,2,3.

(3.5)

The basic internal and external BVPs of steady vibrations in the linear theory of MGT thermoe-
lasticity for materials with voids can be formulated as follows:
Find a regular solution to (3.2) for x € Q7 satisfying the boundary condition

Q+91;i£>1zeSU(X) ={U(z)}t =f(z) (3.6)
in the internal Problem (I);f,
lim R(Dy,n(z))U(x) = {R(D,,n(z))U(z)} " = f(2) (3.7)

Qtox—zeS

in the internal Problem (II);E,f.
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Find a regular solution to (3.2) for x € Q~ satisfying the boundary condition

Q_Sl)i(gzesU(x) ={U(z)}” =1(2) (3.8)
in the external Problem (I)g ¢,
lim R(Dx,n(z))U(x) = {R(D,,n(z))U(z)}~ = f(z) (3.9)

Q- >x—z€eS

in the external Problem (II)g ;. Here F and f are the prescribed five-component vector functions.

4. GREEN’S IDENTITY

In this section, Green’s identity of the theory under consideration are established. Based on this
identity, in the next section we prove the uniqueness theorems.
The scalar product of two vectors ¢ = (¢1,¢09,...,¢;) and ¥ = (Y¥1,99,...,1;) is denoted by

l _ _
¢ - =3 ¢;1,;, where 1; is the complex conjugate of ;.
=1
We introduce the following notation:

3

1 — -
WO (u,u) = 5(3)\ + 2p)divudiva’ + % Z (we,j +wjp)(ug ; +ul))
Li=1l#]
S (Do) oy _ 0
3 Pt ox; 8Ij ox; 8xj ’ (4,1)
WU, W) = WO (u,u) — pw?u-u’ + (byp — gof)div’,
WE(U,¢) = aVe - V' —npg’ + (bdiva - e10)¢,

WE(U,0') = kyV0 - VO — m(ch + sodivu + £,0),

where U’ = (u/, ¢/, 0"), 0’ = (v}, u, uf).
We have the following result.

Lemma 4.1. If U = (u,p,0) is a regular vector in Q*, uj,p',0" € CH(QT)N C(Q%),j=1,2,3, then

/ [AD(D,) Ux) - w/(x) + WO (U, )] dx = / R™M(D,,n)U - u' 4,5,
Qt _ S
/ (A DYUE)FE) + WO (U, dx = a / g—ﬁ ¢'d, S, ] (42)
Qt _ o
[AO D) U TG + WO (U,0)] dx = ko / %‘Z 0d,S,
Q+ S

where u' = (u}, uh,us) and

ADDY) = (47 Dx), . A (D) = Ay (D),

AD(D,) = (AT (DY), AP D) = 4y (Dy),

AOD) = (A5(D0) . Af (Do) = 45(Dy),
RY(Dy,n) = (R)(Dyx,n)) . R\)(Dy,n) = Ry;(Dy,n),
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Proof. Clearly, on the basis of our notation, we can write the first Green’s identity of the classical
theory of elasticity in the form (see Kupradze et al. [28])

/ [AO (D) u(x) ') + WO (0, w)] dx = / RO(D,, n)u(z) - '(2) d, S, (4.3)
Q+ S

where
(0) — (40 (0) _ A,
AOD) = (47(1D0), . AP(Dx) = Ay (D).
RO (Dy,m) = (R (Dwn)) . R (Dyn) = Ryy(Dy,m), (4.4)
3x3 :
l,j=1,2,3.

Now, using the well-known identity (see, e.g., [28])

/ {V(p(x) -u'(x) + ¢(x)div u’(x)} dx = /cp(z)n(z) -u/(z) d,S

Q+ S

and relation (4.1), from (4.3), we can obtain the first identity of (4.2).
Furthermore, in a similar manner, in view of (4.1), from the relation

[ 266076 + Vo) - V'] ax = gigzs ¢ (@) d.S,
S

o+
we can obtain the second and third identities of (4.2). O

With the help of Lemma 1 and the radiation conditions (3.3) and (3.4) we have the following
consequence.

Lemma 4.2. If U = (u,9,0) is a regular vector in Q=, u',¢',0' € CH Q)N C(Q) and U’ =
(W', ¢, 0") satisfies condition (3.3), then

/ [A<1><Dx> U(x) - o' (x) + WO (U, )] dx = — / RY(D,,n)U-u'd,S,
o ’ 5
/ AP DUXFR) + WA (U] dx = o [ 95,5, (4.5)
Q- _ o
/ (A (D) U) 07(x) + WO (U,0)] dx = ~ko %WZS'
o S

Lemmas 1 and 2 lead to the following two theorems.

Theorem 4.1. If U = (u,¢,0) is a reqular vector in QF, U’ = (0',¢',0") € CHQT)NC(QF), then

/ [A(Dy) U(x) - U'(x) + W(U, U")] dx — / R(D,,n)U(z) - U'(2) 5, (4.6)
Q+ S

where the matriz differential operator R(D,,n(z)) is defined by (3.5) and
W(U,U) =wH(U) + WU, + WO (U,0).
Theorem 4.2. If U = (u,¢,0) and U = (0, ¢',0") are regular vectors in Q~, then
/ [A(Dy)U(x)-U'(x) + W(U,U")]dx = f/R(Dz, n)U(z) - U'(z) d,S. (4.7)
Q- s

Formulas (4.6) and (4.7) are the first Green’s identity in the linear theory of MGT thermoelasticity
for materials with voids in the domains QF and Q~, respectively.
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5. UNIQUENESS THEOREMS

In this section, we prove the uniqueness theorems for the classical solutions of the basic BVPs of
steady vibrations in the linear theory of MGT thermoelasticity for materials with voids.
We have the following uniqueness theorems.

Theorem 5.1. Two reqular solutions of the internal BVP (I);E,f may differ only for an additive vector
U = (u,p, ), where

0(x) = 0, (5.1)

and the vector V. = (u, ) is a reqular solution of the following system of homogeneous equations:

(1A + pw?)u + [b—(x\+u) }V@ 0,

be (5.2)
(aA+n+1)<p=0,
€0
satisfying the homogeneous boundary condition
{(V(z)}t =0 forzeb. (5.3)

Moreover, the homogeneous BVPs (1)3'70 and (5.2), (5.3) have the same eigenfrequencies.

Proof. We suppose that there are two regular solutions of the BVP (3.2), (3.6). Then their difference

U is a regular solution of the internal homogeneous BVP (I )3‘ o- This means that U is a regular

solution of the system of homogeneous equations
AD,)U(x)=0 (5.4)
for x € Q7 satisfying the homogeneous boundary condition
{U=)}" =0, (5.5)

where z € S.
By virtue of (5.4) and (5.5), from (4.2) for U’ = U it follows that

/ WM (U, u)dx = 0, / WA(U,p)dx =0,
(5.6)
/ wWE(U,0)dx = 0.
a+
Keeping in mind relations (4.1), we get
1 3
WO (a,u) = 2(8X+ 2u) [divul + g S g ugl?
Li=Til#j
3 2
I ou;  Ouj
+3 a3 T A |
3 Z dzx; Oz, (5.7)

WO (U, u) = W<0>( u) — pw?|ul? + (b — 08)div,
W(z) (U,¢) = alVel* = nlef* + (bdiva — £10),
G)(U,0) = ko|VO2 — mc|6)? — m(eodivu + 1)8.
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On the basis of (5.7), we can write
ImW M (U, u) = Im[(b — £00)divl,
ImW 3 (U, ) = Im[(bdivu — £,0)5],
ReW® (U, 0) = k*|VO|> — mic|d]> — miRe [(eodivu + £1¢) 6]

- (5.8)
— wrmyIm [(godiva + £1¢) 0],
ImW (U, 0) = —wk| VO[> + wrmicl]> — myIm [(eodivu + £1¢) 0]
+ wrmiRe [(Eodivu +e190) ﬂ )
Obviously, from (5.8), we have
ImW M (U, u) + ImW P (U, o) = Im[(byp — £o8)diva] + Im[(bdivu — £,6)%]
= —Im [gpfdiva + £10 ] = Im [(Eodivu + 5190)5] ) (5.9)
wrReW (U, 0) + ImW (U, 0) = w(tk* — k)|Vo|?
—(1 + w?r?)m4Im [(eodivu + £1¢)8] .
From (5.9) it follows that
W(U) = w(k — 7k*)|VO]%, (5.10)
where
W(U) = —(1 + w?r)m, [ImW(l)(U, w) + ImW 3 (U, w)}
_ [wTReW(3)(U, 6) + ImW® (U, 9)} .
On the other hand, from (5.6), we get
/W(U)dx =0 (5.11)
O+

and consequently, using the assumption (3.1) and relation (5.10), from (5.11), we can write VO(x) = 0,
ie.,

0(x) = ¢p = const (5.12)
for x € QF. Afterwards, in view of the homogeneous boundary condition (5.5), from (5.12), we get
equation (5.1).

Now, taking into account (5.1), from (5.4) follows the system of equations
(BA + pw?)u + (A + p)Vdiva 4 bV = 0,
(aA 4+ n)p — bdiva = 0, (5.13)

eodivu + €19 = 0.

Obviously, from (5.13), we obtain system (5.2). Moreover, from (5.5) we get the homogeneous bound-
ary condition (5.3).

In addition, it is easy to see that the homogeneous BVPs (I)ar’0 and (5.2), (5.3) have the same
eigenfrequencies. O

Theorem 5.2. Two regular solutions of the internal BVP (II);f may differ only for an additive
vector U = (u, ¢, 0), where 0 satisfies condition (5.1), the vector V = (u, p) is a regular solution of
the system of homogeneous equations (5.2) for x € Q7 satisfying the homogeneous boundary condition

+
{R(Q)(Dz,n(z))V(z)} =0 forzelb, (5.14)
where the matriz differential operator R(?) (D, n(z)) is defined by

R®(Dyn) = (B (Dxm)) . R (Dxn) = Ry(Dxm), Lj=1,234.
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In addition, the homogeneous BVPs (II)?)"O and (5.2), (5.14) have the same eigenfrequencies.

Proof. Let us say that the BVP (3.2), (3.7) has two regular solutions. Then their difference U is a
regular solution of the internal homogeneous BVP (1T )3‘ o- This means that U is a regular solution of
the homogeneous system of equations (5.5) for x € QF satisfying the homogeneous boundary condition

{R(D,,n(z))U(z)}" =0, (5.15)
where z € S.
In a similar manner, as in the previous theorem, we obtain the relations of (5.12). Then, using
(5.12), we can rewrite (5.5) as
(A + pw?)u + (A + p)Vdiva + bV = 0,
(A +n)p —bdivu+e1¢9 =0, (5.16)
cco + pdivu + €10 = 0.
Applying the operator div to the first equation of (5.16), we get
(oA + pw?)diva + bAp = 0,
—bdivu + (A 4+ n)p + e1¢9 = 0, (5.17)
godivu + €1 + cco = 0.
It follows from (5.17) that
Lo + pu? bA 0
det —b aA+n & co = 0.
€0 €1 Cc 3%3

This equation now reduces to pw?(nc — e3)cg = 0. By virtue of (3.1), we find that ¢ = 0 and
consequently, we get equation (5.1).

Furthermore, taking into account (5.1), from (5.16), we obtain system (5.2). Therewith, the bound-
ary condition (5.15) implies relation (5.14).

Finally, it is clear that the homogeneous BVPs (I )g o and (5.2), (5.14) have the same eigenfre-
quencies. O

Theorem 5.3. The external BVP (K)E,f has one regular solution, where K = I,11.

Proof. We suppose that there are two regular solutions of problem (3.2), (3.8) (and (3.2), (3.9)),
then their difference U is a regular solution of the external homogeneous BVP (K)g o (K = I,11)).
Consequently, U is a regular solution of (5.4) for x € Q™ satisfying the homogeneous boundary
condition
{U(z)}” =0 (5.18)

for K =1 and

{R(D,,n)U(z)}” =0 (5.19)
for K = II. In view of (5.4), (5.18) and (5.19), from (4.5), we have

/ WU, u)dx = 0, / W®(U, p)dx =0, / w®(U,0)dx = 0. (5.20)

In a similar way as in Theorem 3, from (5.20) we obtain the relations (5.12) for x € Q. Afterwards,
by virtue of the radiation condition (3.4), from (5.12), we get relation (5.1) for x € Q. Therefore,
from (5.13), we have system (5.2) in Q.

On the basis of (5.2) and the boundary conditions (5.18) and (5.19) the function ¢ satisfies the
Helmholtz equation

b
(aA +n+ ?) p(x)=0, xe€Q, (5.21)
0
and the homogeneous boundary condition
{p(z)} =0 (5.22)
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{gigg }_ =0 (5.23)

for K = II. Keeping in mind the radiation conditions (3.3) and (3.4), the BVPs (5.21), (5.22) and
(5.21), (5.23) have only trivial solution, i.e.,

for K = I and

p(x) =0, xe . (5.24)
Now, taking into account (5.24), the first equation of system (5.2) reduces to
(A+¢u(x)=0 for x € Q7 (5.25)
and from the radiation conditions (3.3) and (3.4), we obtain
- 0 . -
u(x) = O(|x|™), <8|x — ZC4> u(x) =o(jx|™Y), 1=1,2,3, (5.26)
for |x| > 1. Moreover, the boundary conditions (5.18) and (5.19) reduce to
{u(z)} =0 (5.27)
and -
{R(”) (D, n)u(z)} —o, (5.28)

respectively. Here, the matrix differential operator R(?)(D,, n(z)) is defined by (4.4).

Obviously, the BVPs (5.25), (5.27) and (5.25), (5.28) with the radiation conditions (5.26) have
only trivial solution, i.e., u(x) = 0 for x € Q. Therefore, U(x) = 0 for x € ~. Hence, we have the
desired result. O

6. CONCLUSION

1. In the present paper, the linear theory of MGT thermoelasticity for materials with voids is
considered and the following results are obtained:

(i) The governing equations of motion and steady vibrations of this theory are proposed. The basic
system of equations of steady vibrations is expressed in terms of the displacement vector, the changes
of temperature and pores volume fraction.

(ii) The radiation conditions are established and the first Green’s identity is obtained.

(iii) The uniqueness theorems for classical solutions of the internal and external BVPs of steady
vibrations in the theory under consideration are proved.

2. By virtue of the results of this paper it is possible to prove:

(i) the existence theorems for classical solutions of the BVPs of steady vibrations in the theory
of MGT thermoelaticity for materials with voids by using the potential method and the theory of
singular integral equation;

(ii) the uniqueness theorems in the MGT thermoelasticity for materials with multiple voids.
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