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THE CONTACT PROBLEM FOR PIECEWISE-HOMOGENEOUS VISCOELASTIC
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Dedicated to the memory of Professor Elene Obolashvili

Abstract. A piecewise-homogeneous viscoelastic plate, reinforced with a semi-infinite elastic inclu-

sion, which meets the interface of two materials at a right angle and is loaded with normal forces is

considered. The problem is reduced to a two-dimensional singular integro-differential equation with
fixed singularity. Using the methods of the theory of analytic functions, the Carleman type problem

for a strip is reduced to the Volterra integral equation, which is solved approximately by the method

of successive approximations. The normal contact stresses along the contact line are determined and
the behavior of contact stresses in the neighborhood of singular points is established.

Introduction

Exact and approximate solutions of static contact problems for different domains, reinforced with
elastic thin inclusions, stringers and patches of variable rigidity were obtained earlier, and the behavior
of the contact stresses at the ends of the contact line have been investigated [2,3,17,19–21]. The first
fundamental problem was solved for a piecewise-homogeneous plane, when a crack of finite length
approaches the interface of two bodies at the right angle [14], a similar problem was solved for a
piecewise-homogeneous plane under the action of symmetrical normal stresses at the crack sides [7,22],
and also a contact problem was solved for a piecewise-homogeneous plate with a semi-infinite and finite
inclusion [8, 9, 12].

1. Statement of the Problem

Suppose the body occupies a complex plane z = x+ iy, consisting of two dissimilar isotropic half-
planes with viscoelastic properties [2, 4, 10, 18]. The plane is reinforced with a semi-infinite elastic
inclusion which is subjeted to the normal load of intensity p0(x, t). The function p0(x, t) satisfies
Hölder’s condition on an arbitrary finite segment of the interval (0,+∞) [16].

The half-planes S1 = {z | Re z > 0, z ̸∈ l1 = [0,∞)} and S2 = {z | Re z < 0} are connected along
the Oy−axis. The quantities and functions related to the half-planes Sk we denote by the index k
(k = 1, 2), and the boundary values of the functions on the upper and lower edges of the inclusion are
denoted by the signs (+) and (−), respectively (Figure 1).

The contact conditions along the interface are of the form

σ(1)
x = σ(2)

x , τ (1)xy = τ (2)xy , u1 = u2, v1 = v2. (1.1)

On the boundary of interaction of the elastic inclusion and half-plane S1, the following conditions

σ(l)+
y − σ(l)−

y = p(x, t), τ (l)+xy − τ (l)−xy = 0,

u+1 − u−1 = 0, ν+1 = ν−1 = ν(x, t),
(1.2)

D0
d4ν0(x, t)

dx4
= p0(x, t)− p(x, t), x > 0, (1.3)

ν0(x, t) = ν(x, t), (1.4)
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l1

[p(x, t)− p0(x, t)]dx = 0,

∫
l1

x[p(x, t)− p0(x, t)]dx = 0, (1.5)

are valid, where (1.2) represents the jumps of the stress components and displacements of plate points
on the contact line, (1.3) is the equation of bending of an elastic inclusion, (1.4) is the condition of
rigid contact between the plate and the inclusion, (1.5) are equilibrium conditions of the inclusion.
D0 is bending rigidity of the inclusion material.

Figure 1

In the theory of viscoelatisity we have the formulas of Kolosov–Muskhelishvili’s type [13]:

σ(k)
y − iτ (k)xy = Φk (z, t) + Φk (z, t) + zΦ′

k (z, t) + Ψk (z, t), (1.6)

(I − L)
[
κkΦk (z, t)− Φk (z, t)− zΦ′

k (z, t)−Ψk (z, t)
]
= 2µk (n

′
k + iν′k) , (1.7)

where (I − L)gk (t) = gk (t) −
t∫
t0

Ek
∂
∂τCk (t, τ) gk (τ) dτ , 2µk = Ek

1+νk
, κk = 3 − 4νk, (in the case of

plane strain) or κk = (3 − νk)/(1 + νk) (in the case of generalized plane stress), k = 1, 2. Ck(t, τ) =
φk(τ)(1−e−γ(t−τ)) and Ek are the creep measure and the Young module of the materials, respectively.
Here, φk(τ) is known as the ageing function, and the function (1−e−γ(t−τ)) characterizes the hereditary
properties of a materials, t0 is the ageing of the material at the beginning of loading.

Besides, the Poisson plate coefficients for the elastic-instant deformation vk(t) and creep deforma-
tion vk(t, τ) are the same and constant: νk(t) = νk(t, τ) = νk = const.

From relations (1.6), (1.7), we obtain the following boundary value problems of linear conjugation:

Φ+
1 (x, t)− Φ−

1 (x, t) =
1

κ1 + 1
p(x, t),

Ψ+
1 (x, t)−Ψ−

1 (x, t) =
κ1 − 1

κ1 + 1
p(x, t)− 1

κ1 + 1
xp′(x, t), x > 0.

The general solutions of these problems are represented as follows [15]:

Φ1 (z, t) = A1(z, t) +W1(z, t), Ψ1 (z, t) = B1(z, t) +Q1(z, t), (1.8)

where

A1(z, t) =
1

2π(κ1 + 1)i

∞∫
0

p(x, t)dx

x− z
, B1 (z, t) =

κ1 − 1

2π(κ1 + 1)i

∞∫
0

p(x, t)dx

x− z

− 1

2π(κ1 + 1)i

∞∫
0

xp′(x, t)dx

x− z
,
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W1(z, t) and Q1(z, t) are unknown analytic functions in the half-plane S1, which will be defined from
the contact conditions (1.1) at the interface.

Using the methods of the theory of analytic functions (particularly, using the Cauchy theorems),
the sought analytic functions are represented in the following form:

W1(z, t) = −e1t1
∫
l1

xp′(x, t)dx

x+ z
+ e1t1

∫
l1

xp(x, t)dx

(x+ z)
2 + e1t1(κ1 − 1)

∫
l1

p(x, t)dx

x+ z
,

Φ2(z, t) = h3t1

∫
l1

p(x, t)dx

x− z
,

Q1(z, t) = −e1t1
∫
l1

x2p′(x, t)dx

(x+ z)
2 +m1t1

∫
l1

p(x, t)dt

x+ z
+ e1t1(κ1 − 1)

∫
l1

xp(x, t)dx

(x+ z)
2

+e1t1z

∫
l1

p(x, t)dx

(x+ z)
2 + 2e1t1z

∫
l1

xp(x, t)dx

(x+ z)
3 ,

Ψ2(z, t) = (h3 − h4)t1z

∫
l1

p(x, t)dx

(x− z)2
− h4t1

∫
l1

xp′(x, t)dx

x− z
+ (h4(κ1 − 1) +m1)t1

∫
l1

p(x, t)dt

x− z
, (1.9)

where t1 =
1

2πi(κ1 + 1)
, e1 =

µ2 − µ1

κ1µ2 + µ1
, e2 =

µ2 − µ1

κ2µ1 + µ2
,

m1 = (κ1 + 1)µ2

[
1

κ2µ1 + µ2
− 1

κ1µ2 + µ1

]
= h2 − h4,

m2 = (κ2 + 1)µ1

[
1

κ2µ1 + µ2
− 1

κ1µ2 + µ1

]
= h3 − h1,

h1 =
(κ2 + 1)µ1

κ1µ2 + µ1
, h2 =

(κ1 + 1)µ2

κ2µ1 + µ2
, h3 =

(κ2 + 1)µ1

κ2µ1 + µ2
, h4 =

(κ1 + 1)µ2

κ1µ2 + µ1
.

Relations (1.8), (1.9) and (1.6), (1.7) result in

(κ1 + 1)Φ1(z, t) =
1

2πi

∫
l1

p(y, t)dy

y − z
+
e1κ1

2πi

∫
l1

p(y, t)dy

y + z
,

2µ1
dν(x, t)

dx
= (κ1 + 1)(I − L)ImΦ1(x, t).

(1.10)

It is required to determine the law of distribution of normal contact stresses p(t, x) on the contact
line, the asymptotic behavior of these stresses at the end of the inclusion.

To define the unknown contact stresses from (1.3), (1.10), we obtain the following two-dimensional
integro-differential equation:

−D0
d4

dx4
(I − L)

{
1

4πµ1

∞∫
0

p(t, y)dy

y − x
+
e1κ1

4πµ1

∞∫
0

p(t, y)dy

y + x

}
= p0(t, x)− p(t, x), x > 0. (1.11)

The inclusion equilibrium condition has the form

∞∫
0

[p(t, y)− p0(t, y)]dy = 0,

∞∫
0

y[p(t, y)− p0(t, y)]dy = 0. (1.12)

Introducing the notation

ψ(t, x) =

x∫
0

ds

s∫
0

[p0(t, y)− p(t, y)]dy, f(t, x) =

∞∫
0

p0(t, y)dy

y − x
+ e1κ1

∞∫
0

p0(t, y)dy

y + x
,
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from (1.11) and (1.12), we obtain the two-dimensional singular integro-differential equation with a
fixed singularity

D0

4πµ1
(I − L)


∞∫
0

ψ′′(t, y)dy

y − x
+ e1κ1

∞∫
0

ψ′′(t, y)dy

y + x


=

x∫
0

ψ(t, y)dy + (I − L)
D0

4πµ1
f(t, x), x > 0, (1.13)

and with the boundary conditions

ψ(t, 0) = ψ(t,∞) = 0, ψ′(t, 0) = ψ′(t,∞) = 0. (1.14)

(The constant of integration vanishes, since the rotation at the inclusion end is neglected, i.e.,
dν0(x,t)
dx |x=0 = 0, the integral for y = x is understood in the sense of the Cauchy principal value).
Suppose that the function p0(t, x) is continuous and integrable on the interval (0,∞) and satisfies

the conditions
∞∫
0

p0(t, x)dx = 0, p0(t, x) = O(xε), x→ 0+, p0(t, x) = O(x−2+ε), x→ ∞ (1.15)

(ε is an arbitrary small positive number).

2. Solution of the Integro-differential Equation

We are going to find a solution of problem (1.13) and (1.14) in the class of functions whose second
derivative may have integrable singularities at the point x = 0 and which vanishes at infinity. The
change of the variables x = eξ, y = eξ yields

λ

π
(1− L)

∞∫
−∞

[
1

1− eξ−ζ
+

e1κ1

1 + eξ−ζ

]
[ψ′′

0 (t, ζ)− ψ′
0(t, ζ)] e

−2ζdζ =

ξ∫
−∞

eτψ0(t, ζ)dζ

+
λ

π
(1− L)f0(t, ξ), |ξ| <∞ ψ0(t,±∞) = 0, ψ′

0(t,±∞) = 0, (2.1)

where ψ0(t, ξ) = ψ(t, eξ), f0(t, ξ) = f(t, eξ), λ = D0

4µ1
.

Owing to the generalized Fourier transformation [11] of both parts of equation (2.1), we obtain

λ(s− i)(s− 2i)sG(s)(I − L)Ψ(t, s) = Ψ(t, s− 3i) + F (t, s), s = s0 + iε, |s0| <∞, (2.2)

where G(s) = cthπs+ e1κ1

shπs ,

Ψ(t, s) =
1√
2π

∞∫
−∞

ψ0(t, ξ)e
isξdξ, F (t, s) = λ(s− 2i)G(s)(I − L)P̂0(t, s− 2i),

P0(t, ξ) = p0(t, e
ξ), P̂0(t, s) =

1√
2π

∞∫
−∞

P0(t, ξ)e
iξζdξ.

It follows from condition (1.15) that the function P̂0(t, z) is analytic in the strip −2 + ε < Im z < ε,
therefore the function F (t, z) is analytic in the strip ε < Imz < 2 + ε and exponentially vanishes at
infinity.

The Carleman type problem for a strip is formulated as follows: find the function Ψ−(t, z), which
is analytic in the strip −3+ ε < Im z < 3+ ε (with the exception of a finite number of points lying in
the strip ε < Im z < 3 + ε, at which it has the first order poles), continuously extendable to the strip
boundary, vanishing at infinity and satisfying condition (2.2) [5, 6].
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If we find the function Ψ−(t, z), holomorphic in the strip −3 + ε < Imz < ε and continuously
extendable to the strip boundary, vanishing at infinity and satisfying condition (2.2), then the solution
of the Carleman type problem is the function

Ψ0(t, z) =


(I − L)Ψ−(t, z), −3 + ε < Imz < ε,

Ψ−(t, z − 3i) + F (t, z)

λz(z − i)(z − 2i)G(z)
, ε < Imz < 3 + ε.

(2.3)

Representing the function sG(s)(s− i)(s− 2i) in the form

sG(s)(s− i)(s− 2i)

= is
(
cthπs+

e1κ1

shπs

)
th(πs/6)

sin(π/6)(s− 3i)

sh(πs/6)

s− i

s+ 2i

2s+ 3i

2s− 3i
(s2 + 4)

2s− 3i

2s+ 3i
,

taking into account that the index of the function G0(s) =
(
cthπs+ e1κ1

shπs

)
th(πs/6) s−is+2i

2s+3i
2s−3i on the

real axis is equal to zero, G0(±∞) = 1 and the function lnG0(s) is integrable on this axis, we obtain

G0(s) =
X0(s− 3i)

X0(s)
, |s| <∞, (2.4)

where X0(z) = exp
{

1
6i

∞∫
−∞

lnG
0
(s) cth π

3 (s− z)ds
}
.

The function X0(z) is holomorphic in the strip, continuous on this boundary, bounded in the closed
strip −3 ≤ ln z ≤ 0 and vanishing at infinity.

Remark. Let us solve the following functional equations:

χ(s− iα) = λ(β + is)χ(s), χ(s) = (β − is)χ(s− iα), α, β, λ > 0.

By the Fourier transformation, we obtain respectively the first order differential equations

χ̃′(y) +
(
β − 1

λ
e−xy

)
χ̃(y) = 0, χ̃′(y) + (eαy − α− β) χ̃(y) = 0,

the solutions of these differential equations and the inverse Fourier transform give

χ(z) =M1

∞∫
−∞

exp
{
− βs− 1

λα
e−αs − isz

}
ds =M1λ

β+iz
α α

β+iz
α −1Γ

(β + iz

α

)
,

χ(z) =M2

∞∫
−∞

exp
{
− 1

α
eαs + (α+ β)s− isz

}
ds =M2α

β−iz
α Γ

(α+ β − iz

α

)
,

where Γ(z) =
∞∫
0

e−ττz−1dτ is the well-known Gamma-function, M1 and M2 are the constants.

As a result from the remark, the function s2 + 4 = (2− is)(2 + is) can be written as follows:

s2 + 4 =
X1(s− 3i)

X1(s)
, (2.5)

where X1(z) = 3(2iz/3)−2 Γ((2+iz)/3)
Γ((5−iz)/3) . Introducing the notation Ψ1(t, z) = izΨ−(t,z)

X0(z)X1(z) sh(πz/6)(z+3i/2) ,

from (2.2), (2.4), (2.5), we get

λ(3 + is)(I − L)Ψ1(t, s)

= Ψ1(t, s− 3i) +
iF (t, s)(3 + is)

X0(s− 3i)X1(s− 3i)ch(πs/6)(s− 3i/2)
, |s| <∞. (2.6)

Considering the relation

λ(3 + is) =
X2(s− 3i)

X2(s)
, (2.7)
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where X2(z) = λ(3+iz)/33iz/3Γ((3 + iz)/3), condition (2.6) will take the following form:

(I − L)Ψ2(t, s) = Ψ2(t, s− 3i)

+
iF (t, s)(3 + is)

X0(s− 3i)X1(s− 3i)X2(s− 3i)ch(πs/6)(s− 3i/2)
, |s| <∞,

where Ψ2(t, s) =
Ψ1(t,s)
X2(s)

.

As a result, the Carleman type boundary condition (2.2) is presented in the form

(I − L)
Ψ−(t, s)

X(s)
=

Ψ−(t, s− 3i)

X(s− 3i)
+ P (t, s), |s| <∞, (2.8)

where

X(z) =
X0(z)X1(z)X2(z) shπz/6

iz
(z + 3i/2), P (t, s) =

F (t, s)

X(s− 3i)
.

Since the function X0(z) is holomorpic in the strip 3 < Im z < 0 and bounded in the closed strip,
using Stirling’s formula for the Gamma function [1], we conclude that the function X(z) for sufficiently
large |z| admits the following estimate:

X(z) = O(|s|−ω−1/2
), |s| → ∞, z = s+ iω, −3 ≤ ω ≤ 0. (2.9)

Moreover, by choosing the constants M1, M2 mentioned in our Remark, the function X(z) satisfies
the condition

lim
|s|→∞

|X(z)| |s|ω+1/2
= 1, z = s+ iω, −3 ≤ ω ≤ 0.

The function Φ(t, z) = Ψ−(t,z)
X(z) is holomorphic in the strip −3 < ln z < 0, with the exception of the

point z = −3i/2, at which it may have the first order pole. Applying the Fourier transformation to
(2.8), we obtain the Volterra second order integral equation[

e−3w + (I − L)
]
Φ̂(t, w) = P̌ (t, w) +A(t)e−3w/2, (2.10)

where Φ̂(t, w) = 1√
2π

∞∫
−∞

Φ(t, s)eiswds, P̌ (t, w) = 1√
2π

∞∫
−∞

P (t, s)eiswds, A(t) is an unknown function.

The Volterra integral equation (2.10) is equivalent to the second order differential equation

¨̂
Φ(t, w) + γα(t, w)

˙̂
Φ(t, w) = g(t, w) (2.11)

with the initial conditions

Φ̂(τ0, w) = [P̌ (τ0, w) +A(τ0)e
−3w/2](1 + e−3w)−1,

˙̂
Φ(τ0, w) = [ ˙̌P (τ0, w)− γE1φ1(τ0)P̌ (τ0, w)(1 + e−3w)−1](1 + e−3w)−1

+[Ȧ(τ0)− γE1φ1(τ0)A(τ0)(1 + e−3w)−1]e−3w/2(1 + e−3w)−1,

α(t, w) = 1 + E1φ1(t)(1 + e−3w)−1, g(t, w) = [g0(t, w) + T (t)e−3w/2](1 + e−3w)−1

g0(t, w) =
¨̌P (t, w) + γ ˙̌P (t, w), T (t) = Ä(t) + γȦ(t),

·
□ ≡ ∂

∂t
, □̈ ≡ ∂

∂t
.

Integrating the differential equation (2.11) and fulfilling the initial conditions, we obtain the ex-
pression

Φ̂(t, w) =
{
P̆ (t, w) +A(t)e−3w/2 + F1(t, τ0, w) + F2(t, τ0, w)

}
(1 + e−3w)−1, (2.12)

where

F1(t, τ0, w) = γP̌ (τ0, w)φ1(τ0)(1 + e−3w)−1

t∫
τ0

exp(−γb(w, τ, τ0))dτ
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−γ
t∫

τ0

exp(−b(w, τ, τ0))dτ
τ∫

τ0

(α(q, w)− 1) exp(γb(w, q, τ0))P̄ (q, w)dq,

F2(t, τ0, w) = γA(τ0)φ1(τ0)(1 + e−3w)−1e−3w/2

t∫
τ0

exp(−γb(w, τ, τ0))dτ

−e−3w/2γ

t∫
τ0

exp(−γb(w, τ, τ0))dτ
τ∫

τ0

(a(q, w)− 1) exp(γb(w, q, τ0))Ȧ(q)dq,

b(w, τ, τ0) =

τ∫
τ0

a(p, w)dp = (τ − τ0) + E1ψ1(τ, τ0)(1 + e−3w)−1, ψ1(τ, τ0) =

τ∫
τ0

φ1(p)dp.

By the inverse integral transformation of equality (2.12) and using the generalized Parseval’s for-
mula, we obtain

Ψ−(t, z) =
X(z)

3i

√
2

π

∞∫
−∞

F (t, s)ds

X(s− 3i) shπ(s− z)/3
+
A(t)X(z)

chπz/3

+X(z)γφ1(τ0)

t∫
τ0

Q
(1)
1 (τ, z)dτ −X(z)γ

t∫
τ0

dτ

τ∫
τ0

Q
(1)
2 (τ, q, z)dq +X(z)γφ1(τ0)A(τ0)

t∫
τ0

Q̄
(2)
1 (τ, z)dτ

−X(z)γ

t∫
τ0

dτ

τ∫
τ0

Q̃
(2)
2 (τ, q, z)Ȧ(q)dq, (2.13)

where

Q̃
(1)
1 (τ, z) =

∞∫
−∞

exp(−γb(w, τ, τ0))P̌ (τ0, w)e−iwzdw
(1 + e−3w)

2 ,

Q̃
(1)
2 (τ, q, z) =

∞∫
−∞

exp(−γb(w, τ, τ0))(α(q, w)− 1) exp(γb(w, q, τ0))
˙̆
P (q, w)e−iwzdw

1 + e−3w
,

Q̃
(2)
1 (τ, z) =

∞∫
−∞

exp(−γb(w, τ, τ0))e−3w/2e−iwzdw

(1 + e−3w)
2 ,

Q̃
(2)
2 (τ, q, z) =

∞∫
−∞

exp(−γb(w, τ, τ0))(α(q, w)− 1) exp(γb(w, q, τq))e
−3w/2e−iwzdw

1 + e−3w
.

Since the function G(z) has zeros at the points z = ± i
πarccos(−e1κ1) + 2ki, |e1κ1| < 1 and has the

poles at the points z = ki, k = 0,±1,±2, . . . , therefore the function Ψ
0
(t, z), represented by (2.3), is

holomorphic in the strip −3 < Im z < 3, with the exception of the points z0 = y0i, z1 = (2− y0)i, . . . ,
y0 = 1

π arccos(−e1κ1), 0 < y0 < 1, at which it has the first order poles. It follows from (2.9), (2.13)
that function Ψ0(t, z) exponentially vanishes at infinity.

To define the function A(t), from formula (2.3), by satisfying the condition

Ψ−(t, i(y0 − 3)) = 0, t ≥ τ0,

we obtain the Volterra second order integral equation

Ȧ(t) +

t∫
τ0

R(τ, q)Ȧ(q)dq = R0(t), (2.14)
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where

R(t, q) = γ cos
πy0
3
Q̃

(2)
2 (t, q, i(y0 − 3)),

R0(t) = cos
πy0
3

[
− 1

3i

√
2

π

∞∫
−∞

Ḟ (t, s)ds

X(s− 3i) sh(π/3)(s− iy0)

+γφ1(τ0)[Q̃
(1)
1 (t, i(y0 − 3)) +A(τ0)Q̃

(2)
1 (t, i(y0 − 3))]

]

−γ cos πy0
3

t∫
τ0

Q̃
(1)
2 (t, q, i(y0 − 3))dq. (2.15)

Equation (2.14) admits the application of the method of successive approximations.
Accordingly, the function Ψ

0
(t, z) has the pole (closest to the real axis in the strip 0 < Im z < 3)

of first order at the point z1 = (2− y0)i.
Using the Cauchy formula and the residue theorem, applying the inverse Fourier transformation,

we obtain [11]

ψ′
0(t, lnx) = − i√

2π

∞∫
−∞

sΨ0(t, s)e
−is ln xds = − ix3√

2π

∞∫
−∞

(s+ 3i)Ψq(t, s+ 3i)e−is ln xds

+
√
2πres

[
sΨ0(t, s)e

−is ln x]
s=(2−y0)i

= x3q1(t, x) + C1(t)x
2−y0 ,

ψ′′
0 (t, lnx) = − 1√

2π

∞∫
−∞

s2Ψ0(t, s)e
−is ln xds = x3q2(t, x) + C2(t)x

2−y0 ,

where qj(t, x), Cj(t) are the known functions and qj(t, 0+) = qj(t) ̸= 0, j = 1; 2,

Cj(t) =
√
2π(−1)jij+1

[
sj−1 [Ψ−(t, s− 3i) + F (t, s)]

[λ(s− i)(s− 2i)G(s)]
′
s

]
s=(2−y0)i

, j = 1; 2, (i2 = −1).

Based on the formula ψ′′(t, x) =
ψ′′

0 (t,ln x)−ψ′
0(t,ln x)

x2 , for the sought function, we obtain the following
estimate:

ψ′′(t, x) = x−y0C̃(t) + xq̃(t, x),

where

C̃(t) = C2(t)− C1(t), q̃(t, x) = q2(t, x)− q1(t, x), y0 =
1

π
arccos(−e1κ1), 0 < y0 < 1.

Therefore, the normal contact stresses in the neighborhood of the point x = 0 have the following
behavior:

p(t, x)− p0(t, x) = ψ′′(t, x) = x−y0(C̃(t) + ε(t, x)),

where ε(t, x) = x1+y0 q̃(t, x) is a continuous function on the semi-axis x ≥ 0, and

ε(t, x) = O(x1+y0), x→ 0 + .

With a similar reasoning, we can conclude that the normal contact stresses vanish at infinity with the
power greater than three.

Conclusion. The following conclusions are valid:
a) If e1 < 0, (µ2 < µ1), then 0 < y0 < 1/2, therefore, the normal contact stresses have singularities

of order less than 1/2.
b) If e1 < 0, (µ2 > µ1), then 1/2 < y0 < 1, therefore, the normal contact stresses have integrable

singularities of order greater than 1/2.
c) If e1 = 0, (µ2 = µ1), then y0 = 1/2 and the normal contact stresses have singularities of square

root order.
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