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HARMONIC NEUMANN FUNCTIONS FOR FINITE

PARQUETING-REFLECTION DOMAINS

HEINRICH BEGEHR1 AND HANXING LIN2

Dedicated to the memory of Professor Elene Obolashvili

Abstract. The harmonic Green and Neumann functions are indispensable for solving boundary

value problems for the Poisson equations. Their existence and properties are well known and in-

cluded in all relevant textbooks. But explicit expressions are rarely offered except for simple domains
like balls and half-spaces, although for practical problems in physics and engineering, explicit rep-

resentations of solutions for boundary value problems are important. The parqueting-reflection

principle offers a method for determining these fundamental solutions to the Laplace operator for
certain circular polygons in the plane. In particular, the Neumann functions are problematic as they

depend on some density function on the boundary of the domain. Different density functions deter-
mine various Neumann functions. However, the density function determines the related Neumann

function uniquely. An example is offered showing how various Neumann functions create differ-

ent solutions to the Neumann boundary value problem and different related solvability conditions.
Knowing a Neumann function, one can calculate its density. An advantage of the method is that

a possible density function becomes available prior to the Neumann function. As a side effect, the

conformal invariance of the Neumann function is shown as a consequence of its invariance under
inversive transformations.

1. Parqueting-reflection Principle

The explicit construction of certain kernel functions for the formulas for representation of complex
smooth functions in circular polygons of the complex plane becomes possible due to the parqueting-
reflection principle [12]. Such kernels are, e.g., the analytic Schwarz kernels, harmonic Green and Neu-
mann functions [16,17]. The principle consists in reflecting the circular domainD, bounded by sections
of circles and straight lines, so that the continued reflections at the boundary arcs cover the complex
plane completely without overlapping. The trace of a point z ∈ D in this procedure leads to some
(formal) meromorphic functions P (z, ζ), Q(z, ζ) in C, depending on z as a parameter, having a simple
pole at the point z and either simple zeros or simple poles at the other trace points. log |P (z, ζ)|2,
log |Q(z, ζ)|2 serve respectively as harmonic Green and Neumann functions for the domain D. This
procedure works well in case of finite parqueting-reflection domains, i.e., circular domains providing
a finite set of reflected domains that cover the plane. For infinite parqueting-reflections domains
[1,9,11,16], convergence problems occur for the meromorphic functions leading to the Neumann func-
tion as determined just by (infinitely many) simple poles [16,18–21]. Convergence guaranteeing factors
have to be introduced not changing the polar behavior and contributing only a harmonic alteration
of the Neumann function. Because of the relative arbitrariness of the alteration, no normalization
condition for the Neumann function can be guaranteed. Hence the Neumann function is not uniquely
defined, in general. The uniqueness, however, is not essential for solving the Neumann boundary value
problem for the Poisson equation. Examples are available, e.g., in [5–7,10,11,14].

The Neumann function is characterized by its properties [1–3].

Definition 1.1 (Neumann function). A real-valued function N1(z, ζ) is called harmonic Neumann
function for a regular domain D, if it satisfies for any ζ ∈ D the properties:

• N1( · , ζ) is harmonic in D \ {ζ} and continuously differentiable in D \ {ζ};
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• h2(z, ζ) = N1(z, ζ) + log |ζ − z|2 is harmonic in D ×D;
• ∂νz

N1(z, ζ) = σ(s) for z = z(s) ∈ ∂D, ∂νz
is the outward normal derivative on ∂D and s is

the arc length parameter of ∂D. The density function σ is a real-valued, piecewise continuous

function of s with finite mass

∫
∂D

σ(s)ds;

•
∫
∂D

σ(sz)N1(z, ζ) dsz = 0 (normalization condition).

Remark 1.1. Naturally, the domainD is required to be regular, i.e., its boundary is piecewise smooth.
If the density function σ(s) is known, then the Neumann function is uniquely defined (see below
Section 3, Lemma 3.2). But there is some freedom in prescribing σ(s) [15]. While the Green function
for a domain is uniquely defined, the Neumann function may vary and hence, different solutions to
the Neumann boundary value problem for the Poisson equation are available under various solvability
conditions. An example is given in Section 4.

2. Finite Parqueting-reflection Domains

A detailed discussion of the subject in this section is available from the Ph.D. thesis [16] (see
also [17]). Some basics are extracted here.

Generalized circles are circles and lines on the (extended) complex plane C∞. They are uniquely
described as

azz + bz + bz + c = 0, a, c ∈ R, b ∈ C, ac− |b|2 < 0. (2.1)

For lines a = 0, circles are given for a ̸= 0 and they are expressible as∣∣∣z + b

a

∣∣∣2 =
|b|2 − ac

a2
.

The use of homogeneous coordinate representation is convenient for commonly describing circles and
lines (see [13,16]). Replacing z by [z : w], representation (2.1) becomes

azz + bzw + bzw + cww = 0, [z : w] ̸= [0 : 0].

Obviously, this relation is characterized by the 2× 2 Hermitian matrix

A =

(
a b
b c

)
with detA < 0. Hence

H− = {A : A ∈ GL2(C), A∗ = A,detA < 0}
corresponds to the set of circles and lines in the complex plane C, where A∗ is the complex conjugate
transpose of A. Two elements A and B from H− correspond to the same curve in C if they are related
via A = λB with some non-zero λ ∈ R. This fact is helpful in further treatment and corresponds
to an equivalence relation in H−. A point ζ ∈ C is reflected at the generalized circle (2.1) onto ζre,
satisfying the relation

aζreζ + bζre + bζ + c = 0.

Hence

ζre = − bζ + c

aζ + b
.

Using homogeneous coordinates, this reflection can be described by introducing the product rule

[z : w]

(
a b
c d

)
= [az + cw : bz + dw]

and the convention [z : w] = [z : w]. Introducing the 2× 2−matrix

P =

(
0 1
−1 0,

)
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the reflected point [ζre : ωre] at the circle (2.1) of the point [ζ : ω] can be calculated (see [13,16]) via

[ζre : ωre] = [−bζ − cω : aζ + bω] = [ζ : ω]AP.

The reflection at A is denoted by RA. Reflections leave the set of circles and lines invariant. In
particular, the image of a circle B at a circle A is the circle AB−1A. (For a proof see [13, 16]). Thus
for A = B, obviously, A remains unchanged. Reflections preserve the magnitude of angles, but reverse
their orientation. A consequence is the relation AB−1A = B, where the equality is meant in the sense
of H− as equality of the respective equivalent classes, in case A and B are orthogonal to one another.
The composition of two reflections is a Möbius transformation. With regard to the composition, all
reflections form a group, the group of inversive transformations, with the Möbius group as a subgroup.

Lemma 2.1 (Consecutive reflections). For two circles or lines A0, A1, let Ak+1 be the reflection of
Ak−1 at Ak, Ak+1 = AkA

−1
k−1Ak (and Ak−1 the reflection of Ak+1 at Ak, Ak−1 = AkA

−1
k+1Ak), then

Ak+1 = A0[A
−1
0 A1]

k+1 = A1[A
−1
0 A1]

k for k ∈ Z.

The proof is simple inductive. A consequence is

AkA
−1
l Am = Ak−l+m for k, l,m ∈ Z,

in particular, A−kA
−1
0 Ak = A0 for any k ∈ Z. Thus, the reflection at the circle A−kA

−1
0 Ak is achieving

the same as reflection at A0 itself, i.e., RA0
= RA−k

◦RA0
◦RAk

for any k ∈ Z. This can be written as

RA−1 ◦RA−2 ◦ · · · ◦RA−k
◦RA0 ◦RAk

◦RAk−1
◦ · · · ◦RA1 = RA0 .

Definition 2.1. Two domains D1, Dn, n ∈ N, are called reflective congruent, if there exists a set of
domains {Dk : 1 ≤ k ≤ n− 1} such that Dk+1 is the reflection of Dk for 1 ≤ k ≤ n− 1.

Two possibilities occur. Either an even number of reflections is needed, then the two domains are
conformally equivalent by a Möbius transformation of the form

φ(z) =
az + b

cz + d
, ad− bc ̸= 0,

or an odd number of reflections is required, so that an inverse orientation– reversing transformation
of the form

ϕ(z) =
αz + β

γz + δ
, αδ − βγ ̸= 0,

connects the two domains.

Definition 2.2. A circular domainD, whose boundary consists of finitely many circular arcs, provides
a parqueting of the complex plane C∞ via reflection, if there exist a finite or countable index set I
and reflective congruent domains Dν , ν ∈ I to D, satisfying

Dν ∩Dµ = ∅ for ν ̸= µ,
⋃
ν∈I

Dν = C∞.

Definition 2.3. If the index set J of the boundary decomposition ∂D =
⋃

j∈J Cj of a circular
domain D is finite, where Cj are circle arcs, the reflection at which are denoted by rj , then their
generated group of inverse transformations is called the inverse group of D, denoted by

Inv(D) =< rj : j ∈ J > .

The subset
M(D) = {T ∈ Inv(D) : T product of even many rj

′s}
of Möbius transformations form a subgroup and the complementary subset is given as

Inv(D) \M(D) = rjM(D) = M(D)rj ,

for any j ∈ J .

Definition 2.4. For z ∈ D, the set T (z) = N(z) ∪ P (z) with

N(z) = {φ(z) : φ ∈ M(D)}, P (z) = {ϕ(z) : ϕ ∈ Inv(D) \M(D)}
is the trace of z ∈ D under the reflections from Inv(D) in C∞.
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In case z ∈ Cj , since z = rj(z), therefore φ(z) = φ(rj(z)) for all φ ∈ M(D).

3. Neumann Function for Finite Parqueting Domains

Let D be a finite parqueting domain with an inverse group Inv(D) and Möbius transformation

subgroup M(D). Denoting Dj = φj(D), D̂j = ϕj(D), φj ∈ M(D), ϕj ∈ Inv(D) \M(D), j ∈ J , and
for z ∈ D

zj = φj(z) =
ajz + bj
cjz + dj

, ẑj = ϕj(z) =
αjz + βj

γjz + δj
,

we introduce their denominators

den(zj) = cjz + dj , den(ẑj) = γjz + δj .

To define a Neumann function for the finite parqueting domain D from the trace points T of the
point z ∈ D, we use the function ∏

j∈J

|(ζ − ẑj)(ζ − zj)|2.

Lemma 3.1. The normal derivatives at the circular arc C, aζζ + bζ + bζ + c = 0, from ∂D for the
function log |(ζ − ẑ)(ζ − z)|2, ζ, z ∈ D, aẑz + bẑ + bz + c = 0, are given as:

∂νζ
log |(ζ − ẑ)(ζ − z)|2 =

2a

r
, for ζ ∈ C, z ∈ C \ C,

∂νz log |(ζ − ẑ)(ζ − z)|2 = 0, for z ∈ C, ζ ∈ C \ C,

∂νz
log |(ζ − ẑ)(ζ − z)|2 =

2

r

[
a− aζ + b

ζ − z
− aζ + b

ζ − z

]
for z, ζ ∈ C.

Proof. Observing aζζ + bζ + bζ + c = 0 for ζ ∈ C, the relation

aζ + b

ζ − ẑ
=

(aζ + b)(az + b)

ζ(az + b) + bz + c
=

(aζ + b)(az + b)

z(aζ + b) + bζ + c
=

az + b

z − ζ
= a− aζ + b

ζ − z

provides

∂νζ
log |(ζ − ẑ)(ζ − z)|2 =

2

r
Re

[
a− aζ + b

ζ − z
+

aζ + b

ζ − z

]
=

2a

r
,

for ζ ∈ C, z ∈ C.
For z ∈ C, where ẑ = z, we have

∂νz log |(ζ − ẑ)(ζ − z)|2 =
2

r
Re

[az + b

ζ − ẑ

r2

(az + b)2
− az + b

ζ − z

]
=

2

r
Re

[az + b

ζ − z
− az + b

ζ − z

]
= 0

for z ∈ C, ζ ∈ C \ C. Here, for the next to the last equality

r2

(ζ − ẑ)(az + b)
=

az + b

ζ − ẑ

and ẑ = z are used.
Finally, for z, ζ ∈ C, from

az + b

ζ − ẑ

(az + b)(aζ + b)

(az + b)(aζ + b)
=

r2(aζ + b)

r2(z − ζ)

follows

∂νz
log |(ζ − ẑ)(ζ − z)|2 =

2

r
Re

[az + b

ζ − ẑ
− az + b

ζ − z

]
=

2

r
Re

[
a− aζ + b

ζ − z
− aζ + b

ζ − z

]
. □

Theorem 3.1. A Neumann function for the finite circular parqueting domain D and the trace points
zj, ẑj, j ∈ J for z ∈ D is given by

N1(z, ζ) = − log
∏
j∈J

|(ζ − zj)(ζ − ẑj) den(zj) den(ẑj)|2.
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Proof. Obviously, (ζ − zj) den(zj), (ζ − ẑj) den(ẑj) are linear functions of ζ and either of z or z. The
only zero of the product involved in D is ζ = z. All the other trace points lie outside D. Thus,
N1(z, ζ) is harmonic in both its variables up to the point ζ = z in D×D. Also, N1(z, ζ)+ log |ζ − z|2
is harmonic in D ×D. On the boundary arc C the normal derivative for z ∈ D is

∂νζ
N1(z, ζ) = −

∑
j∈J

∂νζ
log |(ζ − zj)(ζ − ẑj)|2 = −

∑
j∈J

2a

r
= −2a

r
|J |.

Here |J | denotes the cardinality of the finite index set J . □

Remark 3.1. A characteristic for the Neumann function is that it has a piecewise constant normal
derivative at the boundary. For the unit disk D = D = {zz − 1 < 0}, this value is obviously −2,
for the upper half-unit disk D+ = {i(z − z) < 0 < 1 − zz}, the constant is again −2, for the upper
half-unit circle and 0 for the real axis z − z = 0, since for this straight line a = c = 0, b = −i, i.e.,
r = 1. In addition, the factor |J | needs to be observed. For rectilinear sections (a = 0) the value is
always 0, whereas for circular sections, besides the radius, the coefficient a also makes a difference.
But the constant values are always non-positive. The Neumann function is not uniquely defined by
the three properties of the theorem. In [15], it is mentioned that the Neumann functions exist for
properly prescribed density functions on the boundary.

Lemma 3.2. For prescribed density function σ(z), the Neumann function is uniquely defined.

Proof. For proving this, let Nk(z, ζ), k = 1, 2, be two such Neumann functions and h = N1 −N2 be
their difference, a harmonic function in z ∈ D\{ζ}, ζ ∈ D, satisfying on ∂D the relation ∂νz

h(z, ζ) = 0.
Representing it by the Neumann representation formula (see, e.g., [4,8] and Theorem 4.1 below), with
regard to say N1 gives

h(z, ζ) = − 1

4π

∫
∂D

h(ζ̃, ζ)∂ν
ζ̃
N1((ζ̃, ζ)dsζ̃ = 0,

where the last equality follows from the both normalization conditions. □

A verification of such a normalization condition for general finite parqueting domains seems not to
be available.

If a fundamental solution of the Laplacian does satisfy the first three conditions for the Neumann
function, an arbitrary harmonic function in the variable ζ may be added without altering these three
conditions. This altered function still serves to solve the Neumann boundary value problem for the
Poisson equation. However, the solution is defined only up to an arbitrary additive constant. Only
the normalization of the Neumann function serves to determine this constant via a proper additional
side condition (see [7, 17]).

The possibility of adding harmonic functions in the variable ζ to some Neumann function can be
used to create a Neumann function, symmetric in its variables. It may also happen that the Neumann
problem, in general an over-determined boundary value problem and hence only conditionally solvable,
is unconditionally and uniquely solvable [8]. As an example, the upper half-unit disc D+ will be used
in the next subsection.

The Neumann function, as is the Green function, is known to be conformal invariant. In fact, as
the Green function, it is even invariant under inversive transformations. This is shown in [16] for the
Green function.

Lemma 3.3. The Neumann function is invariant under inverse transformations.

Proof. Let

w(z) =
az + b

cz + d
, ad− bc ̸= 0,

map the domain Ω onto the domain D of the complex plane and N1,D(w,ω) be the harmonic Neumann
function for D. Then

N1(z, ζ) = N1,D(w(z), w(ζ))

turns out to be the harmonic Neumann function for Ω.
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From

∂zN1,D(w(z), w(ζ)) = ∂w(z)N1,D(w(z), w(ζ))∂zw(z),

∂z∂zN1,D(w(z), w(ζ)) = ∂
w(z)

∂w(z)N1,D(w(z), w(ζ))wz(z)wz(z)

+ ∂w(z)N1,D(w(z), w(ζ))∂z∂zw(z) = 0,

N1(z, ζ) is seen to be harmonic in Ω \ {ζ}.
The right-hand side of

N1(z, ζ) + log |ζ − z|2) = N1,D(w(z), w(ζ)) + log |w(ζ)− w(z)|2 − log
∣∣∣w(ζ)− w[z]

ζ − z

∣∣∣2
is a harmonic function in both its variables z and ζ in Ω as

w(ζ)− w(z)

ζ − z
=

ad− bc

(cζ + d)(cz + d)
.

On ∂Ω = w[∂D], the outer normal derivative for N1(z, ζ) is given in

σΩ(z)dSz = ∂νz
N1(z, ζ)dSz = −i[∂zN1(z, ζ)dz − ∂zN1(z, ζ)dz]

= −i[∂
w(z)

N1,D(w(z), w(ζ))∂zw(z)dz − ∂w(z)N1,D(w(z), w(ζ))∂zw(z)dz]

= i[∂w(z)N1,D(w(z), w(ζ))dw(z)− ∂
w(z)

N1,D(w(z), w(ζ))dw(z)]

= −∂νw(z)
N1,D(w(z), w(ζ))dsw(z) = −σD(w(z))dsw(z) = −σD(w)dsw.

Sz, sw denote the arc length parameters on ∂Ω, ∂D, respectively. Also,∫
∂Ω

σΩ(z)dSz = −
∫
∂Ω

σD(w(z))dsw(z) =

∫
∂D

σD(w)dsw

is a finite number. Similarly, the normalization condition∫
∂Ω

σΩ(z)N1(z, ζ)dSz = −
∫
∂Ω

σD(w(z))N1,D(w(z), w(ζ))dsw(z)

=

∫
∂D

σD(w)N1,D(w,ω)dsw = 0

is verified. □

Corollary 3.1. The Neumann function is conformally invariant.

4. Neumann Problem in D+

As D+ = {|z| < 1, 0 < Imz} is a finite parqueting domain, its Neumann function is

N1(z, ζ) = − log |(ζ − z)(ζ − z)(1− zζ)(1− zζ)|2.

Also,

Ñ1(z, ζ) = 2 log |zζ|2 +N1(z, ζ)

is a Neumann function for D+. Their properties are listed here:
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Lemma 4.1.

∂νz
N1(z, ζ) =

{
−4, |z| = 1, 0 < Imz, |ζ| < 1, 0 ≤ Imζ,

0, Imz = 0, |z| < 1, |ζ| < 1, 0 < Imζ,

(z∂z + z∂z)N1(z, ζ) = 2
[ ζ

ζ − z
+

ζ

ζ − z
− 2 +

ζ

ζ − z
+

ζ

ζ − z
− 2

]
,

|z| < 1, 0 < Imz, |ζ| = 1, 0 ≤ Imζ,

− i(∂z − ∂z)N1(z, ζ) = 2i(z − z)

[
1

|ζ − z|2
+

ζ2

|1− zζ|2

]
,

0 < Imz, |z| < 1, ζ = ζ, |ζ| < 1;∫
∂D+

σ(sz)N1(z, ζ)dsz = 0.

∂νz
Ñ1(z, ζ) =

{
0, |z| = 1, 0 < Imz, |ζ| < 1, 0 ≤ Imζ,

0, Imz = 0, |z| < 1, |ζ| ≤ 1, 0 < Imζ,

(z∂z + z∂z)Ñ1(z, ζ) = 2
[ ζ

ζ − z
+

ζ

ζ − z
− 1 +

ζ

ζ − z
+

ζ

ζ − z
− 1

]
,

|z| < 1, 0 < Imz, |ζ| = 1, 0 < Imζ,

− i(∂z − ∂z)Ñ1(z, ζ) = 2i(z − z)
[ 1

|ζ − z|2
+

ζ2

|1− zζ|2
+

1

|z|2
]
,

0 < Imz, |z| < 1, ζ = ζ, |ζ| < 1 :∫
∂D+

σ̃(sz)Ñ1(z, ζ)dsz = 0.

Proof. On the basis of

z∂zN1(z, ζ) =
z

ζ − z
+

z

ζ − z
+

zζ

1− zζ
+

zζ

1− zζ
,

z∂z log |z|2 = 1

and

∂νz
= z∂z + z∂z on |z| = 1,

∂νz
= −i(∂z − ∂z) on z = z,

the differential relations follow. The normalization condition for N1 is seen owing to∫
∂D+

σ(sz)N1(z, ζ)dsz = 4

∫
|z|=1,0<Imz

log |(ζ − z)(ζ − z)(1− zζ)(1− zζ)|2 dz
iz

=
16

i

∫
|z|=1

log |1− zζ|2 dz
z

= 0.

The second normalization condition is obvious as the density σ̃ is identically zero. □

Theorem 4.1. Let D ⊂ C be a regular domain and N1(z, ζ) be a harmonic Neumann function for D,
then any w ∈ C2(D;C) ∩ C1(D;C) can be represented as

w(z) = − 1

4π

∫
∂D

{w(ζ)∂νζ
N1(z, ζ)− ∂νζ

w(ζ)N1(z, ζ)}dsζ −
1

π

∫
D

wζζ(ζ)N1(z, ζ)dξdη.
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A proof is available, e.g., in [3,8]. This representation formula provides candidates for the solutions
of the

Neumann boundary value problem for the Poisson equation: Find a solution to the Poisson
equation ∂z∂zw = f in D satisfying ∂νzw = γ on ∂D for given f ∈ Lp(D;C), 2 < p, γ ∈ C(∂D;C).

In general, this problem is conditionally solvable and the solution is determined up to an additive
constant, which can be determined by an additional side condition.

Both Neumann functions lead to possible solutions to the Neumann problem for D+.

Theorem 4.2. The Neumann problem for D+ is solvable if and only if

1

4πi

∫
|ζ|<1,0<Imζ

γ(ζ)
dζ

ζ
=

1

π

∫
D+

f(ζ)dξdη.

The solution is then uniquely determined by the side condition

1

πi

∫
|z|=1,0<Imz

w(z)
dz

z
= c0

with given c0 ∈ C, in the form

w(z) =c0 +
1

4πi

∫
|ζ|=1,0<Imζ

γ(ζ)N1(z, ζ)
dζ

ζ

+
1

4π

1∫
−1

γ(t)N1(z, t)dt−
1

π

∫
D+

f(ζ)N1(z, ζ)dξdη. (4.1)

Theorem 4.3. The Neumann problem for D+ is unconditionally solvable without any side condition
in the form

w(z) =
1

4πi

∫
|ζ|=1,0<Imζ

γ(ζ)Ñ1(z, ζ)
dζ

ζ

+
1

4π

1∫
−1

γ(t)Ñ1(z, t)dt−
1

π

∫
D+

f(ζ)Ñ1(z, ζ)dξdη. (4.2)

Proof of Theorems 4.2 and 4.3. Since the Neumann functions are fundamental solutions to the Laplace
operator, the line integrals are harmonic functions, while the area integrals contribute particular so-
lutions to the Poisson equation with homogeneous boundary data. As the area integrals contribute
solutions to the Poisson equation satisfying the related homogeneous boundary condition, it is neces-
sary to show that only the boundary integrals satisfy the boundary condition, and the side condition
has to be verified.

1. From (4.2), for z ∈ D+, it follows that

(z∂z + z∂z)w(z) =
1

2πi

∫
|ζ|=1,
0<Im ζ

γ(ζ)

[
ζ

ζ − z
+

ζ

ζ − z
− 1 +

ζ

ζ − z
+

ζ

ζ − z
− 1

]
dζ

ζ

+
1

2π

1∫
−1

γ(t)

[
2 +

z

t− z
+

z

t− z
+

zt

1− zt
+

zt

1− zt

]
dt

− 1

π

∫
D+

f(ζ)(z∂z + z∂z)N1(z, ζ)dξdη,

so, for |ζ0| = 1, 0 < Im ζ0,

∂νw(ζ0) = lim
z→ζ0

(z∂z + z∂z)w(z) = γ(ζ0),
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because for 0 < Im ζ,

ζ

ζ − z
+

ζ

ζ − z
− 1 =

1− |z|2

|ζ − z|2
,

and for |t| < 1, t = t,

2 +
z

t− z
+

z

t− z
+

zt

1− zt
+

zt

1− zt
= (1− |z|2)

[
t

(t− z)(1− zt)
+

t

(t− z)(1− zt)

]
.

2. Similarly, from (4.2), for z ∈ D+, it follow that

− i(∂z − ∂z)w(z) = − 1

4π

∫
|ζ|=1,
0<Im ζ

γ(ζ)

[
2

z
− 2

z

+
1

ζ − z
− 1

ζ − z
+

1

ζ − z
− 1

ζ − z
+

ζ

1− zζ
− ζ

1− zζ
+

ζ

1− zζ
− ζ

1− zζ

]
dζ

ζ

+
z − z

2πi

1∫
−1

γ(t)

[
1

|t− z|2
+

t2

|1− zt|2
− 1

|z|2

]
dt

+
i

π

∫
D+

f(ζ)(∂z − ∂z)N1(z, ζ)dξdη.

Hence, for z ∈ D+, |t0| < 1, t0 = t0,

∂νw(t0) = lim
z→t0

[−i(∂z − ∂z)]w(z) = γ(t0),

as for 0 < Im ζ,

2

z
− 2

z
+

1

ζ − z
− 1

ζ − z
+

1

ζ − z
− 1

ζ − z
+

ζ

1− zζ
− ζ

1− zζ
+

ζ

1− zζ
− ζ

1− zζ
= (z − z)

×

[
1

(ζ − z)(ζ − z)
+

1

(ζ − z)(ζ − z)
+

ζ2

(1− zζ)(1− zζ)
+

ζ
2

(1− zζ)(1− zζ)
− 2

|z|2

]
and for |t0| < 1, t0 = t0,

lim
z→t0

[
t2

|1− zt|2
− 1

|z|2

]
=

t2

|1− t0t|2
− 1

t20
.

Thus, Theorem 4.3 is proved. The difference in the treatment of Theorem 4.2 is the alteration
in the Poisson kernel on the upper unit circle by subtracting 2 and the difference in the modified
boundary behavior of the normal derivative on the upper half of the unit circle, causing the solvability
condition. Multiplying (4.1) by σ(z) and integrating over ∂D+ verifies the side condition based on the
normalization condition. □
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