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MULTILINEAR EXTRAPOLATION IN GRAND LEBESGUE SPACES

DALI MAKHARADZE1, ALEXANDER MESKHI2,4∗ AND TSIRA TSANAVA3

Dedicated to the memory of Professor Elene Obolashvili

Abstract. In this note, we present multilinear Rubio de Franćıa’s extrapolation theorem in grand
Lebesgue spaces. The mapping properties of some operators of harmonic analysis are also discussed.

1. Preliminaries

The Rubio de Franćıa’s extrapolation theorem (see [15]) is one of the powerful tools in harmonic
analysis. It states that if a given operator T is bounded in a weighted Lebesgue space Lp0

w for some
fixed p0 and all weights w from Ap0

, then T is bounded in all Lp
w for all 1 < p < ∞ and all w ∈ Ap.

For the perfection of the extrapolation theory in the classical Lebesgue spaces as well as in various
function spaces, we refer, e.g., to the monograph [5].

The grand Lebesgue spaces Lp)(G), 1 < p < ∞, for a constant exponent p and a bounded domain
G, were introduced in 1992 by Iwaniec and Sbordone [10] in the context of finding a minimal condition
for the integrability of the Jacobian, while the more general space Lp),θ(G) is related to the study of
the inhomogeneous n−harmonic equation div A(x,∇u) = µ (see Greco, Iwaniec, and Sbordone [9]).

The theory of these spaces is currently one of the intensively developing directions in modern
analysis (see, e.g., the recent monograph [12] and the references therein).

We are interested in generalized grand Lebesgue spaces L
p),φ(·)
ρ (G) with a weight function ρ on G

(i.e., ρ is an integrable function on G). The norm in L
p),φ(·)
ρ (G) is defined as follows:

∥f∥
L

p),φ(·)
ρ (G)

:= sup
0<ε<p−−1

(
φ(ε)

|G|

∫
G

|f(x)|p−ερ(x)dx

)1/(p−ε)

,

where φ(·) is a measurable function on (0, p − 1) which is non-decreasing on some small interval
(0, p− 1) such that lim

t→0
φ(x) = 0. We denote the class of such functions by the symbol A(p).

If φ(x) = xθ and ρ = const, where θ is a positive number, then we have the class Lp),θ(G) of
Greco, Iwaniec and Sbordone [9]. In particular, if θ = 1 in Lp),θ(G), then we have the space Lp)(G)
of Iwaniec and Sbordone.

Recall that (see, e.g., [12]) the space L
p),φ(·)
ρ (G) is a Banach space and that the following continuous

imebeddings:
Lp
ρ(G) ↪→ Lp),φ(·)

ρ (G) ↪→ Lp−ε
ρ (G), 0 < ε ≤ p− 1,

hold.
For the history and properties of grand function spaces we refer, e.g., to [12].
To define the product of a grand Lebesgue space, we first note that for a grand Lebesgue space,

the following holds (see also [11]): let 1 < r < ∞ and let ρ be a weight function on G. Then

∥f∥
L

r),φ
ρ (G)

= sup
0<ε≤r−1

φ(ε)
1

r−ε ∥f∥Lr−ε
ρ (G) = sup

1<q<r
(φ(r/q′))

q
r ∥f∥

L
r/q
ρ (G)

,

where
q′ =

q

q − 1
.
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Taking this note into account, we define the class L
∏m

j=1 L
pj),φ(·)
ρj (G) of vector-functions

−→
f =

(f1, . . . , fm) and vector weight −→ρ := (ρ1, . . . , ρm) as follows:
−→
f ∈ L

∏m
j=1 L

pj),φ(·)
ρj (G), if

∥
−→
f ∥

L
∏m

j=1 L
pj),φ(·)
ρj

(G)
= sup

1<r<p

{
φ
( p

r′

) r
p

m∏
j=1

∥fj∥
L

pj/r
ρj

(G)

}

= sup
1<r<p

{ m∏
j=1

φ
( p
r′
) r

pj ∥fj∥
L

pj/r
ρj

(G)

}
< ∞,

where p is defined by

1

p
=

m∑
j=1

1

pj
. (1.1)

The expression ∥
−→
f ∥

L
∏m

j=1 L
pj),φ(·)
ρj

(X,µ)
can be rewritten in the form

∥
−→
f ∥

L
∏m

j=1 L
pj),φ(·)
ρj

(G)

= sup
0<η≤p−1

{ m∏
j=1

φ
(
η
) 1

pj−ηj ∥fj∥Lpj−ηj
ρj

(G)
:

p

p− η
=

pj
pj − ηj

, j = 1, . . . ,m

}
,

where p is defined by (1.1), and

1

η
=

m∑
j=1

1

ηj
. (1.2)

It is easy to see that (1.1) and (1.2) imply the identities

1

p− η
=

m∑
j=1

1

pj − ηj
;

η

ηj
=

p

pj
,

appearing in the definition of ∥
−→
f ∥

L
∏m

j=1 L
pj),φ(·)
ρj

(G)
.

Further, let p̃ := min{p1, . . . , pm}. It is easy to check that if φ ∈ A(p̃), then

∥
−→
f ∥∏m

j=1 L
pj),φ(·)
ρj

(G)
≤ ∥

−→
f ∥

L
∏m

j=1 L
pj),φ(·)
ρj

(G)
,

where

∥
−→
f ∥∏m

j=1 L
pj),φ(·)
ρj

(G)
:=

m∏
j=1

∥fj∥
L

pj),φ(·)
ρj

(G)
.

This follows from the fact that η ≤ ηj , j = 1, . . . ,m (see condition (1.2)).

If φ(x) = xθ, where θ is a positive number, then we denote L
∏m

j=1 L
pj),φ(·)
ρj (G) by L

∏m
j=1 L

pj),θ
ρj (G).

In particular, obviously,

∥
−→
f ∥

L
∏m

j=1 L
pj,θ
ρj

(G)
≤ ∥

−→
f ∥∏m

j=1 L
pj),θ
ρj

(G)
.

If m = 1, then the grand product space
∏m

j=1 L
pj),φ(·)
ρj (G) coincides with the grand Lebesgue space

L
p),φ(·)
ρj (G).
To formulate the main statement of this work, we need to recall the definition of the multilinear

Muckenhoupt class A−→p . Let 1 ≤ pj < ∞ for each 1 ≤ j ≤ m and 0 < p < ∞, where p is defined by

(1.1). We say that −→w := (w1, . . . , wm) belongs to the class A−→p (X) if

∥−→w ∥A−→p := sup
B⊂Rn

(
1

|B|

∫
B

ν−→w (x)dx

) m∏
j=1

(
1

|B|

∫
B

w1−p′

j (x) dx

)p/p′
j

< ∞,
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where the supremum is taken over all balls B in Rn. For pj=1, the expression
(

1
µ(B)

∫
B

w1−p′

j (x)dx
)1/p′

j

is understood as (infB wj)
−1.

If m = 1, then this class is the well-known Muckenhoupt Ap class.
It is known that (see [13]) the multilinear Hardy–Littlewood maximal operator

M(f1, . . . , fm)(x) = sup
B∋x

m∏
j=1

1

|B|

∫
B

|fj(y)|dy,

is bounded from
∏m

j=1 L
pj
wj (Rn) to Lp

ν−→w
(Rn), where p is defined by (1.1), if and only if −→w ∈ A−→p .

The multilinear version of Rubio de Franćıa’s extrapolation theorem in the classical Lebesgue spaces
is written as follows:

Theorem 1.1 ([14]). Let F be a collection of m+1-tuple of non-negative functions on Rn. Assume that
we have exponents −→p = (p1, . . . , pm), with 1 ≤ p1, . . . , pm < ∞ such that for any −→w = (w1, . . . , wm) ∈
A−→p, the inequality

∥f∥Lp
w
≤ C

(
[w]A−→p

) m∏
i=1

∥fi∥Lpi
wi

holds for every (f, f1, . . . , fm) ∈ F , where p is defined by (1.1), and

w :=

m∏
j=1

w
p/pj

j . (1.3)

Then for all exponents −→q := (q1, . . . , qm), with 1 < q1, . . . , qm < ∞, and for all weights −→v ∈ A−→q ,
where

−→v := (v1, . . . , vm), (1.4)

the inequality

∥f∥Lp
v
≤ C

(
[−→v ]A−→q

) m∏
i=1

∥fi∥Lqi
vi

holds for every (f, f1, . . . , fm) ∈ F , where

1

q
:=

m∑
j=1

1

qj
, v :=

m∏
j=1

v
q/qj
j . (1.5)

Moreover, for the same family of exponents and weights, and for all exponents −→s = (s1, . . . , sm)
with 1 < s1, . . . , sm < ∞,∥∥∥∥(∑

j

(f j)s
)1/s

∥∥∥∥
Lq

v

≤ C
(
[−→v ]A−→q

) m∏
i=1

∥∥∥∥(∑
j

(f j
i )

si
)1/si

∥∥∥∥
L

qi
vi

for all {(f j , f j
1 , . . . f

j
m)}j ⊂ F , where

1

s
:=

m∑
j=1

1

sj
. (1.6)

2. Main Results

To formulate our main results, we need to introduce the following notation:

−−→
F (s) :=

((∑
j

(f j
1 )

s1
)1/s1

, . . . ,
(∑

j

(f j
m)sm

)1/sm
)
, (2.1)

where s is defined by (1.6).
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−−→
F (r) :=

((∑
j

(f j
1 )

r
)1/r

, . . . ,
(∑

j

(f j
m)r

)1/r
)
, (2.2)

where s is defined by (1.6), and r is a constant such that 1 ≤ r < ∞.

The symbol A ≲ B means that there is a positive constant C such that A ≤ CB. Our main result
is the following statement:

Theorem 2.1. Let F be a collection of m+1-tuple of non-negative functions defined on Rn. Assume
that we have the exponents −→p = (p1, . . . , pm), with 1 ≤ p1, . . . , pm < ∞ such that for any −→w =
(w1, . . . , wm) ∈ A−→p , the inequality

∥f∥Lp
w(Rn) ≤ C

(
[−→w ]A−→p

) m∏
i=1

∥fi∥Lpi
wi

(Rn)

holds for every (f, f1, . . . , fm) ∈ F , where the mapping · 7→ C(·) is non-decreasing, and w is defined
by (1.3). Then for all bounded domains G ⊂ Rn, for all exponents −→q := (q1, . . . , qm), with 1 <
q1, . . . , qm < ∞, for all weights −→v ∈ A−→q (Rn) and for any φ(·) ∈ A(q), the inequality

∥f∥
L

q),φ(·)
v (G)

≲ ∥(f1, . . . , fm)∥L∏m
i=1 Lqi),φ(·)

vi
(G)

holds for every (f, f1, . . . , fm) ∈ F , where q is defined by (1.5) and v is defined by (1.4).
Moreover, for the same family of exponents and weights, and for all exponents −→s = (s1, . . . , sm)

with 1 < s1, . . . , sm < ∞,∥∥∥∥(∑
j

(f j)s
)1/s

∥∥∥∥
L

q),φ(·)
v (G)

≲

∥∥∥∥−−→F (s)

∥∥∥∥
L
∏m

i=1 Lqi),φ(·)
vi

(G)

for all {(f j , f j
1 , . . . , f

j
m)}j ⊂ F , where s is defined by (1.6) and

−−→
F (s) is defined by (2.1).

Now, we apply this statement, for example, to derive appropriate weighted estimates for the bilinear
operators (for the classical Lebesgue spaces, see [14] and references therein).

Let

M(f, g)(x) = sup
Q∋x

(
1

|Q|

∫
Q

|f(y)|dy
)(

1

|Q|

∫
Q

|g(y)dy
)
,

where f and g are the locally integrable functions on Rn, and the supremum is taken over all cubes
with sides, parallel to the coordinate axes.

Further, given a bilinear operator T defined a priori from S × S into S′ of the form

T (f, g)(x) =

∫
Rn

∫
Rn

K(x, y, z)f(y)g(z)dydz,

we say that T is a Calderón-Zygmund bilinear operator if it can be extended as a bounded operator
from Lp1 × Lp2 to Lp for some 1 < p1, p2 < ∞ with 1/p1 + 1/p2 = 1/p, and its distributive kernel
K coincides, away from the diagonal

{
(x, y, z) ∈ R3n : x = y = z

}
, with a locally integrable function

K(x, y, z) satisfying the estimates of the form

|∂αK(x, y, z)| ≲ (|x− y|+ |x− z|+ |y − z|)−2n−|α|
, |α| ≤ 1.

The Calderón–Zygmund bilinear operators and M are known to satisfy the weighted norm inequal-
ities of the classes A−→p (see [13]). As a consequence of Theorem 2.1, we easily obtain the following
vector-valued inequalities.

Theorem 2.2. Let m = 2 and T be a Calderón–Zygmund bilinear operator on Rn×2. Let G be
a bounded domain in Rn. Then for every −→p = (p1, p2),

−→s = (s1, s2) with 1 < p1, p2, s1, s2 < ∞, for
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every −→w = (w1, w2) ∈ A−→p , for every φ(·) ∈ A(p),∥∥∥∥(∑
j

M(f j
1 , f

j
2 )

s

) 1
s
∥∥∥∥
L

p),φ(·)
w (G)

≲

∥∥∥∥−−→F (s)

∥∥∥∥
L
∏2

i=1 Lp1),φ(·)
wi

(G)

for every non-negative f j
i with compact supports G, and∥∥∥∥(∑

j

∣∣∣∣T (f1
j , f

2
j )

∣∣∣∣s) 1
s
∥∥∥∥
L

p),φ(·)
w (G)

≲

∥∥∥∥−−→F (s)

∥∥∥∥
L
∏2

i=1 Lpi),φ(·)
wi

(G)

for every f j
i ∈ C∞

0 (G), where 1
p = 1

p1
+ 1

p2
, 1

s = 1
s1

+ 1
s2
, w = w

p
p1
1 w

p
p2
2 , and

−−→
F (s) is defined by (2.1).

We can also formulate the Marcinkiewicz–Zygmund inequalities for the Calderón–Zygmund multi-
linear operators in the frame of grand Lebesgue spaces (see [2, 3, 8] for the case of classical Lebesgue
spaces).

Corollary 2.1. Let m = 2, T be a Calderón–Zygmund bilinear operator. Let 1 < r ≤ 2 and 1 <
q1, q2 < ∞. Then for −→w = (w1, w2) ∈ A−→q and φ ∈ A(q), the inequality∥∥∥∥(∑

j

∣∣∣∣T (f1
j , f

2
j )

∣∣∣∣r) 1
r
∥∥∥∥
L

q),φ(·)
w (G)

≲

∥∥∥∥−−→F (r)

∥∥∥∥
L
∏2

i=1 Lqi),φ(·)
wi

(G)

holds for every f j
i ∈ C∞

0 (G), where 1
q = 1

q1
+ 1

q2
, w = w

q
q1
1 w

q
q2
2 , and

−→
F (r) is defined by (2.2).

Using extrapolation, we can remove the restriction q1, q2 < r for 1 < r < 2 (for a version of the
following result in the context of the Muckenhoupt product classes, we refer the reader to [4]).

Now we give an example for a class of rough bilinear singular integrals given by

TΩ(f1, f2)(x) = p.v.

∫
Rn

∫
Rn

f1(x− y1)f2(x− y2)
Ω ((y1, y2)/|(y1, y2)|)

|(y1, y2)|2n
dy1dy2,

where Ω ∈ L∞ (
S2n−1

)
has a vanishing integral. All this was introduced by Coifman and Meyer and

further studied by Grafakos, He and Honźık [7].
We now discuss the weighted norm inequalities for the bilinear rough singular integral operators TΩ

introduced above. The unweighted and weighted cases in the classical Lebesgue spaces were studied
in [1, 6, 7, 14].

We have

Corollary 2.2. Let m = 2, G be a bounded domain in Rn, TΩ be a bilinear rough singular integral
operator with Ω ∈ L∞ (

S2n−1
)
and

∫
S2n−1

Ωdσ = 0. Further, suppose that for every −→p = (p1, p2),

−→s = (s1, s2) with 1 < p1, p2, s1, s2 < ∞, for every −→w = (w1, w2) ∈ A−→p and for every φ(·) ∈ A(p), one
has ∥∥∥∥(∑

j

∣∣∣∣T (f1
j , f

2
j )

∣∣∣∣s) 1
s
∥∥∥∥
L

p),φ(·)
w (G)

≲

∥∥∥∥−−→F (s)

∥∥∥∥
L
∏2

i=1 Lqi),φ(·)
wi

(G)

that holds for every f i
j ∈ C∞

0 (G), where 1
p = 1

p1
+ 1

p2
, 1

s = 1
s1

+ 1
s2
, w = w

p
p1
1 w

p
p2
2 , and

−−→
F (s) is defined

by (2.1).
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6. D. Cruz-Uribe, V. Naibo, Kato-Ponce inequalities on weighted and variable Lebesgue spaces. Differential Integral
Equations 29 (2016), no. 9-10, 801–836.
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