ON REAL-VALUED FUNCTIONS HAVING THIN GRAPHS IN THE PLANE

ALEXANDER KHARAZISHVILI

Abstract. Two classes of functions acting from the real line \mathbf{R} into itself are considered and compared: those whose graphs are totally imperfect in the plane \mathbf{R}^2 and those whose graphs are the absolute null sets in \mathbf{R}^2 .

Throughout this short communication, the following notation will be used.

R is the set of all real numbers (the real line);

 \mathbf{c} is the cardinality of the continuum (i.e., $\mathbf{c} = \operatorname{card}(\mathbf{R})$);

 ω is the least infinite cardinal number and ω_1 is the least uncountable cardinal number;

 λ is the standard Lebesgue measure on \mathbf{R} ;

 \mathbf{R}^2 is the Euclidean plane (i.e., $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R}$);

 λ_2 is the Lebesgue two-dimensional measure on \mathbf{R}^2 (i.e., λ_2 is the completion of the product measure $\lambda \otimes \lambda$).

 $\mathcal{M}_0(\mathbf{R})$ is the class of the completions of all those nonzero σ -finite Borel measures on \mathbf{R} which vanish at every singleton in \mathbf{R} .

 $\mathcal{M}(\mathbf{R})$ is the class of all those nonzero σ -finite measures on \mathbf{R} which vanish at every singleton in \mathbf{R} . Clearly, the proper inclusion $\mathcal{M}_0(\mathbf{R}) \subset \mathcal{M}(\mathbf{R})$ holds true.

ZF & **DC** is an abbreviation of **ZF** set theory with the Axiom of Dependent Choices (see [2]).

We say that a function $f: \mathbf{R} \to \mathbf{R}$ is absolutely nonmeasurable with respect to the class $\mathcal{M}_0(\mathbf{R})$ ($\mathcal{M}(\mathbf{R})$) if f is nonmeasurable with respect to any measure belonging to $\mathcal{M}_0(\mathbf{R})$ (to $\mathcal{M}(\mathbf{R})$).

Recall that a subset X of a topological space E is totally imperfect if there exists no subspace of E homeomorphic to the Cantor space $\{0,1\}^{\omega}$ and entirely contained in X (cf. [1,4–8]).

Observe that a subset X of a metric space E is totally imperfect if and only if X does not contain an uncountable compact subspace of E.

In the definition below, a topological space E is assumed to have the following property: each singleton in E is a Borel subspace of E.

A subset Y of a space E is called an absolute null if $\mu^*(Y) = 0$ for every nonzero σ -finite Borel measure μ on E vanishing at all singletons in E (here, μ^* denotes, as usual, the outer measure produced by μ).

Clearly, any absolute null subset of E is simultaneously totally imperfect in E.

As is known, absolute null sets and totally imperfect sets are the natural representatives of the so-called thin sets in topological spaces (see, e.g., [6]). There are many examples of totally imperfect subsets of \mathbf{R} which are not absolute null. Moreover, the family of all absolute null sets in \mathbf{R} forms a proper σ -ideal in the boolean of \mathbf{R} . On the other hand, if B is a Bernstein subset of \mathbf{R} (see, e.g., [1,4–8]), then both sets B and $\mathbf{R} \setminus B$ are totally imperfect, but their union coincides with the entire \mathbf{R} .

Lemma 1. Let E_1 and E_2 be two metric spaces and let X be a totally imperfect subset of E_1 . Suppose also that for every point $x \in X$, there is given a nonempty subset Y_x of E_2 that is totally imperfect in E_2 .

Then the set $Z = \bigcup \{\{x\} \times Y_x : x \in X\}$ is totally imperfect in the topological product space $E_1 \times E_2$.

Remark 1. The converse assertion does not hold, in general. Also, it may happen that a set Z is totally imperfect in the product space $E_1 \times E_2$ and all sets $(\{x\} \times E_2) \cap Z$ are one-element whenever $x \in E_1$, but $\operatorname{pr}_2(Z) = E_2$ (cf., Theorem 3 below).

 $^{2020\} Mathematics\ Subject\ Classification.\ 28A05,\ 28A20.$

Key words and phrases. Totally imperfect set; Absolute null set; Absolutely nonmeasurable function.

Lemma 2. Let E_1 and E_2 be two topological spaces and let X be an absolute null subset of E_1 . Suppose also that for every point $x \in X$, there is given a nonempty subset Y_x of E_2 , that is absolute null in E_2 .

Then the set $Z = \bigcup \{\{x\} \times Y_x : x \in X\}$ is an absolute null in the topological product space $E_1 \times E_2$.

Remark 2. The converse assertion does not hold, in general. Also, it may happen that a set Z is an absolute null in the product space $E_1 \times E_2$ and all sets $(\{x\} \times E_2) \cap Z$ are one-element whenever $x \in E_1$, but $\operatorname{pr}_2(Z) = E_2$ (cf., Theorem 4 below).

Theorem 1. In **ZF** & **DC** theory, the following three assertions are equivalent:

- (1) there exists a totally imperfect subset of **R** whose cardinality is **c**;
- (2) there exists a function acting from \mathbf{R} into \mathbf{R} which is absolutely nonmeasurable with respect to the class $\mathcal{M}_0(\mathbf{R})$;
 - (3) there exists a partition of \mathbf{R} into \mathbf{c} many totally imperfect sets, all of which have cardinality \mathbf{c} . In the same theory, for a function $f: \mathbf{R} \to \mathbf{R}$, the following three assertions are also equivalent:
 - (a) f is absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$;
 - (b) the graph of f is totally imperfect in \mathbb{R}^2 ;
 - (c) the composition $f \circ \phi$ is λ -nonmeasurable whenever ϕ is a Borel bijection of **R** onto itself.

Let us mention one consequence of Theorem 1. Let f and g be two functions from \mathbf{R} to \mathbf{R} such that $f \circ g$ is the identity mapping of \mathbf{R} . If f is absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$, then g is also absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$.

In particular, a bijection f of \mathbf{R} onto itself is absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$ if and only if its reverse f^{-1} is absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$.

Theorem 2. In **ZF** & **DC** theory, the following two assertions are equivalent:

- (1) there exists an absolute null subset of \mathbf{R} whose cardinality is \mathbf{c} ;
- (2) there exists a function $g: \mathbf{R} \to \mathbf{R}$ absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

In the same theory, a function $g: \mathbf{R} \to \mathbf{R}$ is absolutely nonmeasurable with respect to $\mathcal{M}(\mathbf{R})$ if and only if the range of g is an absolute null subset of \mathbf{R} and the sets $g^{-1}(r)$ are at most countable for all $r \in \mathbf{R}$.

Remark 3. It follows from Lemma 2 and Theorem 2 that if a function $g: \mathbf{R} \to \mathbf{R}$ is absolutely nonmeasurable with respect to $\mathcal{M}(\mathbf{R})$, then the graph of g is an absolute null in \mathbf{R}^2 and hence is totally imperfect in \mathbf{R}^2 .

Remark 4. If a function $h : \mathbf{R} \to \mathbf{R}$ is such that the graph of h is an absolute null subset of \mathbf{R}^2 , then it may happen that h is not absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

Remark 5. By the definition, a Sierpiński–Zygmund function is any function $f: \mathbf{R} \to \mathbf{R}$ such that for each set $X \subset \mathbf{R}$ with $\operatorname{card}(X) = \mathbf{c}$, the restriction f|X is not continuous on X (see [5,9]). Every Sierpiński–Zygmund function is absolutely nonmeasurable with respect to the class $\mathcal{M}_0(\mathbf{R})$. At the same time, there exists a Sierpiński–Zygmund function g whose graph is a λ_2 -thick set in \mathbf{R}^2 (this phrase means that the graph of g has common points with every Borel subset of \mathbf{R}^2 of strictly positive λ_2 -measure). Therefore, g is not absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$. Moreover, the existence of absolutely nonmeasurable functions with respect to $\mathcal{M}(\mathbf{R})$ cannot be established within the \mathbf{ZFC} set theory, because there are models of \mathbf{ZFC} in which $\mathbf{c} > \omega_1$ and the cardinality of any absolute null set in \mathbf{R} (or in \mathbf{R}^2) does not exceed ω_1 (for further details, see [2]).

Lemma 3. Let X and Y be two infinite sets such that

$$card(X) = card(Y) = \mathbf{a}$$

and let Z be a subset of $X \times Y$ satisfying the relations

$$(\forall x \in X) (\operatorname{card}((\{x\} \times Y) \cap Z) = \mathbf{a}), (\forall y \in Y) (\operatorname{card}((X \times \{y\}) \cap Z) = \mathbf{a}).$$

Then there exists a bijection $h: X \to Y$ whose graph is contained in Z.

Using Lemma 3 and a Bernstein subset of the plane \mathbb{R}^2 , one obtains the next statement.

Theorem 3. There exists a function $f : \mathbf{R} \to \mathbf{R}$ such that:

- (1) f is a bijection of \mathbf{R} onto itself;
- (2) the graph of f is totally imperfect in \mathbb{R}^2 (i.e., f is absolutely nonmeasurable with respect to the class $\mathcal{M}_0(\mathbb{R})$).
- **Remark 6.** The existence of a function acting from \mathbf{R} into \mathbf{R} and absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$ cannot be established within \mathbf{ZF} & \mathbf{DC} theory. It is easy to see that the characteristic function of a Bernstein set in \mathbf{R} is absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$. So, any representative of Bernstein sets in \mathbf{R} turns out to be nonmeasurable with respect to each measure from the class $\mathcal{M}_0(\mathbf{R})$. The converse assertion is also true.

Theorem 4. Assuming Martin's Axiom, there exists a function $q: \mathbf{R} \to \mathbf{R}$ such that:

- (1) g is a bijection of \mathbf{R} onto itself;
- (2) the graph of g is an absolute null in \mathbb{R}^2 .

Remark 7. Theorem 4 cannot be proved without using additional set-theoretical assumptions (see Remark 5). In view of (1) of this theorem, the function g is not absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

Remark 8. If there exists a well-ordering \leq of \mathbf{R} which is isomorphic to ω_1 and simultaneously is a projective subset of \mathbf{R}^2 (in the sense of Luzin and Sierpiński), then there exists a function $h: \mathbf{R} \to \mathbf{R}$ such that:

- (a) the graph of h is a projective subset of \mathbb{R}^2 ;
- (b) h is absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

It follows from (a) and (b) that the graph of h turns out to be an absolute null subset of \mathbf{R}^2 and so is also totally imperfect in \mathbf{R}^2 . In addition, the existence of h implies that there is a countable family $\{X_i : i \in I\}$ of projective subsets of \mathbf{R} which satisfy the following relations:

- (c) the projective order of any set X_i ($i \in I$) does not exceed some fixed natural number n (where n depends only on the projective order of \leq);
 - (d) for every measure $\mu \in \mathcal{M}(\mathbf{R})$, at least one set X_i is not measurable with respect to μ .

For more details about h and the family $\{X_i : i \in I\}$, see [3]. Also, it can be deduced from the result of [3] that the following statement is consistent with **ZFC** set theory:

(e) there exists a projective subset P of \mathbf{R}^2 such that all vertical sections of P are of cardinality \mathbf{c} (hence $\operatorname{pr}_1(P) = \mathbf{R}$) and any uniformization of P is absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

References

- 1. B. R. Gelbaum, J. M. H. Olmsted, *Counterexamples in Analysis*. The Mathesis Series. Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964.
- T. J. Jech, Set Theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
- 3. A. Kharazishvili, To the existence of projective absolutely nonmeasurable functions. *Proc. A. Razmadze Math. Inst.* **166** (2014), 95–102.
- 4. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's equation and Jensen's inequality. With a Polish summary. Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], 489. Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985.
- 5. K. Kuratowski, Topology. vol. I. New edition, revised and augmented. Academic Press, New York-London, 1966.
- A. W. Miller, Special Subsets of the Real Line. Handbook of set-theoretic topology, 201–233, North-Holland, Amsterdam, 1984.
- J. C. Morgan II, Point Set Theory. Monographs and Textbooks in Pure and Applied Mathematics, 131. Marcel Dekker, Inc., New York, 1990.
- 8. J. C. Oxtoby, Measure and Category. Springer-Verlag, New York, 1971.

9. W. Sierpiński, A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu. Fund. Math. 4 (1923), 316–318.

(Received 19.05.2025)

- A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 2 MERAB ALEKSIDZE II LANE, TBILISI 0193, GEORGIA
 - I. Vekua Institute of Applied Mathematics, 2 University Str., Tbilisi 0186, Georgia $Email\ address:$ kharaz
2@yahoo.com