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ON REAL-VALUED FUNCTIONS HAVING THIN GRAPHS IN THE PLANE

ALEXANDER KHARAZISHVILI

Abstract. Two classes of functions acting from the real line R into itself are considered and com-

pared: those whose graphs are totally imperfect in the plane R2 and those whose graphs are the
absolute null sets in R2.

Throughout this short communication, the following notation will be used.
R is the set of all real numbers (the real line);
c is the cardinality of the continuum (i.e., c = card(R));
ω is the least infinite cardinal number and ω1 is the least uncountable cardinal number;
λ is the standard Lebesgue measure on R;
R2 is the Euclidean plane (i.e., R2 = R×R);
λ2 is the Lebesgue two-dimensional measure onR2 (i.e., λ2 is the completion of the product measure

λ⊗ λ).
M0(R) is the class of the completions of all those nonzero σ-finite Borel measures on R which

vanish at every singleton in R.
M(R) is the class of all those nonzero σ-finite measures on R which vanish at every singleton in R.
Clearly, the proper inclusion M0(R) ⊂ M(R) holds true.
ZF & DC is an abbreviation of ZF set theory with the Axiom of Dependent Choices (see [2]).
We say that a function f : R → R is absolutely nonmeasurable with respect to the class M0(R)

(M(R)) if f is nonmeasurable with respect to any measure belonging to M0(R) (to M(R)).
Recall that a subset X of a topological space E is totally imperfect if there exists no subspace of E

homeomorphic to the Cantor space {0, 1}ω and entirely contained in X (cf. [1, 4–8]).
Observe that a subset X of a metric space E is totally imperfect if and only if X does not contain

an uncountable compact subspace of E.
In the definition below, a topological space E is assumed to have the following property: each

singleton in E is a Borel subspace of E.
A subset Y of a space E is called an absolute null if µ∗(Y ) = 0 for every nonzero σ-finite Borel

measure µ on E vanishing at all singletons in E (here, µ∗ denotes, as usual, the outer measure produced
by µ).

Clearly, any absolute null subset of E is simultaneously totally imperfect in E.
As is known, absolute null sets and totally imperfect sets are the natural representatives of the

so-called thin sets in topological spaces (see, e.g., [6]). There are many examples of totally imperfect
subsets of R which are not absolute null. Moreover, the family of all absolute null sets in R forms
a proper σ-ideal in the boolean of R. On the other hand, if B is a Bernstein subset of R (see,
e.g., [1, 4–8]), then both sets B and R \ B are totally imperfect, but their union coincides with the
entire R.

Lemma 1. Let E1 and E2 be two metric spaces and let X be a totally imperfect subset of E1. Suppose
also that for every point x ∈ X, there is given a nonempty subset Yx of E2 that is totally imperfect
in E2.

Then the set Z = ∪
{
{x}×Yx : x ∈ X

}
is totally imperfect in the topological product space E1×E2.

Remark 1. The converse assertion does not hold, in general. Also, it may happen that a set Z is
totally imperfect in the product space E1 ×E2 and all sets ({x} ×E2)∩Z are one-element whenever
x ∈ E1, but pr2(Z) = E2 (cf., Theorem 3 below).

2020 Mathematics Subject Classification. 28A05, 28A20.
Key words and phrases. Totally imperfect set; Absolute null set; Absolutely nonmeasurable function.



298 A. KHARAZISHVILI

Lemma 2. Let E1 and E2 be two topological spaces and let X be an absolute null subset of E1.
Suppose also that for every point x ∈ X, there is given a nonempty subset Yx of E2, that is absolute
null in E2.

Then the set Z = ∪
{
{x}×Yx : x ∈ X

}
is an absolute null in the topological product space E1×E2.

Remark 2. The converse assertion does not hold, in general. Also, it may happen that a set Z is
an absolute null in the product space E1 ×E2 and all sets

(
{x} ×E2

)
∩ Z are one-element whenever

x ∈ E1, but pr2(Z) = E2 (cf., Theorem 4 below).

Theorem 1. In ZF & DC theory, the following three assertions are equivalent:
(1) there exists a totally imperfect subset of R whose cardinality is c;
(2) there exists a function acting from R into R which is absolutely nonmeasurable with respect to

the class M0(R);
(3) there exists a partition of R into c many totally imperfect sets, all of which have cardinality c.
In the same theory, for a function f : R → R, the following three assertions are also equivalent:
(a) f is absolutely nonmeasurable with respect to M0(R);
(b) the graph of f is totally imperfect in R2;
(c) the composition f ◦ ϕ is λ-nonmeasurable whenever ϕ is a Borel bijection of R onto itself.

Let us mention one consequence of Theorem 1. Let f and g be two functions from R to R such
that f ◦g is the identity mapping of R. If f is absolutely nonmeasurable with respect to M0(R), then
g is also absolutely nonmeasurable with respect to M0(R).

In particular, a bijection f of R onto itself is absolutely nonmeasurable with respect to M0(R) if
and only if its reverse f−1 is absolutely nonmeasurable with respect to M0(R).

Theorem 2. In ZF & DC theory, the following two assertions are equivalent:
(1) there exists an absolute null subset of R whose cardinality is c;
(2) there exists a function g : R → R absolutely nonmeasurable with respect to the class M(R).
In the same theory, a function g : R → R is absolutely nonmeasurable with respect to M(R) if and

only if the range of g is an absolute null subset of R and the sets g−1(r) are at most countable for all
r ∈ R.

Remark 3. It follows from Lemma 2 and Theorem 2 that if a function g : R → R is absolutely
nonmeasurable with respect to M(R), then the graph of g is an absolute null in R2 and hence is
totally imperfect in R2.

Remark 4. If a function h : R → R is such that the graph of h is an absolute null subset of R2,
then it may happen that h is not absolutely nonmeasurable with respect to the class M(R).

Remark 5. By the definition, a Sierpiński–Zygmund function is any function f : R → R such
that for each set X ⊂ R with card(X) = c, the restriction f |X is not continuous on X (see [5, 9]).
Every Sierpiński–Zygmund function is absolutely nonmeasurable with respect to the class M0(R).
At the same time, there exists a Sierpiński–Zygmund function g whose graph is a λ2-thick set in
R2 (this phrase means that the graph of g has common points with every Borel subset of R2 of
strictly positive λ2-measure). Therefore, g is not absolutely nonmeasurable with respect to the class
M(R). Moreover, the existence of absolutely nonmeasurable functions with respect to M(R) cannot
be established within the ZFC set theory, because there are models of ZFC in which c > ω1 and the
cardinality of any absolute null set in R (or in R2) does not exceed ω1 (for further details, see [2]).

Lemma 3. Let X and Y be two infinite sets such that

card(X) = card(Y ) = a

and let Z be a subset of X × Y satisfying the relations

(∀x ∈ X)
(
card(({x} × Y ) ∩ Z) = a

)
,

(∀y ∈ Y )
(
card((X × {y}) ∩ Z) = a

)
.

Then there exists a bijection h : X → Y whose graph is contained in Z.
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Using Lemma 3 and a Bernstein subset of the plane R2, one obtains the next statement.

Theorem 3. There exists a function f : R → R such that:
(1) f is a bijection of R onto itself;
(2) the graph of f is totally imperfect in R2 (i.e., f is absolutely nonmeasurable with respect to the

class M0(R)).

Remark 6. The existence of a function acting from R into R and absolutely nonmeasurable with
respect to M0(R) cannot be established within ZF & DC theory. It is easy to see that the charac-
teristic function of a Bernstein set in R is absolutely nonmeasurable with respect to M0(R). So, any
representative of Bernstein sets in R turns out to be nonmeasurable with respect to each measure
from the class M0(R). The converse assertion is also true.

Theorem 4. Assuming Martin’s Axiom, there exists a function g : R → R such that:
(1) g is a bijection of R onto itself;
(2) the graph of g is an absolute null in R2.

Remark 7. Theorem 4 cannot be proved without using additional set-theoretical assumptions (see
Remark 5). In view of (1) of this theorem, the function g is not absolutely nonmeasurable with respect
to the class M(R).

Remark 8. If there exists a well-ordering ⪯ of R which is isomorphic to ω1 and simultaneously is a
projective subset of R2 (in the sense of Luzin and Sierpiński), then there exists a function h : R → R
such that:

(a) the graph of h is a projective subset of R2;
(b) h is absolutely nonmeasurable with respect to the class M(R).
It follows from (a) and (b) that the graph of h turns out to be an absolute null subset of R2 and so

is also totally imperfect in R2. In addition, the existence of h implies that there is a countable family
{Xi : i ∈ I} of projective subsets of R which satisfy the following relations:

(c) the projective order of any set Xi (i ∈ I) does not exceed some fixed natural number n (where
n depends only on the projective order of ⪯);

(d) for every measure µ ∈ M(R), at least one set Xi is not measurable with respect to µ.
For more details about h and the family {Xi : i ∈ I}, see [3]. Also, it can be deduced from the

result of [3] that the following statement is consistent with ZFC set theory:
(e) there exists a projective subset P of R2 such that all vertical sections of P are of cardinality

c (hence pr1(P ) = R) and any uniformization of P is absolutely nonmeasurable with respect to the
class M(R).
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