
Transactions of A. Razmadze
Mathematical Institute
Vol. 179 (2025), issue 2, 293–295

ON THE SOLVABILITY OF THE DIRICHLET PROBLEM FOR ONE CLASS OF

FOURTH−ORDER NONLINEAR HYPERBOLIC SYSTEMS

TEONA BIBILASHVILI1 AND SERGO KHARIBEGASHVILI1,2

Dedicated to the memory of Professor Elene Obolashvili

Abstract. The Dirichlet problem for one class of the fourth−order nonlinear hyperbolic systems in

a characteristic rectangle is considered. The theorems on the existence, uniqueness and nonexistence

of solutions of this problem are proved.

On a plane of variables x and t consider the following fourth−order hyperbolic system

□2u+ f (u1, . . . , uN ) = F (x, t) , (1)

where □ := ∂2

∂t2 − ∂2

∂x2 ; f = (f1, . . . , fN ) and F = (F1, . . . , FN ) are the given vector functions, while
u = (u1, . . . , uN ) is an unknown N−dimensional vector function, N ≥ 2.

Denote by DT : |x| < t < T − |x|, |x| < 1
2T, the characteristic rectangle.

For system (1) in the characteristic rectangle DT consider the Dirichlet problem: find in the domain
DT a solution u = (u1, . . . , uN ) to system (1) according to the boundary condition

u|∂DT
= 0. (2)

Note that one multidimensional analogue of problem (1), (2) in the scalar case was considered in
the work [2]. As shown in [1], if instead of the characteristic rectangle DT : |x| < t < T −|x|, |x| < 1

2T,
we consider the non−characteristic rectangle GT : 0 < x, t < T , then for the boundary value problem
to be correct in GT , the Dirichlet boundary condition alone is not enough, it is necessary to require
additionally the fulfillment of the Neumann boundary condition ∂u

∂v |∂GT
= 0.

Let
o

C
k
(
DT

)
:=

{
u ∈ Ck

(
DT

)
: u|∂DT

= 0
}
, k ≥ 1,

and introduce the Hilbert space
o

W 1
□ (DT ) as a completion of the space

o

C 2
(
DT

)
with respect to the

norm

∥u∥2o
W 1

□
(DT )

=

∫
DT

[
u2 +

(∂u
∂t

)2

+
(∂u
∂x

)2

+ (□u)
2

]
dxdt. (3)

It follows from (3) that if u ∈
o

W 1
□ (DT ), then u ∈

o

W 1
2 (DT ) and □u ∈ L2 (DT ). Here, W 1

2 (DT ) is
the well−known Sobolev space consisting of the elements of L2 (DT ), having the first order generalized

derivatives from L2 (DT ), and
o

W 1
2 (DT ) := {u ∈ W 1

2 (DT ) : u|∂DT
= 0}, where the equality u|∂DT

= 0
is understood in the sense of the trace theory.

Remark 1. It is easy to verify that if u ∈
o

C 4
(
DT

)
is a classical solution of problem (1), (2), then

multiplying scalarly both sides of system (1) by any test vector function φ = (φ1, . . . , φN ) ∈
o

C 2
(
DT

)
,

after integration by parts, we obtain the equality∫
DT

□u□φdxdt+

∫
DT

f (u)φdxdt =

∫
DT

Fφdxdt. (4)
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In deriving equality (4), we used the fact that u|∂DT
= 0, φ|∂DT

= 0 and the derivative with

respect to the conormal ∂
∂N = vt

∂
∂t − vx

∂
∂x is an inner differential operator on the boundary ∂DT of

the characteristic rectangle DT , where v = (vx, vt) is the unit vector of the outer normal to ∂DT .
We take equality (4) as a basis for the definition of a weak generalized solution of problem (1), (2).
Below, on the nonlinear vector function f = (f1, . . . , fN ) from (1) we impose the following require-

ments:

f ∈ C
(
RN) , |f (u)| ≤ M1 +M2 |u|α , α = const > 1, u ∈ RN , (5)

where | · | is the norm of the space RN , Mi = const ≥ 0, i = 1, 2.

Remark 2. As is known, since the dimension of the domain DT ⊂ R2 equals 2, then the embedding
operator I : W 1

2 (DT ) → Lp (DT ) represents a linear continuous compact operator for any fixed
q = const > 1 [4]. At the same time, the Nemitski operator K : Lq (DT ) → L2 (DT ), acting by the
formula Ku = f (u), where u ∈ Lq (DT ) and the function f satisfies condition (5), is continuous and
bounded for q ≥ 2α [3]. Thus, for q = 2α, the operator K0 = KI; W 1

2 (DT ) → L2 (DT ) will be
continuous and compact. Whence, in particular, it follows that if u ∈ W 1

2 (DT ), then f (u) ∈ L2 (DT )
and, if um → u in the space W 1

2 (DT ) , then f (um) → f (u) in the space L2 (DT ).

Definition. Let the vector function f satisfy condition (5) and F ∈ L2 (DT ). The vector function

u ∈
o

W 1
□ (DT ) is said to be a weak generalized solution of problem (1), (2), if for any vector function

φ ∈
o

W 1
□ (DT ) the integral equality (4) is valid, i.e.,∫

DT

□u□φdxdt+

∫
DT

f (u)φdxdt =

∫
DT

Fφdxdt ∀φ ∈
o

W
1
□ (DT ) . (6)

Note that due to Remark 2, the integral
∫
DT

f (u)φdxdt in the left−hand side of equality (6) is

well defined, since u ∈
o

W 1
□ (DT ) implies f (u) ∈ L2 (DT ) and, therefore, f (u)φ ∈ L1 (DT ) , since

φ ∈ L2 (DT ).

It is not difficult to see that if the solution u of problem (1), (2) belongs to the class
o

C 4
(
DT

)
in

the sense of the definition, then it will also be a classical solution of this problem.
Consider the following condition:

lim
|u|→∞

inf
uf (u)

|u|2
≥ 0, (7)

which concerns the behavior of the vector function f in a neighborhood of infinity, where uf (u) =∑N
i=1 uifi (u), |u|2 =

∑N
i=1 u

2
i .

Let F ∈ L2 (DT ) and conditions (5) and (7) be fulfilled. Then for a weak generalized solution

u ∈
o

W 1
□ (DT ) of the boundary value problem (1), (2) the following a priori estimate

∥u∥ o
W 1

□
(DT )

≤ c1 ∥F∥L2(DT ) + c2

is valid, where the constants c1 > 0 and c2 ≥ 0 are independent of u and F . From here, taking into
account Remark 2 and the Leray−Schauder theorem, we have the following

Theorem 1. Let conditions (5) and (7) be fulfilled. Then for any vector function F ∈ L2 (DT ) the

boundary value problem (1), (2) has at least one weak generalized solution in the space
o

W 1
□ (DT ).

Consider the following condition imposed on the vector function f ,

(f (u)− f (v)) (u− v) ≤ 0 ∀u, v ∈ RN . (8)

Theorem 2. Let the vector function f satisfy conditions (5) and (8). Then for any vector function
F ∈ L2 (DT ) the boundary value problem (1), (2) cannot have more than one weak generalized solution

u ∈
o

W 1
□ (DT ).

The following theorem follows from Theorems 1 and 2.
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Theorem 3. Let the vector function f satisfy conditions (5), (7) and (8). Then for any vector
function F ∈ L2 (DT ) the boundary value problem (1), (2) has a unique weak generalized solution in

the space
o

W 1
□ (DT ).

Note that if condition (7) is violated, a sufficiently wide class of vector functions F ∈ L2 (DT )
can be represented when problem (1), (2) does not have a weak generalized solution from the space
o

W 1
□ (DT ). Indeed, let

fi (u1, . . . , uN ) =

N∑
j=1

aij |uj |βij + bi, i = 1, . . . , N,

where the constants aij , βij and bi satisfy the following inequalities:

aij > 0, βij = const > 1,

N∑
j=1

bi > 0, i, j = 1, . . . , N.

Then, if F 0 =
(
F 0
1 , . . . , F

0
N

)
∈ L2 (DT ), G =

∑N
j=1 F

0
i < 0, and F = µF 0, µ = const > 0, then

there exists a number µ0 = µ0 (G, βij) > 0 such that problem (1), (2) has no weak generalized solution

u ∈
o

W 1
□ (DT ), when µ > µ0.
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