ON THE SOLVABILITY OF THE DIRICHLET PROBLEM FOR ONE CLASS OF FOURTH-ORDER NONLINEAR HYPERBOLIC SYSTEMS

TEONA BIBILASHVILI¹ AND SERGO KHARIBEGASHVILI^{1,2}

Dedicated to the memory of Professor Elene Obolashvili

Abstract. The Dirichlet problem for one class of the fourth—order nonlinear hyperbolic systems in a characteristic rectangle is considered. The theorems on the existence, uniqueness and nonexistence of solutions of this problem are proved.

On a plane of variables x and t consider the following fourth—order hyperbolic system

$$\Box^2 u + f(u_1, \dots, u_N) = F(x, t), \qquad (1)$$

where $\Box := \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}$; $f = (f_1, \dots, f_N)$ and $F = (F_1, \dots, F_N)$ are the given vector functions, while $u = (u_1, \dots, u_N)$ is an unknown N-dimensional vector function, $N \geq 2$.

Denote by $D_T: |x| < t < T - |x|, |x| < \frac{1}{2}T$, the characteristic rectangle.

For system (1) in the characteristic rectangle D_T consider the Dirichlet problem: find in the domain D_T a solution $u = (u_1, \ldots, u_N)$ to system (1) according to the boundary condition

$$u|_{\partial D_{\mathcal{T}}} = 0. (2)$$

Note that one multidimensional analogue of problem (1), (2) in the scalar case was considered in the work [2]. As shown in [1], if instead of the characteristic rectangle $D_T: |x| < t < T - |x|, |x| < \frac{1}{2}T$, we consider the non-characteristic rectangle $G_T: 0 < x, t < T$, then for the boundary value problem to be correct in G_T , the Dirichlet boundary condition alone is not enough, it is necessary to require additionally the fulfillment of the Neumann boundary condition $\frac{\partial u}{\partial v}|_{\partial G_T} = 0$.

Let

$$\overset{o}{C}{}^{k}\left(\overline{D}_{T}\right):=\left\{ u\in C^{k}\left(\overline{D}_{T}\right):u|_{\partial D_{T}}=0\right\} ,\ \ k\geq1,$$

and introduce the Hilbert space $\overset{o}{W}_{\square}^{1}(D_{T})$ as a completion of the space $\overset{o}{C}^{2}(\overline{D}_{T})$ with respect to the norm

$$||u||_{\widetilde{W}_{\square}^{1}(D_{T})}^{2} = \int_{D_{T}} \left[u^{2} + \left(\frac{\partial u}{\partial t}\right)^{2} + \left(\frac{\partial u}{\partial x}\right)^{2} + (\Box u)^{2} \right] dx dt.$$
 (3)

It follows from (3) that if $u \in \overset{\circ}{W}^1_{\square}(D_T)$, then $u \in \overset{\circ}{W}^1_{2}(D_T)$ and $\square u \in L_2(D_T)$. Here, $W^1_2(D_T)$ is the well-known Sobolev space consisting of the elements of $L_2(D_T)$, having the first order generalized derivatives from $L_2(D_T)$, and $\overset{\circ}{W}^1_2(D_T) := \{u \in W^1_2(D_T) : u|_{\partial D_T} = 0\}$, where the equality $u|_{\partial D_T} = 0$ is understood in the sense of the trace theory.

Remark 1. It is easy to verify that if $u \in \overset{\circ}{C}{}^4(\overline{D}_T)$ is a classical solution of problem (1), (2), then multiplying scalarly both sides of system (1) by any test vector function $\varphi = (\varphi_1, \dots, \varphi_N) \in \overset{\circ}{C}{}^2(\overline{D}_T)$, after integration by parts, we obtain the equality

$$\int_{D_T} \Box u \Box \varphi dx dt + \int_{D_T} f(u) \varphi dx dt = \int_{D_T} F \varphi dx dt. \tag{4}$$

 $^{2020\} Mathematics\ Subject\ Classification.\ 35\text{G}30,\ 35\text{L}55.$

Key words and phrases. Nonlinear fourth—order hyperbolic systems; The Dirichlet problem; Existence; Uniqueness and nonexistence of solutions.

In deriving equality (4), we used the fact that $u|_{\partial D_T} = 0$, $\varphi|_{\partial D_T} = 0$ and the derivative with respect to the conormal $\frac{\partial}{\partial N} = v_t \frac{\partial}{\partial t} - v_x \frac{\partial}{\partial x}$ is an inner differential operator on the boundary ∂D_T of the characteristic rectangle D_T , where $v = (v_x, v_t)$ is the unit vector of the outer normal to ∂D_T .

We take equality (4) as a basis for the definition of a weak generalized solution of problem (1), (2). Below, on the nonlinear vector function $f = (f_1, \ldots, f_N)$ from (1) we impose the following requirements:

$$f \in C(\mathbb{R}^{\mathbb{N}}), \quad |f(u)| \le M_1 + M_2 |u|^{\alpha}, \quad \alpha = \text{const} > 1, \quad u \in \mathbb{R}^N,$$
 (5)

where $|\cdot|$ is the norm of the space \mathbb{R}^N , $M_i = \text{const} \geq 0$, i = 1, 2.

Remark 2. As is known, since the dimension of the domain $D_T \subset \mathbb{R}^2$ equals 2, then the embedding operator $I: W_2^1(D_T) \to L_p(D_T)$ represents a linear continuous compact operator for any fixed q = const > 1 [4]. At the same time, the Nemitski operator $K: L_q(D_T) \to L_2(D_T)$, acting by the formula Ku = f(u), where $u \in L_q(D_T)$ and the function f satisfies condition (5), is continuous and bounded for $q \geq 2\alpha$ [3]. Thus, for $q = 2\alpha$, the operator $K_0 = KI$; $W_2^1(D_T) \to L_2(D_T)$ will be continuous and compact. Whence, in particular, it follows that if $u \in W_2^1(D_T)$, then $f(u) \in L_2(D_T)$ and, if $u_m \to u$ in the space $W_2^1(D_T)$, then $f(u_m) \to f(u)$ in the space $L_2(D_T)$.

Definition. Let the vector function f satisfy condition (5) and $F \in L_2(D_T)$. The vector function $u \in \overset{\circ}{W}_{\square}^1(D_T)$ is said to be a weak generalized solution of problem (1), (2), if for any vector function $\varphi \in \overset{\circ}{W}_{\square}^1(D_T)$ the integral equality (4) is valid, i.e.,

$$\int_{D_T} \Box u \Box \varphi dx dt + \int_{D_T} f(u) \varphi dx dt = \int_{D_T} F \varphi dx dt \ \forall \varphi \in \stackrel{\circ}{W}_{\Box}^1(D_T).$$
 (6)

Note that due to Remark 2, the integral $\int_{D_T} f(u) \varphi dx dt$ in the left-hand side of equality (6) is well defined, since $u \in \overset{\circ}{W}_{\square}^1(D_T)$ implies $f(u) \in L_2(D_T)$ and, therefore, $f(u) \varphi \in L_1(D_T)$, since $\varphi \in L_2(D_T)$.

It is not difficult to see that if the solution u of problem (1), (2) belongs to the class $\overset{\circ}{C}{}^4(\overline{D}_T)$ in the sense of the definition, then it will also be a classical solution of this problem.

Consider the following condition:

$$\lim_{|u| \to \infty} \inf \frac{uf(u)}{|u|^2} \ge 0,\tag{7}$$

which concerns the behavior of the vector function f in a neighborhood of infinity, where $uf(u) = \sum_{i=1}^{N} u_i f_i(u), |u|^2 = \sum_{i=1}^{N} u_i^2$. Let $F \in L_2(D_T)$ and conditions (5) and (7) be fulfilled. Then for a weak generalized solution

Let $F \in L_2(D_T)$ and conditions (5) and (7) be fulfilled. Then for a weak generalized solution $u \in W^1_{\square}(D_T)$ of the boundary value problem (1), (2) the following a priori estimate

$$||u||_{\overset{\circ}{W}_{\square}^{1}(D_{T})} \le c_{1} ||F||_{L_{2}(D_{T})} + c_{2}$$

is valid, where the constants $c_1 > 0$ and $c_2 \ge 0$ are independent of u and F. From here, taking into account Remark 2 and the Leray-Schauder theorem, we have the following

Theorem 1. Let conditions (5) and (7) be fulfilled. Then for any vector function $F \in L_2(D_T)$ the boundary value problem (1), (2) has at least one weak generalized solution in the space $\overset{\circ}{W}_{\square}^1(D_T)$.

Consider the following condition imposed on the vector function f,

$$(f(u) - f(v))(u - v) \le 0 \ \forall u, v \in \mathbb{R}^{N}.$$
(8)

Theorem 2. Let the vector function f satisfy conditions (5) and (8). Then for any vector function $F \in L_2(D_T)$ the boundary value problem (1), (2) cannot have more than one weak generalized solution $u \in \overset{\circ}{W}^1_{\square}(D_T)$.

The following theorem follows from Theorems 1 and 2.

Theorem 3. Let the vector function f satisfy conditions (5), (7) and (8). Then for any vector function $F \in L_2(D_T)$ the boundary value problem (1), (2) has a unique weak generalized solution in the space $\overset{\circ}{W}_{\square}^1(D_T)$.

Note that if condition (7) is violated, a sufficiently wide class of vector functions $F \in L_2(D_T)$ can be represented when problem (1), (2) does not have a weak generalized solution from the space $\stackrel{o}{W}_{\square}^1(D_T)$. Indeed, let

$$f_i(u_1, \dots, u_N) = \sum_{i=1}^{N} a_{ij} |u_j|^{\beta_{ij}} + b_i, \ i = 1, \dots, N,$$

where the constants a_{ij} , β_{ij} and b_i satisfy the following inequalities:

$$a_{ij} > 0$$
, $\beta_{ij} = \text{const} > 1$, $\sum_{j=1}^{N} b_i > 0$, $i, j = 1, \dots, N$.

Then, if $F^0 = (F_1^0, \dots, F_N^0) \in L_2(D_T)$, $G = \sum_{j=1}^N F_i^0 < 0$, and $F = \mu F^0$, $\mu = \text{const} > 0$, then there exists a number $\mu_0 = \mu_0(G, \beta_{ij}) > 0$ such that problem (1), (2) has no weak generalized solution $u \in W^1_{\square}(D_T)$, when $\mu > \mu_0$.

References

- 1. T. Bibilashvili, S. Kharibegashvili, On the solvability of the boundary value problem for one class of higher-order nonlinear hyperbolic systems. *Trans. A. Razmadze Math. Inst.* **178** (2024), no. 2, 317–319.
- 2. S. Kharibegashvili, B. Midodashvili, Solvability of characteristic boundary-value problems for nonlinear equations with iterated wave operator in the principal part. *Electron. J. Differential Equations* **2008**, no. 72, 12 pp.
- 3. A. Kufner, S. Fučík, Nonlinear Differential Equations. Studies in Applied Mechanics, 2. Elsevier Scientific Publishing Co., Amsterdam-New York, 1980.
- 4. O. A. Ladyzhenskaya, *The Boundary Value Problems of Mathematical Physics*. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. Applied Mathematical Sciences, 49. Springer-Verlag, New York, 1985.

(Received 14.01.2025)

¹Department of Mathematics, Georgian Technical University, 77 Kostava Str., Tbilisi 0171, Georgia

 2 A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 2 Merab Aleksidze II Lane, Tbilisi 0193, Georgia

 $Email\ address: \verb|teonabibilashvili120gmail.com| \\ Email\ address: \verb|kharibegashvili0yahoo.com|| \\$