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CHARACTERIZATION OF G-LIPSCHITZ SPACES VIA COMMUTATORS OF

THE G-MAXIMAL FUNCTION

ELMAN J. IBRAHIMOV1 AND SAADAT A. JAFAROVA1,2

Abstract. Let MG be the Gegenbauer maximal (G-maximal) function and b be a locally integrable

function. Denote Mb
G the G-maximal commutator of MG with b. In this paper, we consider the

boundedness Mb
G on the Lebesgue and G-Morrey spaces when b belongs to the Gegenbauer–Lipschitz

(G-Lipschitz) space, by which some characterizations of the Gegenbauer–Lipschitz spaces are given.

1. Introduction, Definition, Notation and Results

The boundedness of the fractional maximal operators, fractional integral and its commutators
plays an important role in harmonic analysis and their applications. In recent decades, many authors
have proved the boundedness of the commutators with BMO functions of fractional maximal and
fractional integral operators on some function spaces. The reader can find detailed information in
papers [3, 23,25,26,30].

The fractional integral operator Iα and fractional maximal operator Mα are defined as follows:

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−a
dy, n ≥ 1, 0 < α < n,

Mαf(x) = sup
Q∋x

1

|Q|1−
α
n

∫
Q

|f(y)| dy, (1.1)

where the supremum is taken over the cubes Q ⊂ Rn containing x.
Let b ∈ Lloc(Rn), then the commutator generated by the function Iα and a suitable function b, and

also b and Mα are defined as follows:

[b, Iα] f(x) = b(x)Iαf(x)− Iα(bf)(x) =

∫
Rn

[b(x)− b(y)]

|x− y|n−α f(y)dy,

Mb,αf(x) = sup
Q∋x

1

|Q|1−
α
n

∫
Q

|b(x)− b(y)| |f(y)| dy. (1.2)

The commutators [b, Iα] were introduced by Chanillo [2].

Definition 1.1 (John–Nirenberg space). BMO(Rn) is the John–Nirenberg space. That BMO(Rn)
is a Banach space, modulo constants, with the norm ∥·∥∗ defined by

∥b∥∗ := sup
Q

1

|Q|

∫
Q

|b(x)− bQ| dx,

where

bQ :=
1

|Q|

∫
Q

|b(y)| dy

and the supremum is taken over all cubes Q in Rn.
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Theorem 1.2 (Chanillo [2]). Let 0 < α < n, 1 < p < n/α, 1
p − 1

q = α
n and b ∈ BMO(Rn). Then the

operator [b, Iα] is bounded from Lp(Rn) to Lq(Rn), i.e.,

∥[b, Iα]f∥Lq(Rn) ≤ C ∥b∥∗ ∥f∥Lp(Rn) .

Conversely, if n − α is an even integer and [b, Iα] is bounded from Lp(Rn) to Lq(Rn), then b ∈
BMO(Rn).

The results obtained in [27] (see Theorem 3.5.1 and Theorem 3.5.2) strengthen Theorem 1.2.

Theorem 1.3 ([27]). Let 0 < α < n, 1 < p < n/α and 1
p − 1

q = α
n . Then [b, Iα] and [b,Mα] are

bounded from Lp(Rn) to Lq(Rn) if and only if b ∈ BMO(Rn).

In fact, the statement of Theorem 1.3 remains valid for Mb,α and for the operator

|b, Iα| :=
∫
Rn

|b(x)− b(y)|
|x− y|n−α

f(y)dy,

(see [5, Theorem 2.2]).
Further, in works [25] and [31], the results of Theorem 1.3 were obtained in the Morrey spaces.
Morrey spaces were originally introduced by Morrey in [28] to study the local behavior of solutions

to the second-order elliptic partial differential equations. Many classical operators of harmonic analysis
were studied in Morrey-type spaces during the last decades. We refer the readers to Adams [1] and
references therein.

Definition 1.4. Let 1 ≤ p < ∞ and 0 ≤ θ ≤ n. The classical Morrey spaces are defined by

Lp,θ(Rn) =
{
f ∈ Lp

loc(R
n) : ∥f∥Lp,θ(Rn) < ∞

}
,

where

∥f∥Lp,θ(Rn) := sup
Q

(
1

|Q|θ/n

∫
Q

|f(x)|p dx
)1/p

.

The weak Morrey space is defined by

WLp,θ(Rn) = {f ∈ Lp
loc(R

n) : ∥f∥WLp,θ(Rn) < ∞},

where

∥f∥WLp,θ(R+) := sup r
r>0

sup
x∈Rn,t>0

(
t−

θ
n |{x ∈ Q : |f(x)| > r}|

) 1
p

.

It is well known that if 1 ≤ p < ∞, then Lp,0(Rn) = Lp(Rn) and Lp,n(Rn) = L∞(Rn).
The next theorem is a generalization of Theorem 1.2 to the Morrey space.

Theorem 1.5 (Di Fazio and Ragusa [4]). Let 0 < α < n, 1 < p < n/α, 0 < θ < n−αp, 1
p −

1
q = α

n−θ .

If b ∈ BMO(Rn), then the commutator [b, Iα] is bounded from Lp,θ(Rn) to Lq,θ(Rn).
Conversely, if n − α is an even integer and [b, Iα] is bounded from Lp,θ(Rn) to Lq,θ(Rn), then

b ∈ BMO(Rn).
The Lp,θ theory about the fractional integral operator Iα and its commutator [b, Iα] is based of the

following theorems:

Theorem 1.6 (Adams [1]). Let 0 < α < n, 0 ≤ θ < n and 1 ≤ p < n−θ
α .

(i) If 1 < p < n−θ
α , then 1

p − 1
q = α

n−θ is a necessary and sufficient condition for the boundedness

of Iα from Lp,θ(Rn) to Lq,θ(Rn).
(ii) If p = 1, then 1 − 1

q = α
n−θ is a necessary and sufficient condition for the boundedness of Iα

from L1,θ(Rn) to WLq,θ(Rn).
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Theorem 1.7 (Spanne, but published by Peetre [29]). Let 0 < α < n, 1 < p < n
α , 0 < θ < n − αp.

Moreover, let 1
p − 1

q = α
n and µ = nθ/(n− αp) (i.e., θ

p = µ
q ).

(a) For p > 1, Iα is bounded from Lp,θ(Rn) to Lq,µ(Rn) if and only if θ
p = µ

q .

(b) For p = 1, Iα is bounded from L1,θ(Rn) to WLq,µ(Rn) if and only if µ = θq.

Theorem 1.8 (Komori and Mizuhara [26]). Let 0 < α < n, 1 < p < n/α, 0 < θ < n − αp and
1
p − 1

q = α
n−θ .

Then the following conditions are equivalent:
(a) b ∈ BMO(Rn).
(b) [b, Iα] is bounded from Lp,θ(Rn) to Lq,θ(Rn).

Note that Theorem 1.8 is a strengthening of Theorem 1.5.

Theorem 1.9 (Satori Shirai [31]). Let 0 < α < n, 1 < p < n/α, 0 < θ < n − αp, 1
p − 1

q = α
n and

µ = nθ/(n− αp) (i.e., θ/p = µ/q).
Then the following conditions are equivalent:
(a) b ∈ BMO(Rn).
(b) [b, Iα] is bounded from Lp,θ(Rn) to Lq,µ(Rn).

In [31], analogues results are obtained in a Lipschitz space. In the classical analysis, the Lipschitz
space is defined as follows.

Definition 1.10. Let 0 < β ≤ 1. The Lipschitz space
·
Λβ(Rn) of order β is defined by

·
Λβ(Rn) =

{
f : |f(x+ y)− f(x)| ≤ C |y|β

}
,

and the smallest such constant C is called the
·
Λβ(Rn) norm of f and denoted ∥f∥ ·

Λβ(Rn)
.

The above definition implies that if f ∈
·
Λβ(Rn), then by β > 1, f(x) ≡ const. Therefore, it makes

sense to consider a case for 0 < β ≤ 1.
The following results were obtained in [31].

Theorem 1.11 ( [31]). Let 1 < p < q < ∞, 0 < α < n(1/p − 1/q), 0 < β < 1, 0 < α + β =
n(1/p− 1/q) < n, 0 < θ < n− (α+ β) and µ/q = θ/p.

Then the following conditions are equivalent:

(a) b ∈
·
Λβ(Rn).

(b) [b, Iα] is bounded from Lp,θ(Rn) to Lq,µ(Rn).

Theorem 1.12 ([31]). Let 1 < p < q < ∞, 0 < α < n(1/p − 1/q), 0 < β < 1, and 0 < α + β =
n(1/p− 1/q) < n.

Then the following conditions are equivalent:

(a) b ∈
·
Λβ(Rn).

(b) [b, Iα] is bounded from Lp,θ(Rn) to Lq,θ(Rn).

Further research in this direction can be found in work [27]. According to (1.1) and (1.2), for a
locally integrable function f , the Hardy–Littlewood maximal function M is given by

M0f(x) = Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)| dy,

the maximal commutator of M with a locally integrable function b is defined by

[b,M ]f(x) = Mbf(x) = sup
Q∋x

1

|Q|

∫
Q

|b(x)− b(y)| |f(y)| dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x.
The following theorems were proved in [32].
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Theorem 1.13 ([32]). Let b be a locally integrable function and 0 < β < 1, then the following
statement are equivalent:

(1) b ∈
·
Λβ(Rn);

(2) Mb is bounded from Lp(Rn) to Lq(Rn) for 1 < p < n/β and 1
p − 1

q = β
n ;

(3) Mb satisfies the weak-type (1, n/(n− β)) estimates, namely, there exists a positive constant C
such that for all θ > 0,

|{x ∈ Rn : Mbf(x) > θ}| ≤ C
(
θ−1 ∥f∥L1(Rn)

)n/(n−β)

.

Theorem 1.14 ([32] Adams type result). Let b be a locally integrable function and 0 < β < 1.

Suppose that 1 < p < n/β, 0 < θ < n − βp, 1
p − 1

q = β
n−θ . Then b ∈

·
Λβ(Rn) if and only if Mb is

bounded from Lp,θ(Rn) to Lq,θ(Rn).

Theorem 1.15 ([32] Spanne type result). Let b be a locally integrable function and 0 < β < 1.

Suppose that 1 < p < n/β, 0 < θ < n− βp, 1
p − 1

q = β
n and θ

p = µ
q .

Then b ∈
·
Λβ(Rn) if and only if Mb is bounded from Lp,θ(Rn) to Lq,µ(Rn).

The purpose of this paper to receive the results of the type of Theorems 1.13, 1.14 and 1.15 in the
G-Lipschitz spaces.

2. Some Information from the Gegenbauer Harmonic Analysis

In 2011, in the paper [15] new integral transformation that formed the basis of theory of Harmonic
analysis of the Gegenbauer differential operator were constructed. Later, this theory was intensively
developed in various directions: approximation theory, embedding theory, transformation theory,
theory of maximal functions and potential theory (see [9–14, 16, 18–22, 24]). The basis of this theory
was the Gegenbauer differential operator G,

G ≡ Gλ = (x2 − 1)
d2

dx2
+ (2λ+ 1)x

d

dx
, x ∈ [1,∞), λ ∈

(
0,

1

2

)
introduced in [7].

The generalized shift operator associated with the operator G is of the form (see [15])

Aλ
chyf(chx) =

Γ
(
λ+ 1

2

)
Γ(λ)Γ

(
1
2

) π∫
0

f (chxchy − shxshy cosφ) (sinφ)2λ−1dφ.

The properties of this operator are described in [9].
One of the important directions of the Gegenbauer harmonic analysis is the boundedness of maximal

operator and potential, generated by the Gegenbauer differential operator G.
In what follows, the expression A ≲ B will mean that there exists a constant C such that 0 <

A ≤ CB, where C may depend on some inessential parameters. If A ≲ B and B ≲ A, then we write
A ≈ B and say that A and B are equivalent.

For a locally integrable function f, the Gegenbauer maximal function MG (G-maximal function) is
given by (see [16])

MGf(chx) = sup
r>0

1

|Hr|λ

∫
Hr

Aλ
chy |f(chx)| dµλ(y),

where Hr = (0, r) and (see [19])

|Hr|λ =

r∫
0

sh2λxdx ≈
(
sh

r

2

)γ

,

where

γ = γλ(r) =

{
2λ+ 1, if r ∈ (0, 2),

4λ, if r ∈ [2,∞).
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The Gegenbauer potential (G-potential) is defined in [16] as follows:

IαGf(chx) =
1

Γ (α/2)

∞∫
0

(∞∫
0

rα/2−1hr(cht)dr

)
Aλ

cht(chx)dµλ(t),

where

hr(cht) =

∞∫
1

e−u(u+2λ)rPλ
u (cht)(u

2 − 1)λ−
1
2 du, 0 < α < 2λ+ 1,

and

Pλ
u (cht) =

Γ (u+ 2λ) cosπλ

Γ(λ)Γ (λ+ 1)
(2cht)−u−2λ

2F1

(u
2
+ λ,

u

2
+ λ+

1

2
;u+ λ+ 1; (cht)−2

)
is an eigenfunction of the operator G, 2F1(α, β; γ;x) is a Gaussian hypergeometric function.

The Hardy–Littlewood–Sobolev type theorem for the IαG holds (see [14, Theorem 3]).
Let Lp(R+, G) = Lp,λ(R+), R+ = [0,∞) be the space of a µ(x) = sh2λx− measurable function

on R+ with the finite norm

∥f∥Lp,λ(R+) =

( ∫
R+

|f(chx)|p dµλ(x)

) 1
p

, 1 ≤ p < ∞, dµλ(x) = sh2λxdx,

∥f∥L∞,λ(R+) = ∥f∥
∞

= ess sup
x∈R+

|f(chx)| , p = ∞.

For f ∈ Lloc
1,λ(R+), the G-fractional maximal operator Mα

G and the G-fractional integral operator

Jα
G are defined in [18] as follows:

Mα
Gf(chx) = sup

r>0

1

|Hr|
1−α

γ

λ

∫
Hr

Aλ
chy |f(chx)| dµλ(y), 0 < α < γ,

M0
G ≡ MG, and

Jα
Gf(chx) =

∞∫
0

Aλ
chyf(chx)(
shy

2

)γ−α dµλ(y), 0 < α < γ,

respectively.
Let b ∈ Lloc

1,λ(R+), then the commutator generated by the function b and the Mα,
G as well as Jα

G are
defined as follows:

Mb,α
G f(chx) = sup

r>0

1

|Hr|
1−α

γ

λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣Aλ

chy |f(chx)| dµλ(y), 0 < α < γ,

moreover, Mb,0
G ≡ M b

G, and also

Jb,α
G f(chx) =

∞∫
0

[Aλ
chyb(chx)− bHr

(chx)](
shy

2

)γ−α Aλ
chy |f(chx)| dµλ(y), 0 < α < γ,

where

bHr (chx) =
1

|Hr|λ

∫
Hr

Aλ
chyf(chx)dµλ(y).

By the definition (see [18]), the Gegenbauer –BMO space (G-BMO space) is denoted as

BMOG(R+) :=
{
f ∈ Lloc

1,λ(R+) : ∥f∥BMOG(R+) < ∞
}
,

where

∥f∥BMOG(R+) = sup
x∈R+

r>0

1

|Hr|λ

∫
Hr

|Aλ
chyf(chx)− fHr (chx)|dµλ(y).

The next theorem is analogous of Theorem 1.3.
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Theorem 2.1 ([18]). Let 0 < α < γ, 1 < p < γ
α and 1

p − 1
q = α

γ . Then Mb,α
G and Jb,α

G are bounded

from Lp,λ(Rn) to Lq,λ(Rn), if and only if b ∈ BMOG(R+).

The space
·
Λβ(Rn) was introduced by the German mathematician Rudolf Lipschitz in 1864 in

connection with the study of the question of the convergence of Fourier series to its sum. More
precisely, the Lipschitz conditions turned out to be sufficient for the convergence of Fourier series in a
trigonometric system to their sum. Currently, the Lipschitz conditions are used in direct and inverse
theorems (Jackson and Bernstein) in a system of functions, as well as in various questions of Fourier
harmonic analysis. This indicates the relevance of studying the classes of functions satisfying Lipschitz
conditions.

It is known that every continuously differentiable function on a compact subset of Euclidean space
is Lipschitz. On the other hand, any Lipschitz function defined on an open set of Euclidean space is
differentiable almost everywhere on this set. It is also known that if a function f(x) has a bounded

derivative, then f ∈
·
Λ1(Rn).

The above allows us to suggest a close connection between the functions from
·
Λβ(Rn) and their

differentiability.
It was this circumstance that gave us the idea to introduce a space of functions associated with

the Gegenbauer differential operator. We called this space the Gegenbauer–Lipschitz space in honor
of two remarkable German mathematicians Gegenbauer and Lipschitz.

By analogy with the classical case, we introduce the G-Lipschitz space as follows.

Definition 2.2. Let 0 < β ≤ 1, we say a function f belongs to the G-Lipschitz space
·
Λβ(R+, G) if

there exists a constant C such that for all x, y ∈ R+,

·
Λβ(R+, G) =

{
f : |Aλ

chyf(chx)− f(chx)| < C(chy − 1)β
}
, (2.1)

and the smallest such constant C we call the
·
Λβ(R+, G) norm of f and denote it by ∥f∥ ·

Λβ(R+,G)
.

The naturalness of the G-Lipschitz space introduced by us is substantiated as follows. For the
equality (see [8], Lemma 1)

lim
y→0

Aλ
chyf(chx)− f(chx)

chy − 1
=

sh2x

2λ+ 1
f ′′(chx) + (chx)f ′(chx) =

Gf(chx)

2λ+ 1
,

(2.1) implies that for β > 1,

lim
y→0

∣∣∣∣Aλ
chyf(chx)− f(chx)

chy − 1

∣∣∣∣ ≤ C lim
y→0

(chy − 1)β−1 = 0

⇔ lim
y→0

∣∣∣∣Aλ
chyf(chx)− f(chx)

chy − 1

∣∣∣∣ = |Gf(chx)| = 0,

which means that this G-Lipschitz space for β > 1 consists of f(x) ≡ const. If |Gf(chx)| ≤ M−const,

then f ∈
·
Λ1(Rn). Therefore, we consider the cases where 0 < β ≤ 1.

3. Theorems

Our first result can be stated as follows.

Theorem 3.1. Let b be a locally integrable function and 0 < β < 1. Then the following statements
are equivalent:

(1) b ∈
·
Λβ(R+, G),

(2) M b
G is bounded from Lp,λ(R+, G) to Lq,λ(R+) for 1 < p < γ

β and 1
p − 1

q = β
γ ,
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(3) M b
G satisfies the weak-type

(
1, γ

γ−β

)
estimates, namely, there exists a positive constant C such

that for all ν > 0, ∣∣{x ∈ R+ : M b
Gf(chx) > ν

}∣∣
λ
≤ C

(
ν−1 ∥f∥L1,λ(R+)

) γ
γ−β

. (3.1)

The following definition was introduced in [19].

Definition 3.2. Let 1 ≤ p < ∞ and 0 ≤ ν ≤ γ. We denote by Lp,λ,ν(R+) the Gegenbauer–Morrey
(G-Morrey) space associated with the Gegenbauer differential operatorG as the set of locally integrable
functions f(chx), x ∈ R+ with the finite norm

∥f∥Lp,λ,ν(R+) = sup
x∈R+

r>0

(
|Hr|

− ν
γ

λ

r∫
0

Aλ
chy |f(chx)|

p
dµλ(y)

) 1
p

.

Thus by the definition,

Lp,λ,ν(R+) =
{
f ∈ Lloc

1,λ(R+) : ∥f∥Lp,λ,ν(R+) < ∞
}
.

Let f ∈ Lp,λ(R+), 1 ≤ p ≤ ∞, then for any y ∈ R+, the following inequality (see [23], Lemma 2)∥∥Aλ
chyf

∥∥
Lp,λ(R+)

≤ ∥f∥Lp,λ(R+) (3.2)

holds.
Note that Lp,λ,0(R+) = Lp,λ(R+). This follows from inequality (3.2), since A1f(chx) = f(chx).

Theorem 3.3 (Adams type result). Let b be a locally integrable function and 0 < β < 1. Suppose

that 1 < p < γ
β , 0 < ν < γ − βp and 1

p − 1
q = β

γ−ν . Then b ∈
·
Λβ(R+, G) if and only if M b

G is bounded

from Lp,λ,ν(R+) to Lq,λ,ν(R+).

Theorem 3.4 (Spanne type result). Let b be a locally integrable function and 0 < β < 1. Suppose

that 1 < p < γ
β , 0 < ν < γ − βp, 1

p − 1
q = β

γ and ν
p = µ

q . Then b ∈
·
Λβ(R+, G) if and only if M b

G is

bounded from Lp,λ,ν(R+) to Lq,λ,µ(R+).

This paper is organized as follows. In Section 1, we recall some basic definitions, known results,
and also some auxiliary statements. In Section 2, we give some information from the Gegenbauer
harmonic analysis. In Section 3, we give the wording proven theorems. In Section 4, we provide some
technical lemmas to prove our theorems. In Section 5, we give proofs of the theorems.

4. Preliminaries and Lemmas

For a measurable set E, by |E|λ, we denote E |λ =
∫
E

sh2λxdx, absolutely continuous with respect

to the Lebesgue measure and by χE the characteristic function of E . For p ∈ [1,∞], we denote by p′

the conjugate index of p, namely, p′+p = pp′. To prove the theorems, we need some auxiliary results.
To characterize the G-Lipschitz space, by analogy with [4], we introduce the following operator:

F β
Gf(chx) = sup

r>0
|Hr|−(1+β/γ)

λ

∫
Hr

∣∣Aλ
chyf(chx)− fHr (chx)

∣∣ dµλ(y)

for all locally integrable functions on R+.
If 1 ≤ p < ∞ and β > 0, let

Cβ
p =

{
f ∈ Lp,λ(R+), F

β
G ∈ Lp,λ(R+)

}
.

If f ∈ Cβ
p , we define the seminorm

|f |Cβ
p
:=

∥∥∥F β
Gf

∥∥∥
Lp,λ(R+)
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and the norm
∥f∥Cβ

p
:= ∥f∥Lp,λ(R+) + |f |Cβ

p
.

Introducing the Gegenbauer–Lipschits space, we consider it important to prove that it is a Banach
space.

The following statement is analogous to Lemma 6.1 in [6].

Proposition 4.1. For 1 ≤ p < ∞ and β > 0, Cβ
p is a Banach space.

Proof. We prove that Cβ
p is complete.

Suppose {fm} is a Cauchy sequence in Cβ
p . Since Lp,λ(R+) is complete (see [11], Proposition

5.1), there exists an f ∈ Lp,λ(R+) such that fm → f in Lp,λ(R+). Let Hr = (0, r) ⊂ R+ and

f(chx) = Aλ
ch 1

ν

hm(chx), where hm → h in Lp,λ(R+) and ν > 0. Then fHr (chx) =
(
Aλ

ch 1
ν

hm

)
Hr

(chx).

Using the commutativity of the operator Aλ
chy (see [12]) Aλ

chxA
λ
chy = Aλ

chyA
λ
chx and also inequality

(3.2), we obtain

1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣Aλ
chyf(chx)− fHr (chx)

∣∣ dµλ(y)

= lim
m→∞

1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣∣Aλ
chy

(
Aλ

ch 1
ν
hm

)
(chx)−

(
Aλ

ch 1
ν
hm

)
Hr

(chx)
∣∣∣dµλ(y)

= lim
m→∞

1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣∣Aλ
ch 1

ν

(
Aλ

chyhm

)
(chx)−

(
Aλ

ch 1
ν
hm

)
Hr

(chx)
∣∣∣dµλ(y)

≤ lim
m→∞

1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣Aλ
chyhm(chx)− (hm)Hr (chx)

∣∣ dµλ(y) = lim
m→∞

F β
Ghm(chx), x ∈ R+.

Taking a supremum over all interval Hr containing x, we get

F β
Gh(chx) ≤ lim

m→∞
F β
Ghm(chx), x ∈ R+. (4.1)

Applying this inequality to the sequence {fm} , taking p-th povers, and applying Fatou’s lemma,
we deduce ∥∥∥F β

Gf
∥∥∥
Lp,λ(R+)

≤
(∫

Hr

lim
m→∞

∣∣∣F β
Gfm(chx)

∣∣∣p dµλ(y)

) 1
p

≤ lim
m→∞

∥fm∥Cβ
p

and so, f ∈ Cβ
p . Similar reasoning shows that inequality (4.1) applied to the sequence {fm − fn}∞m=1

gives ∥∥∥F β
G(f − fn)

∥∥∥
Lp,λ(R+)

≤ lim
m→∞

∥∥∥F β
G(fm − fn)

∥∥∥
Lp,λ(R+)

.

But the right-hand side converges to zero as n → ∞ since {fm} is a Cauchy sequence in Cβ
p . Since

fm → f in Lp,λ(R+) has already been established, fm → f in Cβ
p . □

From the direct and inverse Hölder’s inequality, we get the following statement (see [26]).

Lemma 4.2 ([26]). For all 1 < q < ∞, the relation(
|Hr|−1

λ

∫
Hr

∣∣Aλ
chyf(chx)− fHr (chx)

∣∣q dµλ|(y)
) 1

q

≈ 1

|Hr|λ

∫
Hr

∣∣Aλ
chyf(chx)− fHr (chx)

∣∣ dµλ|(y)

is valid.
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Lemma 4.3. Let 0 < β < 1 and 1 ≤ q < ∞. Define

·
Λβ,q(R+, G) :=

{
f ∈ Lloc

1,λ(R+) : ∥f∥ ·
Λβ,q(R+,G)

= sup
x∈R+

r>0

1

|Hr|
β
γ

λ

(
1

|Hr|λ

∫
Hr

∣∣Aλ
chyf(chx)− fHr

(chx)
∣∣q dµλ(y)

) 1
q

< ∞
}
.

Then for all 0 < β < 1 and 1 ≤ q < ∞,
·
Λβ(R+, G) =

·
Λβ,q(R+, G) with equivalent norms.

Proof. Using Lemma 4.2, we have

sup
x∈R+

r>0

1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣Aλ
chyf(chx)− fHr (chx)

∣∣ dµλ(y)

≈ sup
x∈R+

r>0

1

|Hr|
β
γ

λ

(
1

|Hr|λ

∫
Hr

∣∣Aλ
chyf(chx)− fHr (chx)

∣∣q dµλ(y)

) 1
q

⇔ ∥f∥ ·
Λβ(R+,G)

≈ ∥f∥ ·
Λβ,q(R+,G)

. □

Lemma 4.4 ([18], Corollary 3.3). Let 0 < α < γ, 0 < ν < γ − αβ and 1 ≤ p < γ−ν
α .

(i) If 1 < p < γ−ν
α , then the condition 1

p −
1
q = α

γ−ν is necessary and sufficient for the boundedness

of Mα
G from Lp,λ,ν(R+) to Lq,λ,ν(R+).

(ii) If p = 1 < γ−ν
α , the condition 1 − 1

q = α
γ−ν is necessary and sufficient for the boundedness of

Mα
G from L1,λ,ν(R+) to WLq,λ,ν(R+).

Lemma 4.5. Let 1 ≤ p < ∞ and 0 < ν < γ, then

∥χHr∥Lp,λ,ν(R+) ≲ |Hr|
γ−ν
pγ

λ .

Proof. Let Hr = (0, r) ⊂ R+. Then we have

∥χHr∥Lp,λ,ν(R+) ≲

(
|Hr|−ν/γ

λ

∫
Hr

Aλ
chyχHr (chx)

pdµλ(y)

) 1
p

≲

(
|Hr|−ν/γ

λ

∫
Hr

dµλ(y)

) 1
p

=
(
|Hr|1−ν/γ

λ

) 1
p

= |Hr|
γ−ν
pγ

λ .

The following strong– and weak-type boundedness ofMα
G are well known (see [9, Corollary 5.6]). □

Lemma 4.6 ([9]). Let 0 < α < γ . Then:
(1) If 1 < p < α

γ , then the condition 1
p − 1

q = α
γ is necessary and sufficient for the boundedness of

Mα
G from Lp,λ(R+) to Lq,λ(R+).
(2) If p = 1, then the condition 1− 1

q = α
γ is necessary and sufficient for the boundedness Mα

G from

L1,λ(R+) to WLq,λ(R+).

Here, WLq,λ(R+) is the weak space Lp,λ(R+) defined as the locally integrable functions f(chx),
x ∈ R+ with the finite norm

∥f∥WLp,λ(R+) = sup
r>0

r |{x ∈ R+ : |f(chx)| > r}|
1
p

λ

= sup
r>0

r

( ∫
{x∈R+:|f(chx)|>r}

dµλ(y)

) 1
p

.
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5. Proof of Theorems

Proof of Theorem 3.1. If b ∈
·
Λβ(R+, G), then

M b
Gf(chx) = sup

r>0

1

|Hr|λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣Aλ

chy |f(chx)| dµλ(y)

≲ ∥b∥ ·
Λβ(R+,G)

sup
r>0

1

|Hr|
1− β

γ

λ

∫
Hr

Aλ
chy |f(chx)| dµλ(y)

= ∥b∥ ·
Λβ(R+,G)

Mβ
Gf(chx). (5.1)

Obviously, (2) and (3) follow from Lemma 4.6 and (5.1)

(2) =⇒ (1) : Assume M b
G is bounded from Lp,λ(R+), 1 < p < γ

β and 1
p − 1

q = β
γ .

For any interval Hr ⊂ R+, by Hölder’s inequality and noting 1
p + 1

q′ = 1 + β
γ , one gets

1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣ dµλ(y)

≈ 1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣Aλ

chyχHr
(chx)dµλ(y)

≈ 1

|Hr|
1+ β

γ

λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣ ( 1

|Hr|λ

∫
Hr

Aλ
chyχHr

(chx)dµλ(x)

)
dµλ(y)

=
1

|Hr|
1+ β

γ

λ

∫
Hr

(
1

|Hr|λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣Aλ

chyχHr
(chx)dµλ(y)

)
dµλ(x)

≤ 1

|Hr|
1+ β

γ

λ

∫
Hr

M b
GχHr

(chx)dµλ(x) ≤
1

|Hr|
1+ β

γ

λ

(∫
Hr

[
M b

GχHr
(chx)

]q
dµλ(x)

) 1
q

×
(∫

Hr

χHr (chx)dµλ(x)

) 1
q′

≲
1

|Hr|
1+ β

γ

λ

∥∥M b
GχHr

∥∥
Lq,λ(R+)

∥χHr
∥Lq′,λ(R+)

≲
1

|Hr|
1+ β

γ

λ

∥χHr∥Lp,λ(R+) ∥χHr∥Lq′,λ(R+) ≲ |Hr|
1
p+

1
q′ −1− β

γ

λ ≲ 1.

This, together with Lemma 4.3, gives b ∈
·
Λβ(R+, G) .

(3) =⇒ (1). We assume that (3.1) is true and verify b ∈
·
Λβ(R+, G) . For any fixed H0 = (0, r0) ⊂

R+, since for any x ∈ H0,∣∣Aλ
chyb(chx)− bH0

(chx)
∣∣ ≤ 1

|H0|λ

∫
H0

∣∣Aλ
chyb(chx)− bH0

(chx)
∣∣ dµλ(y),

then for all x ∈ H0,

M b
GχH0

(chx) = sup
x∈Hr

1

|Hr|λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣Aλ

chyχH0
(chx)dµλ(y)

≳
1

|Hr|λ

∫
H0

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣ dµλ(y)

≳
1

|H0|λ

∫
H0

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣ dµλ(y)



CHARACTERIZATION OF G-LIPSCHITZ SPACES VIA COMMUTATORS 117

≥
∣∣Aλ

chyb(chx)− bH0
(chx)

∣∣ .
This, together with (3.1), gives∣∣{x ∈ H0 :

∣∣Aλ
chyb(chx)− bH0

(chx)
∣∣ > ν

}∣∣
λ

≤
∣∣{x ∈ H0 : M b

GχH0(chx) > ν
}∣∣

λ

≤ C
(
ν−1 ∥χH0∥L1,λ(R+)

) γ
γ−β

= C
(
ν−1 |H0|λ

) γ
γ−β .

Let t > 0 be a constant to be determined later, then∫
H0

∣∣Aλ
chyb(chx)− bH0

(chx)
∣∣ dµλ(y)

=

∞∫
0

∣∣{x ∈ H0 :
∣∣Aλ

chyb(chx)− bH0(chx)
∣∣ > ν

}∣∣
λ
dν

=

t∫
0

∣∣{x ∈ H0 :
∣∣Aλ

chyb(chx)− bH0
(chx)

∣∣ > ν
}∣∣

λ
dν

+

∞∫
t

∣∣{x ∈ H0 :
∣∣Aλ

chyb(chx)− bH0
(chx)

∣∣ > ν
}∣∣

λ
dν

≤ t |H0|λ + C

∞∫
t

((
ν−1 |H0|λ

) γ
γ−β

)
dν

≤ t |H0|λ + C |H0|
γ

γ−β

λ

∞∫
t

ν
γ

γ−β dν ≲
(
t |H0|λ + |H0|

γ
γ−β

λ t1−
γ

γ−β

)
.

Set t = |H0|
β
γ

λ in the above estimate, we have∫
H0

∣∣Aλ
chyb(chx)− bH0

(chx)
∣∣ dµλ(y) ≲ |H0|

1+ β
γ

λ ,

it follows from Lemma 4.3 that b ∈
·
Λβ(R+, G), since H0 is an arbitrary interval in R+.

The proof of Theorem 3.1 is completed, since (2) =⇒ (1) follows from (3) =⇒ (1).

Proof of Theorem 3.3. Assume b ∈
·
Λβ(R+, G).

By (5.1) and Lemma 4.4 (i), we have∥∥M b
Gf

∥∥
Lq,λ,ν

≲ ∥b∥ ·
Λβ(R+,G)

∥∥∥Mβ
Gf

∥∥∥
Lq,λ,ν

≲ ∥f∥ ·
Λβ(R+,G)

∥f∥Lp,λ,ν
.

Conversely, if M b
G is bounded from Lp,λ,ν(R+) to Lq,λ,ν(R+), then for any interval Hr ⊂ R+,

1

|Hr|
β
γ

λ

∫
Hr

(
1

|Hr|λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣q dµλ(y)

) 1
q

≤ 1

|Hr|
β
γ

λ

(
1

|Hr|λ

∫
Hr

[
1

|Hr|λ

∣∣Aλ
chyb(chx)− bHr

(chx)
∣∣Aλ

chyχHr
(chx)dµλ(y)

]q
dµλ(x)

) 1
q

≤ 1

|Hr|
β
γ

λ

(
1

|Hr|λ

∫
Hr

[
M b

GχHr
(chx)

]q
dµλ(x)

) 1
q
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=
1

|Hr|
β
γ

λ

(
|Hr|

ν
γ

λ

|Hr|λ

) 1
q
(

1

|Hr|
ν
γ

λ

∫
Hr

[
M b

GχHr (chx)
]q

dµλ(x)

) 1
q

≤ |Hr|
− β

γ − 1
q+

ν
γq

λ

∥∥M b
GχHr

∥∥
Lq,λ,ν(R+)

≲ |Hr|
− β

γ − 1
q+

ν
γq

λ ∥Hr∥Lp,λ,ν(R+)

≲ |Hr|
− β

γ − 1
q+

ν
γq+

γ−ν
pγ

λ ≲ 1,

where on the last step we have used 1
p − 1

q = β
γ−ν and Lemma 4.5.

It follows from Lemma 4.3 that b ∈
·
Λβ(R+, G) which completes the proof.

Proof of Theorem 3.4. Assume b ∈
·
Λβ(R+, G). By (5.1) and Lemma 4.5, we have∥∥M b

Gf
∥∥
Lq,λ,µ

≲ ∥b∥ ·
Λβ(R+,G)

∥∥∥Mβ
Gf

∥∥∥
Lq,λ,µ

≲ ∥f∥ ·
Λβ(R+,G)

∥f∥Lp,λ,ν
.

Conversely, M b
G is bounded from Lp,λ,ν(R+) to Lq,λ,µ(R+), then for any interval Hr ⊂ R+,

1

|Hr|
β
γ

λ

(
1

|Hr|λ

∫
Hr

∣∣Aλ
chyb(chx)− bHr (chx)

∣∣q sh2λdµλ(y)

) 1
q

≤ 1

|Hr|
β
γ

λ

(
|Hr|

ν
γ

λ

|Hr|λ

) 1
q
(

1

|Hr|
µ
γ

λ

∫
Hr

[
M b

GχHr
(chx)

]q
sh2λdµλ(x)

) 1
q

≲ |Hr|
− β

γ − 1
q+

µ
γq+

γ−ν
pγ

λ ≲ 1,

where on the last step we have used Lemma 4.5, 1
p − 1

q = β
γ and ν

p = µ
q .

This completes the proof.
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