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THE BOUNDS FOR THE ZEROS OF POLYNOMIALS

SUBHASIS DAS

Abstract. In this paper we introduce new bounds on the location of zeros of a polynomial with
complex coefficients. The upper bound of our result is the best possible. In case where all coefficients,
except the leading one, tend to zero, this reflects the fact that all zeros of the polynomial tend to
the origin z = 0. In some cases, using this, we can get better bounds of polynomial zeros than those
obtained by others known results, which is also illustrated by an example. In addition, an attempt
has been made to investigate the result obtained by A. Joyal et al. (1967) and to generalize and
refine this result for the class of lacunary type polynomials under consideration.

1. INTRODUCTION

Estimating the moduli of zeros of a polynomial has a long history. In recent years, many papers
(see [2-4,8,15-18,24,26,27]) and comprehensive books (see [19,23]) have been published to determine
the bounds of the zeros of polynomial with real or complex coefficients. Historically speaking, the study
of the zero region of a polynomial began since the time when the geometric representation of complex
numbers was introduced into mathematics. The first researches in this subject were Lagrange [18],
Gauss [9] and Cauchy [5], respectively. Let

p(2) =anz" + 12"V arz + ag

be a polynomial of degree n with real or complex coefficients. In 1816, Gauss proved the following
result.

Theorem 1.1. All zeros of p(z) with real coefficients lie in the circular region
2| < M,
1
) n—k

In 1829, Cauchy [5] (see also [19]) produced more simple bound of polynomial zeros which can be
stated as follows.

where
Qg

an

1
M = max 22n
0<k<n—1

Theorem 1.2. All zeros of p(z) lie in an open circular region
|2] <1+A,
where

ag

A:

max — .
0<k<n—1|a,

In 1971, Simeon Reich proposed and among others, O. P. Lossers [24] obtained the following
Theorem 1.3. All zeros of p(z) with a,—1 = 0 lie in the region
2] <A+ A2 4 4 AL
where

1
a"') > 1.

0<k<n—2|ay,

A:( max
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Theorem 1.4. All zeros of p(z) with a,—1 = 0 lie in the region

Moreover, if

Z—i‘ = A" forsomej; 0 < j <n—2, and |a;] < o =+2-1;Vi(#j) €{0,1,2,...,n — 2},

then zeros of p(z) lie in the disc
2| < V14 A",

where

1
’“) > 1.

an

A= max
0<k<n-—2

Aziz [1] (see also [27, Theorem B]) generalized Theorem 1.3 by using a lacunary type polynomial
[19, Ch. VIII, Sect. 34, pp. 156]

P (z) =2"4a2+--+arz+ag, ax#0, 0<\<n,
and obtained the following result.
Theorem 1.5. All zeros of P(z) lie in the disc
2] < A+ A2 .. 4 AN,

1
In 2013, Aziz and Rather [2] obtained the following improvement of Theorem 1.3 and Theorem 1.5.
Theorem 1.6. All zeros of P(z) lie in the disc

where
ag

Qn

A:(max

0<k<A

|Z|S(An+An71++An7)\)ﬁ’

X

Applying Holder’s inequality, in 1967, Joyal et. al. [16] proved the following

where
ag

0<k<\ | @y,

A(max

Theorem 1.7. For any real p > 1 with % + % =1, all zeros of p(z) lie in

2| <k,
where k > max {1, ‘QIZ‘lll} 18 a positive root of the equation
q n—2 P 1
Ap—1 a: p
(-2 e - =m0 = (S ]2 )"
|an| =0 Qn

In this paper, we obtain new explicit bounds of polynomial zeros which do not require any numerical
method. Also, the second result produces an important corollary which gives a generalization of
Theorem 1.7. Moreover, our third and forth results are the refinement and extension of Theorem 1.7.
More precisely, we consider the polynomial of the form

T (2) = anz"™ +ax, 2™ +ax, 2™ +---+ a,\jZA" o an 2 a2 +an, 2,
where
A €40,1,2,...,n—1} for j=1,2,...,k
with
AM>X > > A > > A 0> A1 > A 20
and ay;’s j =1,2,...,k are the non-zero complex numbers.

In particular, when Ay = 0, Ay = n — 1 and A;’s are consecutive, T (z) reduces to p(z). Also, for
Ak =0, Ay = X and \;’s consecutive, then T (z) is converted to P (z).
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2. MAIN RESULTS
In this section, we present first our new result.

Theorem 2.1. All zeros of T (z) lie in the closed circular region

k 1

|z| < max {M”**J‘ } .

j=1

Moreover, all zeros of T (2), different from 0, lie in the closed annular region
1

k—1 —i 1)\ k a1
max { max {N*J‘”k } ,N™=%% <zl < max {M”*A:‘ } ,
j= j=

k
5 |
= and N =

|an] lax !,

where

k—1
ool + £ Jon|
N =R
respectively.
Remark 2.1. Asay, — 0; j =1,2,...,k, all zeros of T'(z) approach the origin z = 0.
Remark 2.2. The upper bound in Theorem 2.1 is attained by the polynomial
p(2)=-—nz"+2" "2 2 L
Remark 2.3. In some cases, our result in Theorem 2.1 gives better bound as compared to the bounds
of the other known results. To illustrate this, we consider the polynomial
p(2) = 212 + 2427 +182° + 823 + 20.
All zeros of p (z) lie in the following regions:
(i) |z| < 3.32645, by Theorem 1.1,
(ii) |2| <25, by Theorem 1.2,
) |z|] < 74.85262, by Theorem 1.3,
) |2| < 5.42443, by Theorem 1.4,
) |z] < 31.4624, by Theorem 1.5,
) |2] <2.46361, by Theorem 1.6,
) |z] < 2.37483, by Rahman [22, Theorem 1],
) |2] < 24.99999, Boese and Luther [4, Theorem 1],
(ix) |z] < 24.99999, by Datt and Govil [7, Theorem 2],
(x) |z| < 24.04159, by Jain and Tewary [15, Theorem],
(xi) |z| < 31.46236, by Zargar [27, Theorem 1 for ¢t = 1],
)
)
)
)
)
)
)
)
)
)

(ii
(iv

(v
(vi
(vii

(viii

(xii) |z| < 9.62355, by Zargar [27, Theorem 2 |,

i) |z] <36.94591, by Fujiwara [8, p. 83],

|z| < 5.42443, by Joyal, Labelle and Rahman [16, Theorem 1],

|z| < 23.470588, by Jain [14, Theorem 1],

|z| < 3.39938, by Lagrange [18] (see also [3, Theorem 1.1}),

|z| < 3.22261, by Batra, Mignotte and Stefanescu [3, Theorem 3.1],
|z| < 5.42443, by Mohammad [20, Theorem 2],

|z| < 127.93748, by Mohammad [21, Theorem 1 for p = g = 2],

(xx) |z] < 5.42443, by Jain [11, Theorem 1],

|z| < 2.51275, by Jain [12, Theorem 1],

(xiii
(xiv
(xv
(xvi
(xvii
(xviii

(xix

(xxi
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(xxii) |z| < 3.41095, by Jain [13, Theorem 2],
(xxiil) |z| < 3.25928, by Sun and Hsieh [25, Theorem 1],
(xxiv) |z] < 5.94287, by Walsh [26, p. 286],
(xxv) |z| < 3.38138, by Jain [10, Therem for p = ¢ = 2],
xxvi) 0. <|z| £5. , by Das |6, eorem 4/,
i) 0.454545 5.42443, by Das [6, Th 4
(xxvii) 0.33333 < |z| < 3.77635, by Kojima [17, eq. (8), p. 121],
(xxviii) 0.73196 < |z| < 2.33894, by Theorem 2.1.
If Ay =n —1 and A;’s are consecutive, then k = n,
ie.,
aAl = anp—1, aAz =ap—2, ---, aAj ::anfj;"‘7 akn,1 = ai, aAn = ap

So, T' (z) reduces to p (z) and we can produce the following

Corollary 2.1. All zeros of p (z) with non-zero coefficients lie in the closed annular region

-1
(e {2 }) <ol < b {2},
j=1 j=1

where
n—1 n
> lajl > lajl
M=2"_ g N=2"
|an| lag|
respectively.

Theorem 2.2. For any real p > 1 with % + % =1, all zeros of T'(2) lie in

|Z| S To,

1
ax, [m—M

where ro > max {1,

} 18 a positive root of the equation

n

a)\j

1
P)p

|an| Qp

q k
padi=Az—1) (r"_)‘l — |a>\1|) (rf=1)= B3, ,=0; B k= (Z
1, ’ ’
Jj=2

Taking Ay = A (< n) and \;’s are consecutive, then k = A + 1,
ie.,
a)\l = ay, a)\2 = AaAx—-1y -~ ,a)\]. = a)\,j+1, ey CL)\)\_H:aO
and T (z) reduces to P (z). Also,

A+1 ax p % A—1 @ p %
Byt = <Z P - ) = (Z afj ) = B, (say)
g=2"" j=0 "

and we obtain the following
Corollary 2.2. For any real p > 1 with 1% + % =1, all zeros of P(z) lie in
2| <70,

1
ax n—X

where r{ > max {1, } s a positive root of the equation

)’ >
(Y e e (8

PN B
|an| =0 an )

n

Observing that for A = n — 1, By = B,,_1. In this case, Corollary 2.2 reduces to Theorem 1.7.
So, Corollary 2.2 is a generalization of Theorem 1.7. The next result is a refinement of Theorem 1.7
as follows:
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Theorem 2.3. For any non-zero real or complex t and a real p > 1 with % +é =1, all zeros of p(2)
lie in
2] < g,

t—an_ . L .
where r{ > max {1, %} s a positive root of the equation

q S
(r_ltwnﬂ) (rf=1)-Qi{=0; Q= (Z

|an| =0

taj — GpGj—1

P\ ®
y a,1:0.

az,
Putting ¢t = a,,—1 in Theorem 2.3, we have the following

Corollary 2.3. For any real p > 1 with % + % =1, all zeros of p(z) lie in

1411407, \+
ol < S

n—1 p %
Qan,1 - (Z ) 5 a_1 = O
7=0

From Corollary 2.3, we can easily obtain the following corollary on the polynomial with non-zero
real coefficients having some restriction.

where

Un—-1a; — GnGj—1
a2

n

Corollary 2.4. For any real p > 1 with 1% + % =1, all zeros of p(z) with non-zero real coefficients
satisfying the condition

QA :an—l ::@:E:k
Ap—1 Up—2 ai ao '
lie in
1
1+1/1+W++1) !
|z| < 3 .

Theorem 2.4. For any real p > 1 with % + % =1 and for some real or complex t, all zeros of P(z)
lie in
2| <1,

> lan]

] \? A+l
pa(n=A=2) <r — an) (r{i—1)— Qit =0; Q= (Z s E—

with ax+1 = a—1 = 0.

where r{’ > max {1 ld } is a positive Toot of the equation

3. PROOF OF THEOREMS
Proof of Theorem 2.1. For some |z| > 0,
T () 2 lanl 121" = (Jax, |12 + laxs] 12 4+ -+ an, [0+ + Jan [17)
Now, we express |a,|, a sum of k¥ numbers non-zero positive real in the form
|an| = pay + pxg o pay o B
satisfying the property

Hxe _ Hx Hxg R 2. o R OV

‘a’)\1| B |a/\2| - |a)\j| B B |a)\k_1‘ B |a/)\k|.
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From the above we see that each ratio ﬁ; j=1,2,...,k is equal to
Aj

= lan] 1

k k =77
o Sla) M

Jj=1 Jj=

say).

Now,

k k
() > (ij) o =3 Jax, |12

Jj=1 Jj=1

(1 el = o |21

i, (|| - M) 2
J

KX

[
™=

j=1

<
Il

I
M=

1

<.
Il

Il
NE

n—A>A; Aj
i, (12" = M) 2

<.
I
—

- _a
This gives |T'(z)| > 0 if |[z] > M™% for all j = 1,2,...,k with at least |z| > M™% for some
je{1,2,... kY, ie, |T(2)] > 0if

k 1
|z| > max {M"**i } .
j=1
So, all zeros of T (z) lie in the closed circular region
k 1
lz| < max {M”**J‘ } .
=

In the later part of our paper, we will see that 0 is the zero of T (z) of multiplicity A; and the remaining
(n — A\x) zeros of T (z) different from 0 coincide with the zeros of

T (Z) — anzn—/\k + a}\lz)\l_)\k 4+ Cl)\].z)‘] Ak S a)\k_lz)\k,l—Ak +ay,.
We introduce the polynomial @ (z) defined by
1
Q) = ="(2)
z

a>\j (2 R
+“+§?E+“+QT?E+WJ

— A A, ax,
an)\k Z)\lf/\k

- —Ak— —Aj —A
:a)\kzn k+a)\k712'n kl_’_..._'_akan J+"'+CLA12’TL 1_~_an.

: . L li / / / / /
Now, we are looking for k numbers of non-zero positive real p}, ., )y, ;- Y N W
satisfying the conditions
/ / / / / /
Fox_s o Hxg_o _ o, _ Fxy, — Hxy Wy
|a,\k,1| |aAk,2| |a,\j’ laxs | |ax, | |an|
and

N VI R S W R S W A LV P
respectively. Clearly, each ration of the above is equal to

k—1
2o My, b,
j=1 ‘G’Akl _ i (sa )
= N y .

k—1 o k-1
Y fax, [+ lanl  lanl + 3 Jax, |
j=1 J=1
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Again, for some |z| > 0,

k—1
1Q (2)] > Jax, | |2 — (Z |ax, | z|“f) — |an|

j=1
k-1 k-1
_ (zﬂ;j w;) oM (z o, 21" ) ~anl
Jj=1 j=1
A — —A
Z(m 2" = Jan | 12" ) + (1 27 = Jan )
j=1
= )\ )\k ’ )\ | g !/ n—/\k |an|
N i L2 el (o e
oy,

Jj=1 Aj

k—1

A=A - -
=3 (I = N )y, o (127 - W)
j=1

which shows that |Q (z)] > 0 if

k—1 . _1__
|z] > max {maf({]\”]‘*k } , N "=k } .
j=

So, all zeros of @ (2) lie in the region
_ 1
|z| < max {rlfla%( {N*J**k } ,N"—l*k } .
]:

Let z (£ 0) be any zero of T (z). So, it is a zero of T' (z) and, consequently, % is a zero of Q (2).

Therefore,

—| < max{max{NA ik } ,N"—IM } ,

Z0 Jj=1
ie.,

) -1
|z0] > (max {max{NA i~k } , N 7= })
J

and this leads us to the desired result. O

Proof of Theorem 2.2. Clearly, for some |z| > 0,

T (2)]

v

lan] 21" = lax, [[2* =" Jax, | 2]

k
A1 n—>Ay |a>\1|> |a>‘j | 1 :|
anl |2 z - — ] - E .
Applying Holder’s inequality, we have

A n—>\
T ()] 2 an] |2 [<| v

a>\1
an

for some positive reals p, ¢ with p > 1, % + % =1

q
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B 1 A1—A2 + 1 A1—As3 + 1 A1—Ag + + 1 A=Ak
IRNE: ElR ElR |2/

1 A1—A2 1 A2—As3 1 A2—Ag 1 A2—Ag
== 1 — i . _
<|zq) +<|zq) *(W) - +(|z|q>
r 1 Ag—Ar+1
1 1 ()
A1—A _ 1
(EI 1= fp
1 R gemT g
= 2 — s No—Apt1
(2%) KER (R
I T K
(R A I
L[
(ER R N
1

A —Aa—1
(D™ (l2" = 1)
which implies
ax

1

By, k

- 1
El (1R Ve

IT(2)] > lan] |2 [(|z|"‘*1 -

)

q
> (I2]1* =1) = Bf, , 2 0 for [z] > 1.

an
So, [T (2)| > 0 if

|Z|q(>\1*/\2*1) (|Z|”>‘1 _ %

n

We introduce a function

£ (r) = a1 =2a-1) (wh _|ax

an

q
> (r1—1)— B?\hk'

axg n—Xy

An

Let ro > max{l,

} be a positive root of the equation f (r) = 0, then |T (z)| > 0 if

|Z‘ Z To.
In particular, when ay, =0, j = 2,3,...,k,

‘a)\1|
|an|

) >0

T () 2 Jan] |2 (|z|”*1 -
if
|a>\1|

ST
n—A1
|an|

Combining all the possibilities, we obtain the desired result.

Proof of Theorem 2.3. For some real or complex ¢, we construct the polynomial @ (z) defined by

Q(z) = (t = an2)p(2)
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which can also be written as

n—1
Q(2) = —a22"" 4 (tan — an_1a,) 2" + Z (taj — a;_1a,) 27
7=0
with a_1 = 0. Now, for |z| > 1, we have
n—1
Q)] = lanl® 12" = fanl [t = an-a [21" = D | == |2
i=0 I
-1
t— ap— — |taj; —a;_ 1
— |an|2|z|n |:(|Z|_M¢nl|> _Z 7] C;] 1Qn n:|
|a’n| =0 an |Z| J

Applying Holder’s inequality, we have

1Q ()] > |an?]2]" [(|Z|W> _ (7121 ta; — aj-10n p>;<nl _1 q)}]}
Z |Gn |an| = a% = |Z|n—J .

Since for |z| > 1,
n—1 1 q n—1 1 n—j
— (|z|"f> = <|zq)

J J

n—1 j
1 1)’
- 2 ()
7=0
R !
™ T -1

1 ™
21" 12" = 1
1
IR

which implies that

Q> o [ (1411 tm) (5

Jj=0

2 in [t — an_1] o
=mu|a[(m— )— 1}
lan (121" = 1)

So, |Q (2)| > 0 if
_ q
(2|7 = 1) <|Z — w) — Q¥ >0 provided |z| > 1.

|an|

Now, we consider a function g (r) defined by

) e

|an|

ta; —aj_10n,

o=
—
Q=
—_

2
an,

) (- 1)

Let rj > max {17 m} be a positive root of the equation g (r) = 0. Then

‘an‘
QI >0, it |2 2

and this leads us to the desired result. O
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Proof of Theorm 2.4. For some real or complex t, we consider the polynomial F'(z) defined by

F(z)=(t—anz)P(2)

A+1
= —a?2" fta, 2" + Z (ta; — aj_1a,) 27
§=0
with ax41 =a_1 =0.
Clearly, for some |z| > 1,
A1
N t ta; —a;_1a,| 1
IF (2)] = Jan |2 [(v')Z e }
| n| =0 (¢0= |Z|
Applying Holder’s inequality, we have
A+1 pN L A1 q 1
t| ta; —a;_1 P 1 a
F ()| > |an)? |2|™ _ 1ty Wy — 41 -
Pzl | (14 0 ) - (] > (o
7=0 7=0
- 1t a 1)/ \*
=l | (=) ol 2 (o) ) )
j=n—(A+1)
Now, for |z| > 1,
() e b () e ()T
2 B T e [P R AT El
j=n— L
r A2
1— (L)
1 []7
= n—A—1 1
|Z|q( ) 1_W
B 1 1 2|13+ _q
Ean i el
1
< .
n—A—2
|22 (2] - 1)
Using the above, we get
2 n |t| Q)\,t
P>l e [ (14 1) =~ |
" 2| (2" =1)7

So, |F (z)] > 0 if

4702 (et -1) (12 -

Now, we construct a function h (r) defined by

i

|an]

i

- aal

h(r)= pa(n=A-2) (ri—1) (7’

0/ > max

Let r
|F (2)] >0 if |z] >r{

and this completes the proof.

q
) —Qf, >0 provided |z] > 1.

) -0

{1, %} be a positive root of the equation h (r) = 0. Then |F (2)| > 0 if

q
At
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