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SOLUTION OF THE BOUNDARY VALUE PROBLEM OF THE COUPLED

THEORY OF ELASTICITY FOR A CIRCULAR RING WITH

DOUBLE-POROSITY

GURANDA CHARKSELIANI1 AND BAKUR GULUA1,2

Abstract. This paper concerns the coupled linear static theory of elasticity for materials with

double porosity. In these materials, a coupled phenomenon of the extended Darcy law and the volume

fraction concepts, is proposed. A two-dimensional system of equations of the plane deformation is
written in a complex form and its general solution is represented by means of three analytic functions

of a complex variable and three solutions of the Helmholtz equations. The specific boundary value

problem for a circular ring is solved.

Introduction

The proposed applications of the theories of elasticity for double- and multi-porosity media are
related to geological materials such as rocks and soils, manufactured porous materials such as ceramics
and pressed powders, and biomaterials such as bone (for details, see the books by Straugan [19] and
Svanadze [20] and references therein).

The first theory of poroelasticity based on Darcy’s law was proposed by Biot in paper [1] in which
a coupling effect between fluid pressure and mechanical stress is introduced. Later, Biot’s classical
model was generalized and the mathematical model of double porosity materials based on Darcy’s law
was developed by Wilson and Aifantis [27]

In [5,18], on the basis of the volume fraction concept, Cowin and Nunziato introduced an alternative
linear and nonlinear coupled theory of elasticity for deformable porous materials, respectively. Using
the mechanics of materials with voids, Ieşan and Quintanilla [10] presented the theories of elasticity
and thermoelasticity for materials with a double-porosity structure.

Recently, the coupled linear theories of elasticity and thermoelasticity for materials with single and
double porosity have been presented by Svanadze [21–23, 25], in which the coupled effect of Darcy’s
law and the concept of the volume fraction are developed. This coupled phenomenon is extended
to double-porosity elastic and viscoelastic materials [24]. Moreover, the basic BVPs of the coupled
quasi-static theories of elasticity and thermoelasticity for solids with single porosity are studied by
Mikelashvili [13, 14]. More recently, in papers [15, 16], the same author has investigated the BVPs
of steady vibrations of the coupled quasi-static theory of elasticity for double porosity materials by
using the potential method. The basic boundary value problems are studied by Bitsadze [2, 3] and
Tsagareli [26] in the series of papers (see [6–9,11,12]). The Dirichlet type quasi-static boundary value
problem of the simple coupled theory of elasticity for a porous circular ring is solved by Bitsadze [4].

In the present paper, the linear mathematical model of double-porosity materials is introduced
in which the coupled phenomenon of the Darcy law and volume fractions concepts of two levels of
(macro-pores and micro-pores) is proposed [21,22]. The governing system of plane strain equations is
rewritten in a complex form, and its general solution is represented by using three analytic functions of
a complex variable and three solutions of the Helmholtz equations. The constructed general solution
allows us to solve analytically the problem for a circular ring.
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1. Basic Equations for Materials with Double Voids

Let x = (x1;x2;x3) be a point in the Euclidean three-dimensional space R3. In what follows, we
consider an isotropic, homogeneous elastic solid body with double voids occupying a region of Ω ∈ R3.
We assume that the subscripts preceded by a comma denote partial differentiation with respect to
the corresponding Cartesian coordinate, repeated indices are summed over the range (1; 2; 3). The
governing equations of the theory of elastic materials with double voids can be expressed in the
following form [23,25]:

• Equations of equilibrium

tji,j + ρ0fi = 0, i, j = 1, 2, 3,

σj,j + ξ + ρ0g = 0, (1.1)

τj,j + ζ + ρ0l = 0,

where tij is the symmetric stress tensor, fi is the body force per unit mass, ρ0 is the mass density,
σi and τi are the equilibrated stress vectors, ξ and ζ are the intrinsic equilibrated body forces, g
is the extrinsic equilibrated body force per unit mass associated to macro pores, l is the extrinsic
equilibrated body force per unit mass associated to fissures.

• Constitutive equations

tij = λekkδij + 2µeij + (b1φ1 + b2φ2)δij − (β1p1 + β2p2)δij ,

σi = a1φ1,i + a3φ2,i,

τi = a3φ1,i + a2φ2,i, (1.2)

ξ = −b1ekk − α1φ1 − α3φ2 +m1p1 +m3p2,

ζ = −b2ekk − α3φ1 − α2φ2 +m3p1 +m2p2,

where λ and µ are the Lamé constants, b1, b2, β1, β2, a1, a2, a3, α1, α2, α3, m1, m2 and m3 are
the constants characterizing the body porosity, δij is the Kronecker delta, φ1 is a change of volume
fraction corresponding to pores (macro pores), φ2 is a change of volume fraction corresponding to
fissures (micro pores), p1 and p2 are the changes of the fluid pressure in macro- and micro-pore
networks, respectively, eij is the strain tensor and

eij =
1

2
(ui,j + uj,i) , (1.3)

where ui are the components of the displacement vector.
In the stationary case, the values p1 and p2 satisfy the following system:

k1∆̃p1 + k3∆̃p2 − γ0(p1 − p2) = 0,

k3∆̃p1 + k2∆̃p2 + γ0(p1 − p2) = 0,

where µ′ is the fluid viscosity, k1 = κ1

µ′ , k2 = κ2

µ′ , k3 = κ3

µ′ , κ1 and κ2 are the macroscopic intrinsic

permeabilities associated with matrix and fissure porosity, κ3 is the cross-coupling permeability for
fluid flow at the interface between the matrix and fissure phases, γ0 is the internal transport coefficient
corresponding to a fluid transfer rate respecting the intensity of the flow between macro and micro
pores, γ0 ≥ 0, ∆̃ ≡ ∂11 + ∂22 + ∂33 is the three-dimensional Laplace operator, ∂i =

∂
∂xi

.
The constitutive equations also meet some other conditions following from physical considerations:

µ > 0, 3λ+ 2µ > 0, a1 > 0, a1a2 − a23 > 0,

k1 > 0, k1k2 − k23 > 0.

2. Basic (Governing) Equations of the Plane Strain

From the basic three-dimensional equations, we obtain the basic equations for the case of plane
strain. Let Ω be a sufficiently long cylindrical body with generatrix parallel to the Ox3-axis. Denote
by V the cross-section of this cylindrical body, thus V ⊂ R2. In the case of plane deformation, u3 = 0,
while the functions u1, u2, φ1, φ2, p1 and p2 do not depend on the coordinate x3.
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As follows from formulas (1.2) and (1.3), in the case of plane strain

tk3 = t3k = 0, σ3 = 0, τ3 = 0, k = 1, 2.

Therefore the homogeneous system of equilibrium equations (1.1) takes the form

∂1t11 + ∂2t21 = 0, ∂1t12 + ∂2t22 = 0,

∂kσk + ξ = 0, ∂kτk + ζ = 0.
(2.1)

Now, relations (1.2) are rewritten as

t11 = λθ + 2µ∂1u1 + b1φ1 + b2φ2 − β1p1 − β2p2,

t22 = λθ + 2µ∂2u2 ++b1φ1 + b2φ2 − β1p1 − β2p2,

t12 = t21 = µ(∂1u2 + ∂2u1),

t33 = σ(t11 + t22) +
µ

λ+ µ
(b1φ1 + b2φ2 − β1p1 − β2p2),

σk = a1∂kφ1 + a3∂kφ2,

τk = a3∂kφ1 + a2∂kφ2,

ξ = −b1ekk − α1φ1 − α3φ2 +m1p1 +m3p2,

ζ = −b2ekk − α3φ1 − α2φ2 +m3p1 +m2p2,

(2.2)

where σ = λ
2(λ+µ) is the Poisson ratio, θ = ∂1u1 + ∂2u2.

Substituted relations (2.2) into system (2.1), we obtain the following system of governing equations
of statics with respect to the functions u1, u2, φ1, φ2, p1 and p2

µ∆uk + (λ+ µ)∂kθ + b1∂kφ1 + b2∂kφ2 − β1∂kp1 − β2∂kp2 = 0, k = 1, 2,

(a1∆− α1)φ1 + (a3∆− α3)φ2 − b1θ +m1p1 +m3p2 = 0,

(a3∆− α3)φ1 + (a2∆− α2)φ2 − b2θ +m3p1 +m2p2 = 0,

k1∆p1 + k3∆p2 − γ0(p1 − p2) = 0,

k3∆p1 + k2∆p2 + γ0(p1 − p2) = 0.

(2.3)

Note that ∆ ≡ ∂11 + ∂22 is the two-dimensional Laplace operator.
On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 = reiϑ, (i2 = −1) and the

operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), z̄ = x1 − ix2, and ∆ = 4∂z∂z̄.
To write system (2.1) in the complex form, we multiply the second equation of this system by i

and sum up with the first equation

∂z(t11 − t22 + 2it12) + ∂z̄(t11 + t22) = 0,

∂zσ+ + ∂z̄σ̄+ + ξ = 0,

∂zτ+ + ∂z̄ τ̄+ + ζ = 0,

(2.4)
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where σ+ = σ1 + iσ2, τ+ = τ1 + iτ2, we rewrite formulas (2.2) as follows:

t11 − t22 + 2it12 = 4µ∂z̄u+,

t11 + t22 = 2(λ+ µ)θ + 2b1φ+ 2b2φ− 2β1p1 − 2β2p2,

σ+ = 2a1∂z̄φ1 + 2a3∂z̄φ2,

τ+ = 2a3∂z̄φ1 + 2a2∂z̄φ2,

ξ = −b1θ − α1φ1 − α3φ2 +m1p1 +m3p2,

ζ = −b2θ − α3φ1 − α2φ2 +m3p1 +m2p2,

(2.5)

θ = ∂zu+ + ∂z̄ū+, u+ = u1 + iu2.

Substituting relations (2.5) into system (2.4), we rewrite system (2.3) in the complex form

2µ∂z̄∂zu+ + (λ+ µ)∂z̄θ + b1∂z̄φ1 + b2∂z̄φ2 − β1∂z̄p1 − β2∂z̄p2 = 0,

(a1∆− α1)φ1 + (a3∆− α3)φ2 − b1θ +m1p1 +m3p2 = 0,

(a3∆− α3)φ1 + (a2∆− α2)φ2 − b2θ +m3p1 +m2p2 = 0,

k1∆p1 + k3∆p2 − γ0(p1 − p2) = 0,

k3∆p1 + k2∆p2 + γ0(p1 − p2) = 0.

(2.6)

3. Kolosov–Muskhelishvili’s Analogues of Formulas for System (2.6)

Theorem. The general solution of system (2.6) is represented as follows [7, 11,17]:

2µu+ = κf(z)− zf ′(z)− h(z) + q1(g(z) + zg′(z))− q2∂z̄χ1(z, z̄)− q3∂z̄χ2(z, z̄) + q4∂z̄η(z, z̄),

φ1 = l11χ1(z, z̄) + l12χ2(z, z̄)− e1(f
′(z) + f ′(z))− e3(g

′(z) + g′(z))− e5η(z, z̄),

φ2 = l21χ1(z, z̄) + l22χ2(z, z̄)− e2(f
′(z) + f ′(z))− e4(g

′(z) + g′(z))− e6η(z, z̄),

p1 = g′(z) + g′(z) + (k2 + k3)η(z, z̄),

p2 = g′(z) + g′(z)− (k1 + k3)η(z, z̄),

(3.1)

where f(z), h(z) and g(z) are the arbitrary analytic functions of a complex variable z, η(z, z̄) is an
arbitrary solution of the Helmholtz equation

△η − ν2η = 0,

ν2 =
k1 + k2 + k23
k1k2 − k23

γ0,

χ1(z, z̄) and χ2(z, z̄) are general solutions of the Helmholtz equations

∆χ1(z, z̄)− κ1χ1(z, z̄) = 0, ∆χ2(z, z̄)− κ2χ2(z, z̄) = 0.
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κα are eigenvalues and (l11, l21), (l12, l22) are eigenvectors of the matrix C and, owing to (2.2),
they are positive numbers:

C =

(
a1 a3
a3 a2

)−1

·

α1 −
b21

λ+ 2µ
α3 −

b1b2
λ+ 2µ

α3 −
b1b2

λ+ 2µ
α2 −

b22
λ+ 2µ


κ, q1, q2, q3 and q4 equal

κ =
λ+ 3µ+ 2µ(b1e1 + b2e2)

λ+ µ− 2µ(b1e1 + b2e2)
, q1 =

µ(b1e3 + b2e4 + β1 + β2)

λ+ 2µ
,

q2 =
4µ(b1l11 + b2l21)

κ1(λ+ 2µ)
q3 =

4µ(b1l12 + b2l22)

κ2(λ+ 2µ)
,

q4 =
4µ(b1e5 + b2e6 + β1(κ2 + κ3)− β2(κ1 + κ3))

ν2(λ+ 2µ)
,

e1, e2, e3, e4, e5 and e6 equal

e1 = Aē1, e2 = Aē2 A :=
2(λ+ 2µ)

λ+ µ− 2µ(b1e1 + b2e2)
,

ē1 =
b1α2 − b2α3

2((α1α2 − α2
3)(λ+ 2µ)− α1b22 − α2b21 + 2α3b1b2)

,

ē2 =
b1α1 − b1α3

2((α1α2 − α2
3)(λ+ 2µ)− α1b22 − α2b21 + 2α3b1b2)

,

e3 = T ∗
11 + T ∗

12, e4 = T ∗
12 + T ∗

22,

e5 = X11(κ2 + κ3)−X12(κ1 + κ3),

e6 = X21(κ2 + κ3)−X22(κ1 + κ3),

where T ∗
11, T

∗
12 and T ∗

22 are elements of the matrix T ∗ = C−1T , X11 , X12, X21 and X22 are elements
of the matrix X = (ζ2I − C)−1T ,

T =

(
a1 a3
a3 a2

)−1

·


b1β1

λ+ 2µ
−m1

b1β2

λ+ 2µ
−m3

b2β1

λ+ 2µ
−m3

b2β2

λ+ 2µ
−m2

 .

Substituting formula (3.1) into the first equation of (2.6), we obtain

t11 − t22 + 2it12 = −2zf ′′(z)− 2h′(z) + 2q1zg′′(z)− 2q2∂
2
z̄z̄χ1 (z, z̃)

−2q3∂
2
z̄z̄χ2 (z, z̄) + 2q4∂

2
z̄z̄η (z, z̃) ,

t11 + t22 = 2δ1(f
′(z) + f ′(z)) + 2δ2(g

′(z) + g′(z))− 2δ3χ1(z, z̃)

−2δ4χ2(z, z̃) + 2δ5η(z, z̃),

(3.2)

where

δ1 =
(λ+ µ)(κ − 1)

2µ
− b1e1 − b2e2, δ2 =

(λ+ µ)q1
2µ

− b1e3 − b2e4 − β1 − β2,

δ3 =
(λ+ µ)κ1

4µ
− b1l11 − b2l21, δ4 =

(λ+ µ)κ2

4µ
− b1l12 − b2l22,

δ5 =
(λ+ µ)ν2

4µ
− b1e5 − b2e6 − β1(k2 + k3) + β2(k1 + k3).

Assume that mutually perpendicular unit vectors l and s are such that

l× s = e3,
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where e3 is the unit vector directed along the x3-axis. The vector l forms the angle α with the
positive direction of the x1-axis. Then the displacement components ul = u · l, us = u · s, as well as
the stress and moment stress components acting on an area of arbitrary orientation are expressed by
the formulas

ul + ius = e−iαu+,

tll − itls =
1

2

[
t11 + t22 + (t11 − t22 + 2it12)e

−2iα
]
,

σl =
1

2

[
σ+e

−iα + σ+e
iα
]
,

τl =
1

2

[
τ+e

−iα + τ+e
iα
]
.

(3.3)

4. A Problem for a Concentric Circular Ring

Let a porous elastic body with double porosity occupy the domain V which is bounded by the
concentric circumferences L1 and L2 with radii R1 and R2, respectively, (R1 < R2) (see Figure 1).
The origin is located at the center of the circle.

Figure 1

We consider the following problem:

trr + itrα =

{
A′, r = R1,

A′′, r = R2,

φ1 =

{
B′, r = R1,

B′′, r = R2,
φ2 =

{
C ′, r = R1,

C ′′, r = R2,

p1 =

{
D′, r = R1,

D′′, r = R2,
p2 =

{
E′, r = R1,

E′′, r = R2,

(4.1)

where A′, A′′, B′, B′′, C ′, C ′′, D′, D′′, E′ and E′′ are sufficiently smooth functions.
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The analytic functions f ′(z), h′(z), g′(z) and the metaharmonic functions χ1(z, z̄), χ2(z, z̄),
η(z, z̄) are represented as the series

f ′(z) = A∗ ln z +

∞∑
−∞

anz
n, h′(z) =

∞∑
−∞

bnz
n, g′(z) =

∞∑
−∞

cnz
n,

χ1(z, z̄) =

+∞∑
−∞

(α′
nIn(

√
κ1r) + α′′

nKn(
√
κ1r)) e

inα,

χ2(z, z̄) =

+∞∑
−∞

(β′
nIn(

√
κ2r) + β′′

nKn(
√
κ2r)) e

inϑ,

η(z, z̄) =

+∞∑
−∞

(γ′
nIn(νr) + γ′′

nKn(νr)) e
inα,

(4.2)

where In(·) and Kn(·) are the modified Bessel functions of the first and second kind of n-th order.
Expand the functions A′, A′′, B′, B′′, C ′, C ′′, D′, D′′, E′ and E′′, in a complex Fourier series given

on r = R1 and r = R1,

A′ =

∞∑
−∞

A′
ne

inα, A′′ =

∞∑
−∞

A′′
ne

inα, B′ =

∞∑
−∞

B′
ne

inα, B′′ =

∞∑
−∞

B′′
ne

inα,

C ′ =

∞∑
−∞

C ′
ne

inα, C ′′ =

∞∑
−∞

C ′′
ne

inα, D′ =

∞∑
−∞

D′
ne

inα, D′′ =

∞∑
−∞

D′′
ne

inα,

E′ =

∞∑
−∞

E′
ne

inα, E′′ =

∞∑
−∞

E′′
ne

inα.

The condition of single-valuedness of the displacements in the present case is expressed as

A∗ = 0, κa−1 + b̄−1 + q1c−1 = 0. (4.3)

Substituting (4.2) in (3.1)–(3.3), taking into account the boundary conditions (4.1) and assuming
that the series converge on the circumference r = R1, r = R2, one finds

δ1

∞∑
−∞

rnane
inα +

∞∑
−∞

(δ1 − n)rnāne
−inα −

∞∑
−∞

rnb̄ne
−i(n+2)α + δ2

∞∑
−∞

rncne
inα

+

∞∑
−∞

(δ2 + nq1)r
nc̄ne

−inα − δ3

∞∑
−∞

(In(
√
κ1r)α

′
n +Kn(

√
κ1r)α

′′
n) e

inα

−δ4

∞∑
−∞

(In(
√
κ2r)β

′
n +Kn(

√
κ2r)β

′′
n) e

inα + δ5

∞∑
−∞

(In(νr)γ
′
n +Kn(νr)γ

′′
n) e

inα

−q2κ1

4

∞∑
−∞

(In+2(
√
κ1r)α

′
n +Kn+2(

√
κ1r)α

′′
n) e

inα

−q3κ2

4

∞∑
−∞

(In+2(
√
κ2r)β

′
n +Kn+2(

√
κ2r)β

′′
n) e

inα

+
q4ν

2

4

∞∑
−∞

(In+2(νr)γ
′
n +Kn+2(νr)γ

′′
n) e

inα =

{
A′, r = R1,

A′′, r = R2,
(4.4)

l11

∞∑
−∞

(In(
√
κ1r)α

′
n +Kn(

√
κ1r)α

′′
n) e

inα − e1

∞∑
−∞

(
rnane

inα + rnāne
−inα

)
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+l12

∞∑
−∞

(In(
√
κ2r)β

′
n +Kn(

√
κ2r)β

′′
n) e

inα − e3

∞∑
−∞

(
rncne

inα + rnc̄ne
−inα

)
−e5

∞∑
−∞

(In(νr)γ
′
n +Kn(νr)γ

′′
n) e

inα =

{
B′, r = R1,

B′′, r = R2,
(4.5)

l21

∞∑
−∞

(In(
√
κ1r)α

′
n +Kn(

√
κ1r)α

′′
n) e

inα − e2

∞∑
−∞

(
rnane

inα + rnāne
−inα

)
+l22

∞∑
−∞

(In(
√
κ2r)β

′
n +Kn(

√
κ2r)β

′′
n) e

inα − e4

∞∑
−∞

(
rncne

inα + rnc̄ne
−inα

)
−e6

∞∑
−∞

(In(νr)γ
′
n +Kn(νr)γ

′′
n) e

inα =

{
C ′, r = R1,

C ′′, r = R2,
(4.6)

∞∑
−∞

(
rncne

inα + rnc̄ne
−inα

)
+ (k2 + k3)

∞∑
−∞

(In(νr)γ
′
n +Kn(νr)γ

′′
n) e

inα

=

{
D′, r = R1,

D′′, r = R2,
(4.7)

∞∑
−∞

(
rncne

inα + rnc̄ne
−inα

)
− (k1 + k3)

∞∑
−∞

(In(νr)γ
′
n +Kn(νr)γ

′′
n) e

inα

=

{
E′, r = R1,

E′′, r = R2.
(4.8)

Comparing in (4.4)–(4.8) the coefficients of einα, we have

δ1R
n
1an +

δ1 − n

Rn
1

ā−n − 1

Rn+2
1

b̄−n−2 −
(
δ3In(

√
κ1R1) +

q2κ1

4
In+2(

√
κ1R1)

)
α′
n

+δ2R
n
1 cn +

δ2 + nq1
Rn

1

c̄−n −
(
δ3Kn(

√
κ1R1) +

q2κ1

4
Kn+2(

√
κ1R1)

)
α′′
n

−
(
δ4In(

√
κ2R1) +

q3κ2

4
In+2(

√
κ2R1)

)
β′
n +

(
δ5In(νR1) +

q4ν
2

4
In+2(νR1)

)
γ′
n

−
(
δ4Kn(

√
κ2R1) +

q3κ2

4
Kn+2(

√
κ2R1)

)
β′′
n +

(
δ5Kn(νR1) +

q4ν
2

4
Kn+2(νR1)

)
γ′′
n = A′

n,

δ1R
n
2an +

δ1 − n

Rn
2

ā−n − 1

Rn+2
2

b̄−n−2 −
(
δ3In(

√
κ1R2) +

q2κ1

4
In+2(

√
κ1R2)

)
α′
n

+δ2R
n
2 cn +

δ2 + nq1
Rn

2

c̄−n −
(
δ3Kn(

√
κ1R2) +

q2κ1

4
Kn+2(

√
κ1R2)

)
α′′
n

−
(
δ4In(

√
κ2R2) +

q3κ2

4
In+2(

√
κ2R2)

)
β′
n +

(
δ5In(νR2) +

q4ν
2

4
In+2(νR2)

)
γ′
n

−
(
δ4Kn(

√
κ2R2) +

q3κ2

4
Kn+2(

√
κ2R2)

)
β′′
n +

(
δ5Kn(νR2) +

q4ν
2

4
Kn+2(νR2)

)
γ′′
n = A′′

n.

(4.9)
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l11In(
√
κ1R1)α

′
n + l11Kn(

√
κ1R1)α

′′
n + l12In(

√
κ2R1)β

′
n + l12Kn(

√
κ2R1)β

′′
n

−e1R
n
1an − e1

1

Rn
1

ā−n − e3R
n
1 cn − e3

1

Rn
1

c̄−n − e5In(νR1)γ
′
n − e5Kn(νR1)γ

′′
n = B′

n,

l11In(
√
κ1R2)α

′
n + l11Kn(

√
κ1R2)α

′′
n + l12In(

√
κ2R2)β

′
n + l12Kn(

√
κ2R2)β

′′
n

−e1R
n
2an − e1

1

Rn
2

ā−n − e3R
n
2 cn − e3

1

Rn
2

c̄−n − e5In(νR2)γ
′
n − e5Kn(νR2)γ

′′
n = B′′

n,

l21In(
√
κ1R1)α

′
n + l21Kn(

√
κ1R1)α

′′
n + l22In(

√
κ2R1)β

′
n + l22Kn(

√
κ2R1)β

′′
n

−e2R
n
1an − e2

1

Rn
1

ā−n − e4R
n
1 cn − e4

1

Rn
1

c̄−n − e6In(νR1)γ
′
n − e6Kn(νR1)γ

′′
n = C ′

n,

l21In(
√
κ1R2)α

′
n + l21Kn(

√
κ1R2)α

′′
n + l22In(

√
κ2R2)β

′
n + l22Kn(

√
κ2R2)β

′′
n

−e2R
n
2an − e2

1

Rn
2

ā−n − e4R
n
2 cn − e4

1

Rn
2

c̄−n − e6In(νR2)γ
′
n − e6Kn(νR2)γ

′′
n = C ′′

n ,

(4.10)

Rn
1 cn +

1

Rn
1

c̄−n + (κ2 + κ3)In(νR1)γ
′
n + (κ2 + κ3)Kn(νR1)γ

′′
n = D′

n,

Rn
2 cn +

1

Rn
2

c̄−n + (κ2 + κ3)In(νR2)γ
′
n + (κ2 + κ3)Kn(νR2)γ

′′
n = D′′

n,

Rn
1 cn +

1

Rn
1

c̄−n − (κ1 + κ3)In(νR1)γ
′
n − (κ1 + κ3)Kn(νR1)γ

′′
n = E′

n,

Rn
2 cn +

1

Rn
2

c̄−n − (κ1 + κ3)In(νR2)γ
′
n − (κ1 + κ3)Kn(νR2)γ

′′
n = E′′

n.

(4.11)

From (4.3) and (4.9)–(4.11), we can find all coefficients an, bn, cn α′
n, α

′′
n, β

′
n, β

′′
n [17].

It is easy to prove the absolute and uniform convergence of the series obtained in the circular
ring (including the contours) when the set of functions on the boundaries has sufficient smoothness,
in particular, when the function defined on L1 and L2 has second-order derivatives satisfying the
Dirichlet condition [17].

The procedure of solving a boundary value problem remains the same when the displacement vector,
the equilibrated stress vectors, the change in volume fractions and the fluid pressures on the boundary
of the domain are defined arbitrarily, but the condition of equality to zero of the principal vector and
the principal moment of external forces is satisfied.
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