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ON THE CONTINUITY OF SOLUTION OF ONE CLASS CONTROLLED
NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATION WITH RESPECT TO
INITIAL DATA

GIVI BERIKELASHVILI'2, TA RAMISHVILI?2, TEA SHAVADZE?%* AND TAMAZ TADUMADZE*

Abstract. For the neutral functional-differential equation, whose right-hand side is linear with
respect to the prehistory of the phase velocity and depends on a control function, the theorem on
the continuous dependence of a solution with respect to perturbations in the initial data is proved.
Such type theorems play an important role in studying the neutral type optimization problems,
in proving formulas for the analytic representation of solutions, in constructing an approximate
solution, and in analyzing the sensitivity of mathematical models. Under the initial data we imply
the set of delay parameter contained in a nonlinear addend of the right-hand side of the equation,
the initial vector, and the initial and control functions.

1. INTRODUCTION

The neutral functional-differential equation is a mathematical model of such system whose behavior
at a given moment depends on system’s past velocity. Many real processes are described by neutral
functional-differential equations [1,3,6,7,12,15] and many works are devoted to the investigation of
such type equations, including [1-4,6,7,9,10,12,15,16]. In the present paper, for the controlled neutral
functional-differential equation

z(t) = A(t,z(t),u(t)x(t — o) + f(t, z(t), z(t — 7),u(t)), tE [to,t1],

with the initial condition

z(t) = p(t), t<to, wx(to) =10 (1.1)
the theorem on the continuous dependence of a solution on the initial data is proved. Theorems of this
type play an important role in studying neutral type optimization problems, in proving formulas for
the analytic representation of solutions, in constructing an approximate solution and in analyzing the
sensitivity of mathematical models [1,9,10,12,15]. Under the initial data we mean the set of the delay
parameter 7, the initial vector zg, the initial function ¢(¢) and the control function u(t). Condition
(1.1) is called the discontinuous initial condition, since ¢(t9) # xg. The discontinuity at the initial
moment may be due to an instantaneous change in a dynamic process, such as shifts in investment
or environmental factors. Finally, we note that the case A(t,x,u) = A(¢) is considered in [2,4,15,16],
and the case A(t,z,u) = 0 is considered in [5,8,13,14].

The paper is organized as follows: in Section 2, the main theorem is formulated, in Section 3, the
auxiliary assertions are given, in Section 4, the main theorem is proved.

2. FORMULATION OF THE MAIN RESULT

Let R™ be the n-dimensional vector space of points z = (x!,...,2™)T, where T is the sign of

transposition; let I = [to,t1] be a fixed interval and let o > 0,72 > 71 > 0 be the given numbers, with

max{to+0,t0+72}<t1. (2.1)
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The n x n-dimensional matrix-function A(t,z,u) and the n-dimensional vector-function f(¢,z,y,u)
are continuous and bounded on the sets I x R™ x R” and I x R® x R™ x R", respectively. Moreover,
there exist the numbers L4 > 0 and Ly > 0 such that the following conditions

At 2, u1) = At 22, u2)] < La (o1 = ol + fur = wa])
vVt € I,(.’EZ‘,UZ‘) ER"XR", i=1,2
and

|tz y1,u1) — f(t 22,92, u)| < Lf(\% — x| + [y1 — Y| + |ua —u2|)
Vte I, (x,yi,u;) ER" XR" xR, i=1,2

hold.

Let us introduce the notations: denote by ® and ) the sets of continuous differentiable initial
functions ¢(t) € R™,t € I} = [7,to], where 7 = t9 — max{o, 72} and piecewise continuous control
functions u(t) € R",¢ € I, with the set clu(I) is compact; the initial data is called the set of the delay
parameter 7, the initial vector xg, the initial function ¢(¢) and the control function wu(t). This set we
denote by w and the set of such elements w = (7, xg, ¢(t), u(t)) we denote by W = (71, 72) x R" x ® x Q.
Further,

|w| =[]+ |zol + llplly + [lull,
where
el = sup{le(@®)] + &) : t € In},  lu]| = sup{[u(?)] : t € I}

To each element w = (7, o, ©(t), u(t)) € W we assign the controlled neutral functional-differential

equation

z(t) = A(t, z(t), u(t)i(t — o) + f(t,z(t), z(t — 7),u(t)), tel (2.2)
with the discontinuous initial condition
z(t) = (t), te€r,to), z(to) = 0. (2.3)

Definition 2.1. Let w € W. A function z(t) = x(t; w), t € [7, 1], is called a solution of problem (2.2),
(2.3) or a solution corresponding to the element w, if it satisfies condition (2.3) and x(t) is absolutely
continuous on the interval I and satisfies equation (2.2) almost everywhere on I.

Theorem 2.1. For each element w = (1, x0,(t), u(t)) € W, there exists the unique solution x(t) =
x(t;w) of problem (2.2), (2.3). Let wo = (7o, Too, po(t), uo(t)) € W be a fizved element and let zo(t)
x(t;wo) be the corresponding solution. For an arbitrary € > 0, there exists a number § = §(e) >
such that for Yw = (1, x0,¢(t), u(t)) € W, the inequality

lzo(t) —z(t)| <e, Vtel

o |l

holds, when
w —wo| = |7 — 10| + |zo — Too| + [|o — poll1 + [[u — uol| < 4.

3. AUXILIARY ASSERTIONS
Theorem 3.1. For any w € W, there exists the unique solution z(t) = x(t;w), t € [7,1].

Proof. The existence of the unique global solution will be proved by the step method from the left to
the right with respect to o.
Step 3.1. Let t € [to,to+ 0] C I (see (2.1)), then we get the following delay functional-differential
equation
o(t) = A(t, 2(t), u(t))o(t — o) + f(t,2(t), x(t — 7), u(t)) 3.1)
with the initial condition
z(t) =), te[f to), =z(to)= 0. (3:2)
It is clear that the functions A(t,z,u(t)) and f(t,z,y,u(t)) satisfy the Lipschitz condition on the
spaces with respect to € R"™ and (x,y) € R™ x R", respectively. Therefore, the existence of the
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unique solution 1 (t),t € [7,%o + o] of problem (3.1), (3.2) (see Definition 2.1) can be proved by using
the method of successive approximations and the Arzela—Ascoli lemma.
Step 3.2. Let tg + 20 < t1, then on the interval [tg + o, ty + 20], we have the problem

a(t) = At w(t), u(t))ir(t — o) + f(tx(t), 2(t —7), u(t)),
te [to—i—O}to—f—QO‘], (33)
z(t) = z1(t), t € [T, to+ o]

Analogously can be proved the existence of the solution z3(t), ¢t € [7,to + 20] of problem (3.3).
Thus, the function

p(t), te]r,to),
I(t): xl(t)v te [t07t0+0]7
t), te (t0+0,t0+20']

will be the solution of problem (3.1), (3.2) on the interval [, ¢y + 20]. Continuing this procedure, we
establish the existence of the unique solution z(t) on the interval [7,t1]. U

Theorem 3.2 ([11]). The solution x(t),t € [7,t1] of problem (2.2), (2.3) can be represented on the
interval I in the following integral form:

t0+0'

o) a0+ [ Y(E (), u()AE (). ul€)(E - o)
+/Y(é;t,z('),U('))f(&I(&)’I(f —7),u(§))dE, t € 1, (3.4)
with the condition
where Y (&, t,2(+),u(+)) is the matriz-function satisfying the difference equation
Y(&ta(),u() =E+Y(E+oit,2(),u() A + 0,2(§ + o), ul§ +0)) (3.6)

on (to,t) for any fized t € (to,t1] and the condition

Ea git,

Here, E is the identity matriz and © is the zero matrix.

Theorem 3.3. The solution of the difference equation (3.6) can be represented by the following for-
mula

Y&t x(),ul) = x(§GHE

k 1
+> x(€+most) [] A€+ q0), 2(§ + go),u(€ + q0)), (§,t) € I, (3.7)
m=1 q=m
where
. _ 1, tO S f S tv
x(&t) = {0, £>t (3.8)

and k is a minimal natural number satisfying the condition t, — ko < tg.

Theorem 3.3 is proved by the step method from the right to the left.
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Remark 3.1. Using formula (3.7) and applying (3.8), we obtain
Y&t (), ul) < M, (3.9)

where

k
M=+ A Y ml, [A] = sup {|A(t,x,u) S (t,w,u) € I x R x Rg}.
m=1

Expression (3.4) under condition (3.5) is referred to as the functional-integral equation correspond-
ing to problem (2.2), (2.3). It is not difficult to see that representation (3.7) is not dependent on the
initial function @(t),t € I.

Theorem 3.4 ([11]). Problems (2.2)
Theorem 3.5. Let xo(t) = z(t;wo), t € [7,t1] and z(t) = z(t;w), t € [T, t1], where wo = (70, Too, Yo (t),
ug(t)) € W and w = (1,20, 0(t),u(t)) € W. For ¥(&,t) € I? the following inequality

Y (&t 2(),u(-) = Y (& 2o(-), uo(-))]

1

k
La 32 x(€+ oA (3 i€ + a) o€+ ao)

q=m

, (2.3) and (3.4), (3.5) are equivalent.

(¢ + 40) — uo(§ + 0] ) (3.10)
holds.
Proof. Using formula (3.7), we get
¥ (& t.2(),u() = Y (& tao() uo())

1
< X§+m0t‘HA§+q7x§+qU) u(§ + qo))

1 q=m

Mw

3
I

- H A(§ +qT, 330(5 + qa),uo(f + qa')) .

qg=m
Now, we estimate every addend in the right-hand side of the last inequality and shown some regularity
in the evaluations. For the first addend, we obtain

X(E+ D] A€ + 0. 2(€ + ), ul(€ + 0)) = A(E + 0,20(& + ), uo(€ + )

< (& + 030 La(lelE + o) — 20(€ + 0)] +[u(€ +0) ~ uol€ + o))

= Lax(¢ + o)A~ Y (la(€ +mo) — (& +qo)|

o’
Flu(€ +mo) — ug(€ + ma)|).
For the second addend, we have
X(E + 2030)| A€ + 20,2(€ + 20), ul¢ + 20)) A€ + 0,(€ + o), u(€ + )
—A(E + 20, 20(€ + 20), uo(€ + 20)) A€ + 0, m0(€ + ), uo (€ + 0))‘
< X(E +203) | A€ + 20,26 + 20), (€ + 20)) — A(E + 20,20(& +20),
(€ +20))||A(€ + o, 2(6 + o), ul¢ + )|
+]A(g + 20, 20(€ + 20), uo(€ + 20))HA(5 +o,2(E + o), u + o)

—A(€ + 0,30(§ + ) uo(§ + )| < Lax(§ + 205 ) Al [Ja(€ + 20) — 20(6 +20)|
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+|u(€ +20) — uo(§ + 20)| + [2(§ + ) — xo(£ + o)
1
€ + ) = uo(¢ + )] = Lax(€ +20:) | A1 (D [Ja(€ + a0) — o€ + 40|
q=2
o€ + go) = uo(€ +q0)]).
Continuing this process for the k addend, we obtain the following estimation:

1
X(E + ko t)| [T A€+ ao,2(6 +g0), (€ + a7))

9=k

1
T At + g0 20 (6 + g0), o € + 40)|
q=k

1

< Lax(€ + ko)A (D [J2(€ + a0) = a0 (€ + o)
q=k

(€ +g0) — uo(§ + 90 ).
After summarizing the evaluations, we get formula (3.10). O

Remark 3.2. It is not difficult to see that after elementary transformations on the right-hand side
of inequality (3.10), we obtain the following formula:

Y (&t 2(),ul)) = Y (€t o) uo(-)|
k k
<La 3 3 (ME+ a0l ) (jo(€ +mo) — (€ + mo)

+|u(§+mo—)—u0(§+ma)|). (3.11)

4. PROOF OF THEOREM 2.1

For any w = (7,0, p(t),u(t)) € W, there exists the unique solution z(t) = z(t;w) of problem
(2.2), (2.3) on the basis of Theorem 3.1. Let wy = (70, Zoo, ¥o(t), uo(t)) € W be a fixed element and
let 2o(t) = x(t;wp) be the corresponding solution. By virtue of Theorems 3.2 and 3.3 we have the
following functional-integral equalities:

to+o

£(t) = 2o + / Y (€t 2(), u(-) A, 2(6), u(€)plE — o)de
+ / Y (€t 2(), u() F(€ 2(E), 26 — 1), u(€))dé, tel,

zo(t) = 700 + / Y (€, 20(-), uo () A(E, 20 (€). o (€)) 0 (€ — o)de

to

+/Y(§;t, zo(+), w0 (")) f(§, 20(§), 2o (§ — T0), w0 (§))dE, t eI,

with
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Consequently, for any ¢ € I, we obtain

|2(t) — 20(t)| < |zo — ool + aft] + Blt]

< |w — wol| + aft] + BIt], (4.1)
where
to+o
off] = [ V(& ta0),ul)AE () u©)e(€ - o)
=Y (&5t 20(+), uo(-))A(E, 20(£), uo(€))Po(§ — o)|dE
and

— [[¥i&ta0)u()s(E 20,2l ~ 1.u(9)

=Y (&5t 20(+), uo(-)) f(€, 20(§), w0 (§ — T0),u0(§))|dE.

We now estimate aft]. We have

t0+0'

aff] < / Y (& t,2(), u(-)AE), #(€), w(E)|¢(§ — o) — ¢o(€ — 0)|dE

to
to+o

" / V(€1 2(), u(-) A©), 2(6), u(©))

=Y (&t x0(-),uo(-) A&, 20(§), u0(§)) ]P0 (§ — o)|d§
< oM|Alllle — woll1 + lollrar[t] < o M[Al[|w — wol + [[oll1ca [¢], (4.2)

where

to+o

at] = / Y (&8, 2(), ul-) A€, 2(£), u(§))

—Y(& 1, 20(-), uo () A(E, zo(E), uo(€))]dE
(see (3.9)). Further,

to+o

arlt) < [ Vgt u0)]|AE o(6). u(€) ~ Al 20(6).unle)]de

to
t0+0'

+ / ‘Y({;t,x(-),U()) Y (&t wo(-), uo(-) HAfrro )s uo(§ ]dﬁ

< Lad [ (ja€) = 20(O)] + ful6) — o)t + [ Al ol

to

< LAM/ |2(§) = wo(§)|d€ + LaM (1 — to)|w — wol + || Al azlt], (4.3)
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where
- / ’Y(f,z(f),u(ﬁ)) - Y(€7x0(€)au0(£))’d€.

Using formula (3.11), we get

ko kG
<Ia) Z/( (€ + a1 417 (1a(¢ + mor) — zo(¢ +mo)]

m=1 q=m;
k t+mo

Hule +me) o6+ mo) ) < La S Y | (x+@-mmofarr)

m=1qg=m

to+mo
(12(6) — o (€] + [u(€) — uo(€)] ) dé < Lacsf]
k k
wLa (30 S0 A1) 11— o) — . (14)
where
k k t+mo
all =YY" [ (x(e+ (=m0l A1) () - aole)lde
m=1 =" 4t mo
Obviously,

m=1qg=m to

k
+00 [(der @ mim ) Ap)la(©) - wo(©)lde.

It is clear that if £ € (¢,t + mo), then £ + (¢ —m)o > t, i.e., x(§ + (¢ —m)o;t) =0 (see (3.8)). Thus,

k t
asl < 3 3 [ (xe+ = miost) 417 ) a() - mu(e)lde

k k
<33 g / [2(€) — rolE)lde. (45)

According to (4.3)—(4.5), inequality (4.2) implies

t

) < = o] + a5 [ [a(€) = za(€)1de (1.6)

to
where
k k
ag = oM||A|l + ol La(ts —to)(M + Y > A9
m=1qg=1

and

k k
as = ol La(M + Y > [|AI7)

m=1g=1
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Now, let us estimate [S[t]. We have

1= [ |20, u0) - V{6t o] £6.(€) (e - )]t
¥ / [¥ (€5t 20, w0 )| |76, #(€), 2l — 1), u(€))

HE o) mo(e — o) ual€]e < 171 S Al / (& +4031)

m=1qg=m

% (I( + 40) = 20(§ +q0)| + [u(§ + g0) — uo(§ + qa>|)ds

MLy [ (2(€) = 20(O)] + Jol€ — ) ~ aole = 7|+ [u(€ +40) ~ ua(€ +0)] )¢

to

< (1915 3 141" + ML) — ol - wo|+MLf/|x &) — ao(©)lde

m=1qg=m

k k
37 Y NAIT il + ML, (47)
m=1qg=m
where
171 = {17t syl t € T (w,y,u) € RE X RE xR, |
t
Bult] = / X(E + qo D) (€ + qo) — zol(€ + qo)|de
and
t
Bolt] = / (€ — 7) — o (€ — 7o) de.
Further, 0
t+qo t
Bilt] = / X(ED2(E) — zo(€))de < / 2(€) — wo(€)|d¢ (48)
to+qo to
and
Bolt] < Bslt] + Balt],
where

/|$ §—1) —xo(§ = 7)|dE,  Balt] /|9Co §—7) = xo(§ —70)[dE.

Now, let us estimate 63[ ]. We have
t—7
= [ 1a(€) - mo(©)lag.
to—T1
It is clear that if t — 7 < t(, then

Balt] < [l — woll1(t1 — to) < (t1 — to)|w — wol,
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if t — 7 > tg, then

Balt] = / 0(€) — po(E)|de + / [2(€) — o(€)]de

<o — wolls + / 2(6) — 2o(©)]dE < Talw — wol + / 12(€) — o (€)de.

to to

Thus
Bylt] < (t1 — to + 72)w — wol) + / () — wo(6)|de.

We introduce the notations
S1 :min{t0+T7t0+’7'0}7 So :maX{to-l-T,to-i-T()}.

It is clear that
S — 81 < |T— 70| < |w—wpl.

If t € [to,s1], then t — 7 < tg and t — 79 < to; if t € [so,t1], then t — 7 > tg and t — 79 > to. Moreover,
there exists a number K > 0 such that

|£o(t)] < K almost everywhere on I,

[9, Lemma 3.4]. Therefore,

51 &—To s2
Balt] < [Bo(<)ds|dg |[70(§ — 7) — w0(§ — 70)|dE
4(t <t0/’£/T wols §‘ +81/:ro T) — %o 70

t &£—7o
+ [] [ 1oo(6ds|dg < ealalr = molts = to) + 2ol(52 30
S22 &—T

+K|r —l(ts ~ t0) < (Ilpolls (b = to) + 2o | + K (t1 — to) ) lw = wol,

where
[zoll = sup{[zo(t)] : t € [T, 1]}
On the basis of estimates (3[t] and B4[t], we get

Balt) < (11 = to + 7 + lpolla (b = to) + 2llaol| + K (4 — to) ) w = wg

t
+ [ 1a(9) - an(@)lde. (4.9)
to
From (4.7), by virtue of (4.8) and (4.9), we obtain
t
Blt) < sk = wol + o [ I2(€) ~ zo(€)1ds (4.10)
to
where
ko k
8= (1130 S0 1Al + ML) (12 — to) + MLy (12— to 4+ 72 + lfpoll (12 — to)
m=1qg=m

+2[|zol| + K (t1 — to))
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and

k k
Bs=2MLs+ > Y |47

m=1qg=m

From (4.1), according to (4.6) and (4.10), we get the following estimate:

j2(t) — 20(8)] < (1+ aa + ) w — wo + (05 + F) / 2(€) — zo(€)]de, te .

to

By the Gronwall-Bellman inequality, from the last expression, we obtain

It

2(t) — 20(t)] < (1 + ayg + B5)|w — wplel@sHFe)tr—to)

is clear that if

9
w— wo| < 5 )= —— 67(a5+ﬁ6)(t1*t0)’
| o ©) 1+ o4+ 55

then

|x(t) —xo(t)| <&, Vtel.
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