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WEIGHTED NORM INEQUALITIES IN THE VARIABLE LEBESGUE SPACES
FOR THE BERGMAN PROJECTOR ON THE UNIT BALL OF C»

DAVID BEKOLLE!, EDGAR LANDRY TCHOUNDJAL:2 AND ARSENE BRICE ZOTSA NGOUFACK3

Abstract. In this work we extend the theory of Békolle-Bonami B, weights. Here, we replace the
constant p by a non-negative measurable function p(-), which is a log-Hélder continuous with lower
bound 1. We show that the Bergman projector on the unit ball of C" is continuous on the weighted
variable Lebesgue spaces L”(‘>(w) if and only if w belongs to the generalised Békolle—Bonami class
By(.y- To achieve this, we define a maximal function and show that it is bounded on LPO) (w) if
w € By). We next state and prove a weighted extrapolation theorem that allows us to draw a
conclusion.

1. INTRODUCTION

The purpose of this work is to generalise the Békolle-Bonami theorem [2] for the Bergman projector
on the unit ball B of C™ to the case of weighted variable Lebesgue spaces. The case of the unweighted
variable Lebesgue spaces was treated by Chacon and Rafeiro [5,15]. These authors showed that
the Bergman projector is bounded on variable Lebesgue spaces for exponent functions p(-), which
are log-Holder continuous, with lower bound 1 (cf. Definition 1.1, below). The ingredients of their
proof are: the classical Békolle—Bonami theorem, the boundedness of the Hardy—Littlewood maximal
function on variable Lebesgue spaces and an extrapolation theorem. For the basic properties of
variable Lebesgue spaces, e.g., the boundedness of the Hardy—Littlewood maximal function and an
extrapolation theorem, we refer to [9,11].

The o-algebra on B is the Borel o-algebra. Let v be a positive measure on B. The variable Lebesgue
space on B, denoted by LP(')(V), is a generalisation of the classical Lebesgue spaces obtained by
replacing the constant exponent p by a measurable exponent function p(-) : B — [0,00). We denote
by P(B) this family of all exponent functions p(-) on B. For a measurable subset E of B, we introduce
the following notation:

p—(FE) =ess inf p(z) and py(F) = esssup p(z)
z€E 2€E
and use the notation p_ = p_(B) and py = py(B). We denote by Py(B) the subfamily of P(B)
consisting of such p(-) that p, < oo. More precisely, for p(-) € P(B), we say that f € LP()(v) if for
some A > 0, pp(,)(f) < 00, where

P (f) = / |£(2)|PPdv(2).
B

For p(-) € P4 (B), this definition can be simplified as follows: f € LPO)(v) if p,()(f) < co. When v is
a o-finite measure and p(-) € P(B) is such that p(-) > 1, the functional

Ilfllpcy = inf {)\ >0: py( (%) < 1}

is a norm on the space LP()(v), equipped with this norm, LP()(v) is a Banach space.
We denote by p the Lebesgue measure on B. A non-negative locally integrable function on B is
called a weight. If dv = wdy for a weight w, we call LP() (1) a weighted variable Lebesgue space. In
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the sequel, « is a positive number and we set du,(z) = (1 — |2]?)*~du(z). We shall focus on the
weighted variable Lebesgue space LP()(wdj, ), which we simply denote by LPC) (w).
In this paper, we take

decy = LI = lell+[1= 5] itz ce B oy,
2| + ] ifz=0o0r ¢ =0.

Here, for z = (z1,...,2,) and ¢ = ((1,...,(n) € B, we have set
<Z’C>:Zla+"‘+zn§ and |Z|:<Z,Z>%

This application d is a pseudo-distance on B. Explicitly, for all z,(,& € B, we have d(z,{) <
2(d(z,8) + d(&,¢)) and 0 < d(z,() < 3.
In addition, for z € B and r > 0, we denote by

B(z,r)={Ce€B: d(z,() <r}

the open pseudo-ball centred at z and of radius r > 0.

Definition 1.1. A function p(-) € P(B) is log-Hélder continuous on B if there exists a positive
constant ¢ > 0 such that for all z,{ € B,

Ip(2) —p(Q)| < m

We denote by P'°8(B) the space of all log-Holder continuous functions on B. It is easily checked that
Plog(B) C Py (B). As usual, we set PLE(B) = {p(:) e Pl5(B) : p_ >1}.

Cc

if 2 (.

An example of a member of PI8(B) is p(z) = 2 + sin |z|. We denote by P_(B) the subfamily of
P(B) consisting of such p(-) that p_ > 1. So, PL5(B) = P'2(B) N P_(B).

Definition 1.2. We denote by B the collection of pseudo-balls B of B such that BN 0B # (. Next,
we define the maximal function m, by

maf(2) = sup X205 [ 17(0)ldua )
B

sup

BeB Moz(
Observe that B from Lemma 2.1 is the set of pseudo-balls that are tangent to the boundary of B.
In the classical Lebesgue spaces, we have the following

Definition 1.3. Let p > 1 be a constant exponent. The Békolle-Bonami B, —weight class consists of

weights w such that
1 1 , Pt
sup 7/wdu ></w_z>1du > < 00.
Bes <ua(B) J “) \ha(B) J “

This definition of B, is equivalent to the following definition:

1 _ 1
lwexBllpllw™?xBlly < oo,

1
sup
BeB ,u(x(B)

where p’ is the conjugate exponent of p, i.e., % + 1% =1.

In the same spirit, we introduce a variable generalisation of the B, —weight class. Analogously to
the classical case, for p(-) € P_(B), we say that p’() is the conjugate exponent function of p(-) if for
all z € B, we have

1 n 1
p(z)  P'(2)
Moreover, we set P (B) = P_(B) N PL(B), the subfamily of P(B) consisting of those exponent
functions p(-) such that 1 < p_ < p; < oo. We now define the variable Békolle-Bonami classes of
weights.
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Definition 1.4. Let p(-) € P+(B). A weight w belongs to the variable Békolle-Bonami class on B,
denoted by B,y if

1 1 _ 1
[l ) = sup s [P X o [ 7 x ) < oo

We define the operator P, on L'(B,du,) by

[ H©
Puf(z) = B/ T e €).

The restriction to L?(B, du) of the operator P, is called the Bergman projector of B. We also define
the positive Bergman operator P by

P f(2) / T s dia).

We now recall the classical Békolle-Bonami theorem:

Theorem 1.5 ([2]). Let w be a non-negative measurable function and let 1 < p < oo (p is a constant
exponent). The following two assertions are equivalent:

1. The Bergman operator P, is bounded on LP(wdu,);
2. we B,

Moreover, P} is bounded on LP(wdpuy) if w € B,.
The purpose of this work is to prove the following generalisation of the previous theorem.

Theorem 1.6. Let w be a non-negative measurable function and p(-) € PLE(B). The following two
assertions are equivalent:

1. The Bergman operator P, is bounded on LPC) (wdpy);
2. we Bp(.).

Moreover, P} is bounded on LPC) (wdps) if w € By.).

The problem under study is trivial if w(B) = 0, i.e., w = 0 a.e. on B. We assume that w(B) > 0.
In [12], Diening and Hésto introduced the variable Muckenhoupt weight class Ap,.) on R™ and

showed that for p(-) € PY8(R™), the Hardy-Littlewood maximal function is bounded on L) (w) only
if w € Ap). In order to manage the necessary condition, they introduced a new class A;(.) which

coincides with A,y when p(-) € Pliog (R™), but whose condition is easier to check. Later, Cruz—Uribe
and these two authors [8] gave a new proof of this result using the Calderén—Zygmund decomposition
and they also proved the reverse implication. Very recently, Cruz—Uribe and Cummings [7] extended
the result of [8] to the spaces of homogeneous type.

In this paper, we use the technique of [8,12] to manage the proof of the necessary condition in
Theorem 1.6. Precisely, we shall introduce a new class denoted by B;(,) which coincides with By,

when p(-) € PY5(B). To deal with the sufficient condition, we rely on the result of [7] about the
boundedness on LP¢ )( ) of the Hardy-Littlewood maximal function on the space of homogeneous

type B, for p(-) € Plog( B) and w in the corresponding class of weights A,.). The proof then follows

(
two steps. First, we use this result to show that, for p(-) € Plog( B), the maximal function m, is
bounded on LPO) (w) if w € B,(.y. Secondly, we lean on the first step to define a new extrapolation
theorem which allows us to complete the proof of the sufficient condition in Theorem 1.6.

The rest of our paper is organised as follows. In Section 2, we recall some preliminaries. Next, in
Section 3, we review the properties of weighted variable Lebesgue spaces, variable Békolle-Bonami
and Muckenhoupt classes of weights. In the end of this section, we state the theorem of Cruz—Uribe
and Cummings about the boundedness on Lp(')(w) of the Hardy-Littlewood maximal function on B.
In Section 4, we prove the necessity of the conditions Wi € LPO) (dpg) and WA € LPO)(dpy) in
Theorem 1.6. In Section 5, we define and study the class B;r(.) and show the identity B;(.) = By(,-
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In Section 6, we prove the necessary condition in Theorem 1.6. In Section 7, we show that the
maximal function m,, is bounded on LPO) (w) if w € By,y. Finally, in Section 8, we prove a weighted
extrapolation theorem from which we deduce a proof of the sufficient condition in Theorem 1.6.

Let a and b be two positive numbers. Throughout the paper, we write a < b if there exists C' > 0
such that a < Cb. We write a ~bif a < b and b < a.

2. PRELIMINARIES

In this section, we present some background material regarding the unit ball of C™ as a space of
homogeneous type and the variable exponent Lebesgue spaces.

2.1. The unit ball is a space of homogeneous type. In this subsection, we recall some lemmas
from [2], where (B, d, p.) was first considered.

Lemma 2.1. Let z € B and R > 0. The pseudo-ball B(z,r) meets the boundary of B (in other words,
B € B) if and only if R > 1 —|z|.
Lemma 2.2. Let z € B and 0 < R < 3, we have
f1a(B(2,R)) ~ R"*! (max(R, 1 — |2[))*".
Remark 2.3. From Lemma 2.1 and Lemma 2.2, if B(z, R) € B, we have
pa(B(z,R)) ~ R™ .

From Lemma 2.2, we deduce that (B,d, 1) is a space of homogeneous type. Next, we have the
following

Lemma 2.4 ([7]). There exist two positive constants C and ~y such that for all ( € B(z, R), we have
A\
> _
Ha(B(G1) > C(%) pa(B(zR))

for every 0 <r < R < oc.

2.2. Variable exponent Lebesgue spaces. We denote by M the space of complex-valued measur-
able functions defined on B. Let v be a positive measure on B. The family P(B) of variable exponents
is defined in Introduction. In the rest of the paper, we take p(-) € P(B). The next definitions, proper-
ties and propositions are stated in [9,11,15]. We first recall some properties of the modular functional
pp(y : M — [0,00], defined in the introduction as

poir () = / FEPEdu(2).
B

Proposition 2.5. Let p(-) € P(B) be such that p(-) > 1.

(1) Forall £ € M, pyir(f) = 0 and pyis (F) = oy (IF1)-

(2) For all f € M if pp)(f) < o0, then |f(2)| < oo a.e. on B.

(3) pp(y is convex. In particular, for 0 < a < 1 and f € M, ppy(af) < apyy(f) and for
a1, apy)(f) < ppy(ef).

(4) pp)(f) =0 if and only if f(2) =0 a.e. on B.

(5) If for almost all z € B, |f(Z)| < \g(z)|, then pp()(f) < pp(~)(g)'

(6) If there exists 8 > 0 such that pp(.)(%) < o0, then the function A\ — pp(.)(g) is continuous
and non-increasing on [3,00[. In addition,

lim Pp(.) (%) =0.

A—>00
For p(-) € P(B), the variable Lebesgue space LP()(dv) is defined in the introduction.

Proposition 2.6 ([9, Theorem 2.7.2]). Let p(:) € P+ (B) be such that p(-) > 1. Then the subspace of
continuous functions with a compact support in B is dense in the space L”(')(du).

We next recall the Holder inequality in the variable exponent context.
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Proposition 2.7 ([9, Theorem 2.26, Corollary 2.28]).
1. Let p(-) € P(B) be such that p(-) > 1. Then for all f,g € M, we have

/ |fgldv < 2| fllpeylgllp -
B

2. Let r(-), q(-) € P(B) such that r(-),q(-) > 1 and -+~ + -+~ < 1 for all x € B. Define

q(z) = r(2)
p(+) € P(B) such that p(-) > 1, by
1 1 1

p@  q@) @)

Then there exists a constant K such that for all f € L") and g € L"), fg € LP") and
1£9llpcy < KN fllayNglleey-
We record the following useful
Remark 2.8. The property p(-) € PL8(B) is also true for p/(-).
The following lemma will be useful.

Lemma 2.9. Let p(-) € P'°5(B). Let B = B(x, R) be a pseudo-ball of B such that R < 5. Then

C

ln(%)'

p+(B) —p-(B) <

Lemma 2.10. Let p(-) € P°8(B). There exist two positive constants C; = Cy(a,n,p(-)) and Cy =
Co(a,n, p(+)) such that for every pseudo-ball B of B, we have

MQ(B)IL(B)—IH(B) < Oy and MQ(B)IM(B)—P—(B) < .
Proof. Since p1(B)—p_(B) > 0, pus(B) < co, B C B and p(-) bounded, we have the second inequality.

We are going to prove the first inequality. Suppose that B = B(z, R).

1. If R > 15, from Lemma 2.2, there exists C' > 0 such that p(B) > CR"*® and as p_(B) —

p+(B) <0, we obtain

fia(B)P=(B)=P+(B) < (0 RH) (- (B)=p+(B)) < (C(16)"+1) P+ (B)=p—(B)

2. fR < %, from Lemma 2.4 and Lemma 2.2, there exist positive constants C,C’" and ~ such
that

MQG%@}U)ECHARWLM<B(45%))Z(TRT (2.1)

Thus, since p_(B) — p4+(B) < 0, by Lemma 2.9, it follows from (2.1) that
Ma(B)p,(B)—p+(B) < (C/R'y)Pf(B)*PJr(B)

~ye

<R (k)
< exp(27c). O

From the previous lemma, we easily deduce the following corollary.

Corollary 2.11. Let p(-) € P°8(B). There exists a constant C = C(a,n,p(+)) > 1 such that for every
pseudo-ball B of B and every z € B, we have

1

— < o (BP-B-p() < 0,
o < Ha(B) <C
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3. WEIGHTED VARIABLE LEBESGUE SPACES, VARIABLE BEKOLLE-BONAMI AND MUCKENHOUPT
CLASSES OF WEIGHTS

3.1. Weighted variable Lebesgue spaces. Let w be a weight and let p(-) € P(B) be such that
p(-) > 1. The corresponding weighted variable exponent Lebesgue space LP() (wdp,) consists of those
f € M which satisfy the estimate

oo () = / F PO w(z)dpa(z) < oo
B

We also denote it by LP()(B,w) or, simply, LP()(w), and denote its norm by || -
check that

lp(-y,w- It is easy to

[ £y = [l fwPO [y
In the sequel, we shall adopt the following notation:

7,.
w' = w0,

We recall the notion of a subordinate norm on LP()(w) defined by

/ f(C)g(C)dua(C)’-

1) = sup
gl (=1

We next recall the following

Proposition 3.1 ([9,11, Corollary 2.7.5]). Let p(-) € P(B) such that p(-) > 1 and let w be a weight.
Then

£ lpyw < NF o0 < 20 lpe) -
The following lemma will be very useful.

Lemma 3.2 ([9,11]). Let w be a non-negative measurable function and let p(-) € P4 (B) be such that
p— > 0. Then for every f € M whose support is E, the following double inequality

1 1 1 1
min (Pp(-xw(f)”*(E) () (f) ”*“”) < | fllp(y 0 < max (Ppc),w(f)“‘E) Pp()w(f) "*‘E))
holds.

It is equivalent to
. _(E E _(E E
min (||fH§(,)(7w), |\f||§{§,u3) < Pp(y,w(f) < max (||f|\§(_)(7w), ||f||§{§7w)) .

3.2. Variable Békolle-Bonami classes of weights. Concerning the variable Békolle-Bonami weight
class By,(.y, we record the following elementary

Remark 3.3. Let p(-) € P+(B). If w € By(.), the following two assertions are valid:
1) Jw?® |y < 0o and [|w™ 20 || () < o0.
2) The functions w and w’ are integrable on B.
Proof. Otherwise, if ||wﬁ||p(.) = 00, then necessarily ||w_ﬁ||p/(_) = 0 and this would imply that

w = oo a.e. Alternatively, if ||w7ﬁ llp(.y = 00, then necessarily Hwﬁ llp/(.y = 0 and this would imply
that w = 0 a.e. Furthermore, by Lemma 3.2, for p(-) € P4 (B), assertions 1) and 2) are equivalent. [

We also have the following

Proposition 3.4. Let p(-) € P+(B). For a weight w, the following two assertions are equivalent:
(1) w e Bp(.).
(2) w € Bp/(,).

Moreover, [w}Bp(_) = [w']Bp,<,)-

The following simple lemma will be useful.

Lemma 3.5. Let p(-) € P+(B). For a weight w, the following two assertions are equivalent:
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(1) w e Bpl(),
2) 50 72t Xl X8 .00 < 00

3.3. Variable Muckenhoupt classes of weights.

Definition 3.6. The Hardy-Littlewood maximal function M, on the space of homogeneous type
(B, d, o) is defined by

pa(B

where the supremum is taken over all pseudo-balls of B.

Maf(2) =sup XB(Z)) B/ FOldalC),

When p is a constant greater than 1, the Muckenhoupt class A, consists of weights w which satisfy

the estimate
(i )l [0
Sup \ —— 0y | Wola —— 5y [ W Pl apa 00,
B ua(B)B ua(B)B

where the sup is taken over all pseudo-balls B of B. This definition is equivalent to the following
definition:

1
B Ha (B )
where the sup is taken again over all pseudo-balls of B.
We next have the following variable generalisation of the variable Muckenhoupt weight classes.
This generalisation was given first by Diening and Hésto [12].

1 _1
sup ——s[lwr xp|pllwF x5y < oo,

Definition 3.7. Let p(-) € P+(B). A weight w belongs to the variable Muckenhoupt class A,.) on
B if

1 1 1
w]a,., = sup wrO x|l llw” 7O x|y () < oo,
[w]a,, = su ua(B)” lpc lp ()
where the sup is taken over all pseudo-balls of B.
Let p(-) € P+(B). The following proposition is similar to Proposition 3.4.

Proposition 3.8. The following two assertions are equivalent:
(1) w e Ap();
(2) w' € Ap/(,).

We record the following properties of A,y and B.).

Proposition 3.9.

L. The inclusion Ap.y C By(y holds with [w]g, , < [w]a,,-

2. [w]p,., > % and [w]a

Proof. 1. This follows directly from the definitions of A,y and B,.).
2. We first give the proof for B,.). Let B € B. From the Holder inequality and the definition of
By, we have

1 / 11 1 _ 1
1= wr w7 dpg < w7 xBllpe) lw™ PO XBlly () < 2ws,,-
/Joc(B)B ,U/a(B) p() P’ (") p(+)
The proof for Ay then follows from assertion 1. O

In [7], Cruz—Uribe and Cummings proved the following fundamental result for the maximal Hardy—
Littlewood function. This variable theorem generalises a well-known theorem of Muckenhoupt [14]
in the Euclidean space R™. For the spaces of homogeneous type, the analogous theorem for constant
exponents was proved later by A. P. Calderén [4].

Theorem 3.10. Let p(-) € P5(B). The following two assertions are equivalent:
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1. There exists a positive constant C such that for all f € Lp(')(w), we have

||Mapr()7w S C”f”?(),w
2. wE Ap()

In fact, these authors [7] proved their result in the general setting of spaces of homogeneous type.
There, in addition to the condition p(-) € P'°8(B), they have a condition at infinity which has the
following expression on the unit ball B: there are two constants ¢ and p., such that

Ip(2) — pm\_m

for every z € B. It is easy to show that this extra condition is satisfied on B.
Since mq f < M, f, we deduce the following

Corollary 3.11. Let p(-) € ’Plog( ) and w € Ap(.y. For the same constant C as in Theorem 3.10, we
have

Imafllpe)w < CllFllpe)w
for all f € LPC) (w).

4. NECESSITY OF THE CONDITIONS w0 € LPC)(dpa) AND w707 € LP'O)(dpy) IN THEOREM 1.6
Proposition 4.1. Let w be a weight and let p(-) € P_(B). If the operator P, is bounded on LP")(w),
then w™ 70 € L7 O (dpy,).
Proof. If the operator P, is bounded on LPC)(w), then for every f € LP()(w), we have
|Po(f)(z)] < oo a.e. on B.
We show that for every non-negative f € LP()(w), we have
IPL(£)(0)] < . (4.1)

Indeed, it was proved in [2] that the Bergman projector P, is a singular integral on the space of
homogeneous type (B, d, 1io); in particular, there exist two positive constants ¢ and C' such that for
all z,¢ € B with d(z,0) < ¢, the following estimate holds:

1
(1= (z,Q)rte
Let € be a positive number such that e <min (55, ¢) . There exists z € B(0, €) such that | P, (f)(z)| < 0.
So,

1‘ < Cd(z,0) = C|z|. (4.2)

[Pa(£)O)] < [Pal(£)(2)] + [Pal(f)(0) = Pa(f)(2)]
< |Palf |+/f ’1—<1<>)n+a dpa(C)

<P @]+ Ce [ FQdia(6) = [Pa( )]+ ClPa O]

For the latter inequality, we have used (4.2). This implies that |P,(f)(0)] < 2|P,(f)(2)] < oo. This
proves (4.1).

Now, by a contradiction argument, suppose that w70 does not belong to L”/(')(dua). Then
applying the closed graph theorem and using Proposition 3.1 above and Proposition 2.67 of [9]!, there
exists a non-negative g € LP()(du,) such that

/ 9(Q)w(¢) 7T djaa(€) = oo.

B

Let f = gw_ﬁ. We have f € LP0)(w), but f does not belong to L!(B); in other words, | P (f)(0)| = oc.

LAlso refer to Exercise 4.7 of [3], for the analogous result for the classical Lebesgue spaces.
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This contradicts (4.1). O

Proposition 4.2. Let w be a weight and p(-) € P_(B). If the operator P, is bounded on LP") (wdpu),
1
then wr) € LPO) (dp,,).

Proof. Let 0 < r < 1 and define the function f(z) = (1 — [2[*)' "X p(0,r) () on B. We have

[ I©
Paf(2) = B/ i el

1
-/ T A

B(0,r)
1
Ry e —)
1— ,z n+o

e
Since the function ¢ — W is analytic on B and B(0,r) is the Euclidean ball centred at 0
and of radius r, it follows from the mean value property that P, f(z) = C,.,, and so,

_1_
1Crnlllw ™ lpy = [1Pal(F)lp) - (4.3)

In addition,
ooy = / w(z)(1 — [2P) VAP gy ).
B(0,r)

On the one hand, if a < 1, we have (1 — |z|?)(@=D(=P() < 1 because (a — 1)(1 — p(z)) > 0 and
1 — |z])? < 1. Consequently,
bl < [ w(E)dutz) < oo
B(0,r)
because w is locally integrable.

On the other hand, if a > 1, we have (1 — |z|?)(@=D0=P() < (1 — |z]2)(e=D1=P+) Go,

Ppyw(f) < sup (1 — |zf?)@-D0=P) / w(n)du(n) < oo
z€B(0,r) Blow)

because w is locally integrable and sup, ¢ g (1 — |2[?) @70+ = (1 — p2)le=D=p+),
Thus, since pp(.y,,(f) < oo in both cases, by Lemma 3.2, we obtain ||f||,.)w < co and as P, is
bounded on LP()(w), we deduce from (4.3) that there exists a positive constant ¢, ,, such that

1
||’u)1“(') ||p() < Cr,oz,n”f”P(')vw < 00.
Hence we have the result. .
5. THE WEIGHT CLASSES B;,“(,) AND B,,*(.*)

Definition 5.1. Let p(:) € P+(B) and let w be a weight. We say that w is in the B;r(') class if

1 -1
= _ ey < OO
[w]B;(l) ;‘é% Lo (B)P5 lwxsllllw XB||2(<.)> )

PB = (MQEB)B/p(lx)dua(xo_l'

where
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This class coincides with the B, class when p(-) = p (p constant). We also adopt the following
notation:

p(z)dpa (x
B

Remark 5.2. Let p(-) € P'°8(B) and let B be a pseudo-ball of B. As p_(B) < pg, (p)p < p+(B), it
follows from Lemma 2.10 and Corollary 2.11 that

o (B)~®) = 1o (B = pa(B)" = j1a(B) 77 = ua(BY+®.

Lemma 5.3 ([11, Theorem 4.5.7]). Let p(-) € P!°9(B) be such that p_ > 0. Let B be a pseudo-ball
of B. Then

1
IXBlp) = pal(B)?5 .

Proof. From Lemma 3.2, we have

min (10 (B) ™7, 1a(B) 7 ) < [[xally) < max( T, 1a(B) ).
Next, from Remark 5.2, we have p4(B) T to(B)P+® ~ 1, (B)?Ps 75 because p(+) is bounded away
from zero. The conclusion follows. O

Lemma 5.4. Let p(:) € Plog( B) and let q be a constant exponent greater than py + 1. There exists a
positive constant C' depending only on the log-Holder constant of p(-) such that

[wlg, < Clwlp:

By

Proof. As p(-) < py +1 < ¢, we have % < I; ((,')). Hence from the Holder inequality (assertion 2 of

Proposition 2.7), we obtain

o™Xl < Klixallsolw xel s,
q (-

where

1 _q p()
— == - =q—p()>1
50 ¢ o T
It is easy to check that $(-) is a member of P'°8(B) such that _ > 0. Consequently, from Lemma 5.3
and Remark 5.2, we have

1 _ _
IXBllse) = pa(B)P5 = pa(B)1~ P2 = o (B)T7P2.

Thus there exists a positive constant C' such that

sl xaly < Cotalloxalillo ol (B
= Copys llwxslillw™ XB|| 1o < Clulgy

for all pseudo-balls B € B. The conclusion follows. O

We recall the following
Definition 5.5. The weight class Bo is defined by Boo = |J B,.

q€(1,00)
Remark 5.6. It follows from Lemma 5.4 that if p(-) € PY8(B), we have
+
Bp( ) © Boo
In the rest of this article, to simplify the notation, we denote w(B) = ||wxg||1.

We next define another class of weights A, which contains the class B,. For a reference, cf., e.g., [1].
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Definition 5.7. We call A the class consisting of those integrable weights w satisfying the following
property. There exist two positive constants C' and ¢ such that the following inequality
fa(E) w(E)\°
< C( ) (5.1)
fa(B) w(B)
holds whenever B € B and F is a measurable subset of B.

Remark 5.8.

1. For w € A, the weighted measure wdp,, is doubling in the following sense. There exists a
positive constant C' such that for every pseudo-ball B of B whose pseudo-ball B of the same
centre and of double radius is a member of 5, we have

w(B) < Cw(B).

This result easily follows from the definition of A.
2. We recall that w(B) > 0. For w € A, this implies that w(B) > 0 for every pseudo-ball B of B.
Indeed, take B for B and B for E in (5.1).

Lemma 5.9. Let p(-) € P°5(B) be such that p— > 0. Let w € A. Then

1 1

X80 = w(B) T = w(B)7=® = w(B)7 =~ w(B)7s
for all pseudo-balls B of B such that w(B) > 0 and for all x € B.
Proof. Take B for B and B for F in Definition 5.7. We have

_1Ha(B)\3
(C L MQ(B)) w(B) < w(B) < w(B).

So,
w(]Bg)pf(B)fm(B) < w(B)pf(B)fm(B) < #Q(B)%(pf(B)fm(B))w(]Bg)pf(B)fm(B)_
It is easy to check that
min(1, w(B)P~7+) < w(B)P~B)7P+B) < max(1, w(B)P-~P+).
Next, combining with Lemma 2.10 gives

min(1, w(B)P~77+) < w(B)P~H7PHEN S Cymax(1, w(B)" 7).

1
Thus we have proved the estimates w(B)?+® ~ w(B)?-® ~ w(B)?@ ~ w(B)i for all z € B.
On the other hand, from Lemma 3.2, we have

min (w(B)p%(B)’w(B)ﬁ> < [IxBllp),w < max (w(B)ﬁ,MB)ﬁ) .

Hence )

1
IXBllp(),w = w(B)?-" ~w(B)r+%. O

We recall again the notation w’'(y) = w(y)lfp/(y).

Lemma 5.10. Let p(-) € PY3(B) and w € B:(.). Then

pp—1
lexplls = (pur (0™'xp) ) = w (B>, (52)
Proof. Let w € B;(') and B € B. By the definition, we have
1
——wB)|lw sy, < . 5.3
(B w(B)|lw™ xs| ) < [wlp: (5.3)

On the other hand, by the Holder inequality (Proposition 2.7, assertion 1) and Lemma 5.9, we have

1 __1_ _1_ __1_ 1 __1_
fo(B) = /w(y)“y’w(y) P dpie (y) < 2[lwrO XB|lpey lw™ 7O xBlly () = w(B)?s5 [w™ PO XB|lp (.-
B
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Hence

H“WB “50 > 1. (5.4)

w prO) XB
Ha(B) )

Consequently, from (5.4), Lemma 3.2, Lemma 5.9 and Corollary 2.11, we have:

1 1 ’
w(B)re  _ 1 w(B)75 \ P W 2w
150p/<-)(/f()13)w P“XB) =/(()> w(y)” 7 dpa(y)
(e}
B

pa(B)

p (v)

N / (11%) p(y) w(y)_i&) At ()
B

So, by Lemma 3.2, we have

> 1. (5.5)

Thus from (5.3) and (5.5), we have
o ol = L2ELE (5:6)
Furthermore, from Remark 5.2 and as p(-) € Py, we have the equivalences
a(BY ) 2 o (BY=®) e 1a(B)7 T = g (B) R
= (BT = g (B) T,
from which we deduce that

PB

__PB __PB
Ha(BYFHT o i (B) 7= = o (B) 7T

since p_(B) < pp < p4+(B). Similarly, by Lemma 5.9, we deduce from the estimate
w(B)PE ~ w(B)P+B) ~ (B)P-(B)

that

w(B)T=T o (B)FT T p(B) 75T

So, from (5.6), we have

1 1 1

_ (B)—1 _ —(B)—1 _ ey

lw™xsllye e xellyn = llwxsl}i,
(") p(") p(-)

Since py() (w'xp) = w'(B), combining with Lemma 3.2 where ’;:((_‘)) replaces p(-), we obtain the
()

required result. O

Proposition 5.11. Let p(-) € P8(B) and w € BJ ). Then (S B;,(_) and

)

(1|w' e~ sl )p31~1|w Dl el o =
pa By X A " By I BTG T ()

for all pseudo-balls B € B.
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Proof. We recall that w € A by Remark 5.6. Hence, from Lemma 5.9 used with zf)’(('-)) replacing p(-),
equation (5.2) and the property w € B;(_), we obtain

1 1

7/10/3 w1t (- :7/10/3 .
RO (B)llw™ x5l ) R Blxsll zo) .,
1 1
~ G (BB
(03
w(B) B 751
= () (5.7
1
w(B) >p51
“\ .(Byrs 5.8
<MQ(B)pB||w XBH% (5.8)
<l

p(-)
Hence w' € B:,(‘) and from (5.7) and (5.8), we deduce that

w(B) | 1 w(B) (W’(B))pB_l

———||w Y . O
By X0 = 5 By G (B)

Definition 5.12. Let p(-) € P+(B) and let w be a weight. We say that w is in the BT class if

()
o w(B) (wm\T
Wlpgs =m0 - B) (MB)) = o

It is easy to check the following Proposition.

Proposition 5.13. Let p(-) € PL(B). The following two assertions are equivalent:

Lemma 5.14. Let p(-) € PL8(B) and w € B;r(g. Then for all pseudo-balls B of B,

1 1
IXB o = w(B) T+ ~ w(B)7™=® ~ w(B)75.

Proof. Since w € B;(.*;, we have w'(B) < oo and it follows from Lemma 3.2 that |[xg|lp (). < oo
Hence, by the Holder inequality, we obtain
pa(B) < 2||XB||p(-),wHXB”p’(-),w/
< 2||XB||p(-),w

Il () -
Therefore, from Lemma 2.10, we get

_(B)— B _ B)—p_(B
|25 P < o (BYP= B =P By |2t (PP (B

< max (1, a2/ )% )- (5.9)
On the other hand, using again w € B;(V), we have w(B) < co and hence ||xz||,(.),» < co. Then

B)—p_(B B)—p_(B —p_
s 20577 < s 2857 ) < max (1, sl ) (5.10)

Thus from (5.9) and (5.10), we have
B (B
sl ) = lxalocs),
and from Lemma 3.2, we conclude the proof. O

Lemma 5.15. Let p(-) € P8(B). Then B;(fg CA.
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Proof. Let w € B;'(fg. Let B € B and F be a measurable subset of B. By the Holder inequality and
from Lemma 3.2, we have

ta(E) < 2[IXElp) 0l XElp ()w
< 2[IXE|lp()wlXBllp )0

1 1
< 2max (w(E) 7B w(E) - ) X8l (),

B++

However, since w’ € () by Proposition 5.13, from Lemma 5.14, we have

1 1 1
IxBllp()w = w'(B)"+ P ~ o/ (B)"-" ~w/(B)"s.

Hence, using w € B:(f';, we deduce that

1 1
o) S max (w(B) 7=/ (B) 27 w(E) =T w! (B) =P )

(5 ) e (53) ™ (50) )

(
< o ([ul} ) (Z%) " a(B)
< max (fulp ol ) (S5) T el

Therefore

Proposition 5.16. Let p(-) € P5(B). Then B;'( 3= B;('g

Proof. For the inclusion B;(_) C B;r( ) apply Proposition 5.11. For the reverse inclusion, apply
Lemma 5.15 and Lemma 5.9. 0

Remark 5.17. From Proposition 5.11, Remark 5.6 and Lemma 5.9, we have the inclusion B:(J C By

for p(-) € PLE(B).
Now, we prove the reverse inclusion. In this direction, we first state the following result.

Lemma 5.18. Let p(-) € P3(B) and w € By(.y. Then there exists a constant C > 1,

1 p—(B)—p+(B)
5§||X Bllp(y =C

for all B € B.
Proof. By the Holder inequality, we have
ta(B) < 2|xBllpe)wllxallp ()w

and as w € By, from Lemma 2.10 and according to the estimate ||x5|,(.)» < 00 given by Re-
mark 3.3, we have
(B _ (B B
Ixs Hp( w) p+(B )SNQ(B)ZL(B) P+(B)||X HP+)Z}/P (B)
B)-p_(B
~ [IxmllZr o

< max (1, ||XIB%||§7(3,Z;;/) .

On the other hand, according to the estimate || xg||,(.),» < 00 given by Remark 3.3, we have

B)—p_(B Y
||X ||p+( —p—( )<maX(1,||XIB||Z(+),51 ) -
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From Lemma 3.2 and Lemma 5.18, we deduce the following

Corollary 5.19. Let p(-) € PY5(B) and w € By(y. Then

1

IXBllpe)w = w(B)+® = w(B)"-® ~w(B)rs,

for all B € B.
We next state the following

Theorem 5.20. Let p(-) € PL5(B). Then B,y = B;'(.) = B;'(ﬂ;.

Proof. From Remark 5.17, we have B;r(,) C Bp(y. Let w € By.). By Proposition 3.4, w’" € By (. It
follows from Corollary 5.19 that

8 ()~ ettt ) i)

To end this section, we record with the same proof the following analogous theorem for the variable
Muckenhoupt weight classes.

Theorem 5.21. Let w be a weight and let p(-) € PL8(B). The following three assertions are equiva-
lent:

1. we Ap(i),'
2. sup WH“’XBHIHWAXBH”(-) < 0o, where the sup is taken over all pseudo-balls of B;
B "® ()
w(B) (w'(B)\PE! .
3. sup 2 (B) \ e (D) < 00, where the sup is taken over all pseudo-balls of B.
5 He o

6. PROOF OF THE NECESSARY CONDITION IN THEOREM 1.6

The aim of this section is to prove the following result.

Proposition 6.1. Let w be a weight and let p(-) € Pfg(IB%). If the Bergman projector is bounded on

LPO) (wdpy,), then w € By.).

Proof. According to Theorem 5.20, it suffices to prove that w € B;ﬁ, i.e., the following estimate
w(B) (w’(3)>“_1
sup < 00 (6.1)
BeB Na(B) ,Ufa(B)

holds. From Proposition 4.1, we have w0 € Lp/(')(dua) and from Proposition 4.2, we have Wit €
LPC) (dpy). In particular, w(B) < oo and w'(B) < co. Thus we just have to show the estimate (6.1)
for the pseudo-balls of radius smaller than a positive constant Ry, because if the radius of B is larger,
then B can be identified with B. We use the following

Lemma 6.2 ([2]). There exist three positive numbers Ry, c and Cy, such that the following holds. For
every pseudo-ball B* € B of radius R < Ry, there exists a pseudo-ball B> € B of the same radius such
that d(B, B?) = cR, that satisfies the following property: for every non-negative measurable function
f supported in B® and for two distinct superscripts i,j € {1,2}, we have

Paf] > Caxpsia(B) " / fp. (6.2)
Bq‘,
Thus, by taking f = xp: in (6.2), we obtain
Paxs ()] = v (2)Capta(B) / xzediia = x5 (2).

Bt
Using the growth of the norm || - [|,(.),.,, We obtain

_1
p() 2 X WP ||y

1
p()w = ||wp(’)PaXBi

||PocXBi
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So, using the fact that P, is bounded on LP() (wdpu,), we obtain

x0T ) S 1Pallxse )
We then deduce that ) .

IxBr w70 [lpe) = IxB2w 7O [5()- (6.3)
In the rest of the proof, we shall take f = w’x 1. We have f € LPC) (wdpu,) since

prrald) = [ 02) 7 O () = o (0 xm) < o0
B

by Proposition 4.1. However, pp).w(f) = [ w'dpe = w'(B'). Also, from (6.2) and the previous
equality, we have

Xp2 (2)w'(BY) < O3 pa(BY)|Paf(2)].

Moving to the norm || - we obtain

lp().05
w7 xp2 [0’ (BY) < €2 (BN Paf ()
Then using the boundedness of P, on LP() (wdpe ), the previous inequality implies
w7 X g2l ' (BY) < €3 o BY| Pl Fll o)
and combining with (6.3), we obtain the following
Lemma 6.3 (Main Lemma). Suppose that P, is bounded on LP")(wdu,). Then

_1_ _
lw?T x5 lpeyw' (B) < OO ta(B) | PallllwxBllpe),w (6.4)

for every pseudo-ball B € B of radius smaller than Ry. The absolute constants Ry, C and C, were
respectively defined in Lemma 6.2, (6.3) and (6.2).

1
At this level, we need to calculate ||w?® x g||,(.) and [|w’x B||p(.),w- This calculation is not as obvious
as in the case where p(-) is constant.

Lemma 6.4. Let p(-) € P(B). If P, is bounded on LPC)(w), then Py is bounded on LP'O)(w').

Proof. We first recall that the weighted Bergman projector P, is the orthogonal projector from the
(Hilbert)-Lebesgue space L%(dpu,) to its closed subspace L?(du,) N Hol(B) (the standard weighted
Bergman space). We call C.(B) the space of continuous functions with a compact support in B. By
Proposition 2.6, C.(B) is a dense subspace of LP()(w) and L?' () (w'). From Proposition 3.1 and the
boundedness of P, on LP()(w), for all f € C.(B), we have

1Paflpor = sup P (T )|
9€C(B):/lgllp(-y,w=1

= sup /f ag dﬂa(()‘
9€C(B):lIgllpcy,w=1

<2 sup Hf”p’('),w’||Pag||p('),w

9€C(B):llgllp(y,w=1

< 2Pl 1 llp (-

We have used the elementary fact that C.(B) is contained in L?(dpu, ). For the last but one inequality,
we have used the Hoélder inequality. O

Lemma 6.5. Let p(-) € P(B) and let w be a weight. If Py, is bounded on LPC)(w), then for all t > 0,

[t (1 Pa s>t} o) < IPall 1 llp() w0
Proof. Tt suffices to remark that for all t > 0, txq p, s>t} < |Pafl- O
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Lemma 6.6. Let p(-) € PY8(B) and w be a weight. If Py is bounded on LPO)(w), then

1 1
IxBllp()w = w(B) "+ ~w(B)r-*
for all pseudo-balls B of B.

. - B B
Proof. If [[XB||p(.),w > 1, then HXIB%|£(‘)75}+ < ||XB‘§(-),£+ < |Ixs ”z( )(w) P+(B) < 1. Qo

B B
Il P 1, (6.5)

Otherwise, if ||xB||p(.),w < 1, then by the Holder inequality, we have
pa(B) < 2|xBllpe).wlXBlp )0
< 2(IxBllp()wlXellp ),w. (6.6)
Hence from (6.6) and Lemma 2.10, we have
p-(B)

B B _
Ixalb B+ B < gpempyy (B)P= B =2 (B ||y P2 (5)

< max (1 Iz l%ih ) (6.7)

We point out that || x|, (.),.’ < 0o according to Proposition 4.1, since Py is bounded on LP®) (w). On
the other hand, using again the boundedness of P, on LP()(w), we have the estimate IXBllp(),w < 00
according to Proposition 4.2. Then

||XB\£(+,§EU)7P B) < max (1 ||>(Iﬂa||p+ b ) < 0. (6.8)

Thus, from (6.5), (6.7) and (6.8), we deduce that

B B
eslingys = Ixsllbg) o

for all pseudo-balls of B. Applying Lemma 3.2 gives
1 1
IxBllp()w > w(B)+5 ~w(B) -5, O
End of the proof of Proposition 6.1. We go back to the Main Lemma (Lemma 6.3). On the one hand,
since P, is bounded on L0 (w), it follows from Lemma 6.4 that P, is also bounded on L () (w'). So,
from Lemma 6.6 with p/(+) in the place of p(:) and w’ in the place of w, we have
’ 1——1 ’ 1——1
IXBllp () =W (B)" #=® ~w'(B) 7+,
1 1
This implies the estimate w'(B)*-® ~ w'(B)?+® . It then follows from Lemma 6.3 that
WX B llp()w = w'(B)75.

On the other hand, HwﬁxBHp(.) = IxBllpe)w = w(B)i by Lemma 6.6. Inequality (6.4) of the
Main Lemma takes the following form:

Equivalently,

w(B) (w'(B)\"* "
Bes o (B) <ua<B>> =

We have shown the estimate (6.1). This finishes the proof of Proposition 6.1. O
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7. BOUNDEDNESS ON LP0)(w) oF THE MAXIMAL FUNCTION m,

In this section, we prove the boundedness of the maximal function m, on LP() (w) when w € By(y-
As in [2], we use the regularisation operator that we recall here with some of its properties.

Definition 7.1. For all k € (0,1), we define the regularisation operator R§ of order k by

nf(z) = f(w)dpa (w),

|
ta(B*(2))
B¥(2)
where B¥(z) = {¢ € B: d(2,¢) < k(1 —|z])}.
Proposition 7.2. For all k € (0,1), there exists a constant Cy, > 1 such that for every non-negative
locally integrable function f, the following two estimates

1) maof < CxmoRSf;
2) Oy 'mag < REmag < Cymag
hold.
Lemma 7.3. Let k € (0,1). If 2 € B*(2), then = € B¥ (2'), where k' = £, and XBk()(2) <
Xp# (o) (2). Moreover, there exists a constant Cy, > 1 such that
Ci 1a(BH(2) < pa(B¥ () < Cupta(BH(2).

Lemma 7.4. Let k € (0,%) and p(-) € PE(B). Forw e By, there exists a constant Cy > 1 such
that for all z,2' € B such that 2’ € B*(2), we have

Oy tw(B*(2)) < w(BY (') < Crw(B*(2)).

Proof. We have B¥(z) ¢ B2 (/) and B¥ (') c B%(z). From Theorem 5.20 and Remark 5.6, we
have w € A. Apply Remark 5.8 to conclude. O

Lemma 7.5. Let k € (0, %) There exists a positive constant Cy such that for all non-negative locally
integrable f, g, we have

/ (O Rkg(O)dpa(C) < Ci / 9(2) Riof (2)dpa(2).
B

B

We also recall the following elementary

Lemma 7.6. Let zo € B and r > 1 — |2|. For z € B (20,7) and { € B*(z), we have {( € B(zg,ar)
with a = 2(2k + 1)r.

In the rest of this section, to simplify the notation, we write 0 = Rjfw. The following result is a
generalisation to the variable exponent of the analogous result in [2, Lemma 10].

Proposition 7.7. Let p(-) € P5(B), k € (0, 1) and w € By.y. Then RYw € Ay () with [Rpw]a,., S
[wlB,.,-
Proof. From Theorem 5.21, it suffices to show that

O'(B) O'/(B) p(20)—1
rw @) sl

for every pseudo-ball B of B.
We write a = 2k+1. Let B = B(z,7) be a pseudo-ball in B. We set B’ = B(2p, ar). We distinguish
two cases: 1. B € B; 2. B is not a member of B.
1. Suppose first that B € B. We claim that there exists a positive absolute constant C} such that
!/
oB) _, w(B)
ta(B) ta(B')

(7.1)
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Indeed, from the Fubini-Tonelli theorem and Lemma 7.3, we have

o(8) = [ o(:)dnal)

| Gy [ @@ )dnate)

BF(2)

-[(/ Wdua@))w(odua(o
B B

< [ ([0l o) w0
B B

Sy}

s}

=w(B’).

For the latter inequality, we have used Lemma 7.6. Moreover, since B C B’ and o (B) =~ o (B’), we

obtain
o(B) _ o(B)

a(B) ~ ta(B')
Furthermore, from the Holder inequality and Lemma 5.9, we have
o(B*
iz _ HalB2))
w(B*(2))

IN

2 1 1
m”w”(')XBk(z)”p(-)Hw PO X BE () lp ()

S B )T (B () 7

Hence
oy L (P @1y o (W(BR(2)\ 7T
=0 ()
From the Holder inequality and Lemma 5.9, we have

o(B) = / o' (2)dtal2)

1 w'(B*()) >f’ )
< 2w O xBlp( < w XB
1
_1 (W' (B*() »0)
SwB)7 T (S P e0) " el (72)
w(B*(.)) p()
Since w’ € A, from Lemma 5.9, we have 8 := ||w/ﬁxg/|\p(.) ~ w'(B’) 7). Thus as B C B’, from

Lemma 7.3 and Lemma 7.4, we have

oo (5 (et
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( ))))wu)xB(z)dua(z)

1
ey
g\
ar—l
1
3%
olw

/ NnN—1 1 /
—w(B) x / (w(B()) / w<<>ka<z><<>><B<z>w<z>dua<<>)dua<z>

< Cpw'(B') ™ % B/ (w(Bk,(C))]B/XBk/(C)(Z)XB/(C)U)(Z)d,Ua(Z))w/(odﬂa(o

For the latter inequality, we have used Lemma 7.6. Hence we obtain

|(Se) o

Consequently, we deduce from (7.2) that

1
< Crpw' (B') G0,
p()

1

o'(B) < Cpw' (B) 70w (B)) 70 < Chaw'(B')

o'(B) w'(B’)
ha(B) = ua(B)
and hence o o)
O_/(B) p(z0)—1 ) w’(B’) p(z0)—1
m&) <aloa) 3
Combining (7.1) and (7.3) gives
O'(B) O_I(B) p(z0)—1 w(B’) w’(B’) p(z0)—1
o (am) S ) S "

by Theorem 5.20.

2. Suppose next that the pseudo-ball B is not a member of B, i.e., r <1 —|zp|. In the case, where
k(1—1z20]) <7 <1—|20], we have B C B(29,1—|z0|) and pio(B) =~ (1 —|20])" T =~ pa(B(z0, 1 — |20]))-
The pseudo-ball B(zp,1 — |20|) is a member of B; so, we can apply to it the computations of the first
case. We obtain

o(B) <0‘I(B) >P(zo)1 _ o(B(z0,1 — |20])) (J/(B(Zo, 1— |ZO|)) )p(zo)l
ta(B) \ pa(B) ~ ta(B(20,1 — |20])) \ pta(B(20,1 — |20]))

S [wlBy-

Next, if 0 < r < k(1 — |2¢]), then for z € B, we have (1 —k)(1 —|20]) <1 — 12| < (1 +k)(1 — |20])-
This shows that g (B*(20)) =~ pa(BF(2)). We also claim that w(B*(z)) ~ w(B*(z)). Indeed, it is
easy to show the inclusions B¥(zy) C B(z,4k(1—|z|)) and B*(z) C B(zo,2k(2+k)(1—|z20|)). Then the
claim follows with application of Remark 5.8. Combining with the estimate po (B*(20)) ~ pa (B*(2))
gives

o(z) ~ o(z0) (7.5)

for every z € B. Now, by Remark 2.8, p/(-) is a member of P{%(B). Then by Lemma 5.9 and
Corollary 2.11, we have

0(20)! 770 = () PO 0 (2)1 7).

O‘(B) 0’/(B) p(z0)—1 ~
pa(B) (,ua(B)) ~ 1. (7.6)

The conclusion of the lemma follows after a combination of (7.4) and (7.6) with Theorem 5.20. [

Combining with (7.5) gives
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Lemma 7.8. Let p(-) € PYE(B), k € (0, 1) and w € By(y. Then
(Rig(2))" S R (¢"V)(2) + 1
for all non-negative functions g such that ||g|[p.y,w = 1 and all z € B.

Proof. As | gllp(.),w = 1, from the Hélder inequality (assertion 1 of Proposition 2.7), we have

1

Mo 9(Q)dpa(€) < llgxsr)llpey,w = 1.
2lxBr () llpr ()0 / BF(2)llp(-),u

BF(2)

Therefore from the usual Holder inequality and Lemma 2.10, we obtain

(6% z 1 p(Z) — z z
(Rg(2))"™) = (mmw / Q(C)dﬂa(g)> po(B¥(2)) TP 2PE) ||y i Hp()w
o

1 p—(B) B R
§2p(2)< / g(C)Chm(C)) o (B*(2) PO g 1)
Wzl o

1 p—(B) .
(o [ #00) " maB @O 5] 2

BF(z)
1
< na(BH ()~ PO |y I b — / 9(¢)~Pdpa ()
o Ha(BE(2))
B¥(z)
1
< - r-(B)gq 1
S B / 9xg>1(C) 1a(C) +
B¥(z)
S Rig"V(z) +1
For the last but one inequality, we also used the following inequality:
[P e ! < max(1, [|xell25)- O

Lemma 7.9. Let p(-) € PY3(B), k € (0, %) and w € Byy. Then
1 1
1R g w0 [l S llg - (Rfw) 70 [0
for all non-negative functions g belonging to Lp(')(ngdua).

Proof. From Proposition 7.7, we have 0 = Rifw € A,y C By(.) because w € B,(.y. Without loss of
generality, we assume that ||g||,.),» = 1. Thus from Lemma 7.8 and Lemma 7.5, we have

ooty (BEg - wi) = / (RS 9(2))" (=) dpia(2)
B
< / RE (¢°0)(2)w(2)dpta(z) + w(B)
B

S /Q(Z)p(Z)U(Z)dMa(Z)er(B)
B
S 1+ w(B).

For the last inequality, apply Lemma 3.2. d

We still use the notation o = Rw, with k € (0, 3).
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Lemma 7.10. Let k € (0,3), p(-) € PEB) and w € By(y. Then there exists a positive constant
C([w']B, ) depending on [w'|p,, | such that for every non-negative function g € LP'0)(g"), we have

HRgQHP’(-),w’ < C([w/]Bp/(.))HQHP’(-),U’
for all non-negative functions g € LP/(')(J’).

Proof. Without loss of generality, we assume that ||g||,/(.),,» = 1. From Proposition 3.8 and Proposi-
tion 7.7, we have o’ € Ay(.y C By () because w € B,.). Thus since ||g||,(.),o» = 1, using Lemma 7.8
and Lemma 7.5, we have

oy (REG) = / (R29(=))" O’ (2)djia(2)
< [ R (g7 O) () (2)dpa(2) + w'(B)
9(2)" O REw (2)dpa () + ' (B)

9(2)" Do’ (2)0” (2) 7 Rpw' (2)dpa () + ' (B)

N
B T P &

IN

(o, [ 9 O G2 + o (B)
B
S" [wl]Bp'(-) + ’LU/(B)

Indeed, the last inequality follows from Lemma 3.2; for the last but one inequality, using Theorem 5.20
and Lemma 5.9 for w’ in the place of w, we get

o (2) R (2) = (Rgw(2)) " Rpw'(2) S [w]g,,.

because B¥(z) is "almost’ a member of B, as it is a subset of the member B(z, 1—|2|) of B, pio(B*(z)) ~
pa(B(2z,1—|2])) and w" € By (.). So, by Lemma 3.2, we get

||Rgng/(‘),’w/ S C([wl]Bpl(,))‘ D
Lemma 7.11. Let p(-) € PL8(B), f non-negative in LPO) (w), k € (0,3) and w € Byy. Then

I1RE f (R w) 7 [y < CU[w 3y )1 llpo, 0

Proof. We still write ¢ = R{yw. By the duality (Proposition 3.1), there exists a non-negative function
g satisfying ||g||,/(.),o- = 1 and such that

1B Fllpy0 <2 / 9(2)RE F(2)dpial2).
B

Next, from Lemma 7.5, the Holder inequality and Lemma 7.10, we obtain
IRl S [ £G)RG9)dua(2)
B

<20l 0l BEGllp (.0
< 2C0([w'] B,y D llpe)wl9ll (.0
=2C0([w']B, ) llp) -

Hence we have the result. O
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Theorem 7.12. Let p(-) € Pfg(B). If w € By, there exists a non-negative function C defined on
(0,00) such that for all f € LPC)(w), we have

[mafllp)w < CUwlB, ) Fllpe)w-

Proof. By Proposition 3.4, we have the equality [w]p, | = [w']B,, . So, from Lemma 7.11, we have

p()
[REf - (Byw) O [|pey < C([w]B, ) Iflpe)w- (7.7)

Hence Ry f € LPO) (o). Next, since o € Ay by Proposition 7.7, Corollary 3.11 gives

Ima(BE ) - (REw) 7 oy < IRES) - (REw) 7 [y, (7.8)
Hence from (7.7) and (7.8), we have mq (R f) € LPO(Rwdpu,). Now, Lemma 7.9 gives
| RR (ma (BN [0y < llmal(BEF) - (REw) 7 [o0)-
Next, by Proposition 7.2, there exists a positive constant C such that
ma f < CRy (ma(Ry f))-
This implies that

1
Hmapr(-),w fs ”ma( gf) ’ (R?w) r0) Hp(')'

Finally, applying (7.8) and (7.7) successively, we have the result. O

8. A WEIGHTED EXTRAPOLATION THEOREM AND THE PROOF OF THE SUFFICIENT CONDITION IN
THEOREM 1.6

We are now ready to prove the sufficient condition in Theorem 1.6, we adapt the strategy used
in [10].

8.1. Preliminary results. We recall the B; class of weights. A weight w belongs to By if

w|B, ‘= €sssup 7m w(Z) < 0.
[ ] 1
2EB ’LU(Z

In R”, the analogue of the following factorisation theorem was proved for the Muckenhoupt classes
Ap, 1 < p < oo, by Jones [13].

Theorem 8.1. For a constant exponent p such that 1 < p < oo, the following two assertions are
equivalent:
1) w € By;

2) there exist wy € By and we € By such that w = wlw;_p.

Proof. We first show the implication 2) = 1). Suppose that w = wlwéfp with wy,ws € By. For all
B € B and z € B, we have

1 o
() B/widua < |wi)p,wi(z), i=1,2. (8.1)
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, 1-p /
Thus as (1 —p')(1 —p) = 1, we have w! =P = (wlw;ﬂD) = w; P ws. So, from (8.1), we have

) (uazB)!wzduay1<ua13>3/wldua>1

= [w1] B, [wa],

Hence w € B,.

We next show the converse implication 2) = 1). Suppose that w € B,. Set ¢ = pp’ and define the
operator S7 on the space M by

1
$1£(2) = w(2)i (ma (f7078) ()7

By the Minkowski inequality, S7 is sublinear. Moreover, from the constant exponent version of
Theorem 7.12 [2, Proposition 3], we have

/ S1f(2) dpa(2) = / (ma (7 07%) ()" w(2)dpa(2) / 12 dpalz

1

In other words, [|S1]l < (C ([w]s,))".
Similarly, denote again w’ = wl™P € B, and define the operator S; on the space M by
S2f(2) =w' () (me (707 ) ()"

By the Minkowski inequality, S5 is also sublinear. Moreover,

/ S (2)dial2) £ O (1 / F1(2)dpalz

In other words, |5, 5 C (w5, )" = (C ([wl5,)) "
We use the following

Lemma 8.2. Set S = S1 + 52 and define the operator R on M by

. S*h(2)
RA(:) =D Sr]
k=0 q

with S°h = |h|. Then
a) |h] < Rh;
b) | RAllq < 2|[Allq;
c) S(Rh) < 2||S||;Rh.

Proof of Lemma 8.2. By the definition of Rh, we have h < Rh. Moreover,

o [1S*hllq
[RA[lq < < lhllq = 2|[h|l
q kZQkHS”k ZQk q:

Next, the sublinearity of S gives S(Rh) < 2||S||,RhA. O
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Applying assertion ¢) of Lemma 8.2, we obtain

1
1 7

w(z) (ma ((Rh)p/w’%) (z)) " = S1(RR)(2) < S(Rh)(2) < 2||S|| RA(2). (8.2)

Now, set wg = (Rh)p/w_%. By (8.2), we have wy € By.
Similarly, we have
1
w'(2) (ma (Rh)” w’*?(z)) " = Sy(Rh)(2) < S(RA) < 2||S|l, R (z). (8.3)
Now, set wy; = (Rh)”w/_r%’. By (8.3), we have wy € By. Moreover, wlw%_p = w € B,. This finishes
the proof of Theorem 8.1. O

Lemma 8.3. Let p(-) € PY8(B) and w € By(.y. We define the operator R on LPC) (w) by

o0

mk X
Rh(.T) _ Z ah( )

k

where for k > 1,mk =mg omgo---om, and m%h = |h|. Then R satisfies the following properties:

k—times
a) |h| < Rh;
b) R is bounded on LPO)(w) and ||RA|p(yw < 2/|Rllpe) s
¢) Rh € By and [Rh]p, <2||mallLs¢)(w)-

Proof. The proof of assertions a) and b) are the same as for assertions a) and b) of Lemma 8.2. Here,
we use the sublinearity of m,,.
Finally, by the definition of Rh, we have

> mk 1 x
ma(Rh)(x) § Z oz+ h( )

k=0

oo
< 2lmall ooy Y
k=0

< 2[[mall e (w) RR(2).

2k||7'”L04||]Zzo<~>(w)

mEth(z)

k
2k+1 lmg HLj(l-)(w)

Thus Rh € B; and [Rh]Bl < 2||ma||Lp(.)(w). O

Lemma 8.4. Let p(-) € PY3(B) and w € Byy. Define the operator H on LP'0) by

Hh=TR (hwﬁ) W

. where
—  mkg(x)
Rigla) =) gr—p———
k=0 2 HmO‘”LP/(-)(w/)
Then
a) |h| < Hh;

b) H is bounded on LP' ) and | H Ay < 2[|Allpy;
c) Hh- wi € By and [Hh - wﬁﬂ]]g1 < 2[[mall Lo wry -

Proof. The proof is the same as for Lemma 8.3. We replace p(-) by p/(-) and w € By by w' € By (.

The property p/(-) € PYE(B) comes from Remark 2.8. O
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8.2. A weighted extrapolation theorem. We denote by F a family of couples of non-negative mea-
surable functions. We are now ready to state and prove the following weighted variable extrapolation
theorem.

Theorem 8.5. Suppose that for some constant exponent py > 1, there exists a function C : (0,00) —
(0,00) such that for all v € By, and (F,G) € F, we have

[ F@pe@diats) < Culs,,) [ G ola)du @), (3.4)
B B

Then, given p(-) € PYE(B) and w € By, we have

||F||p(-),w <16 x4 7o (C([U]BPO))% HG”p(-),w
for all (F,G) € F and F € L*") (w).

Proof. We use the technique of Cruz—Uribe and Wang in [10, Theorem 2.6]. Let (F,G) € F. If
|Fllpyw = 0, we have the result. Otherwise, || F|[p.)» > 0 and hence |G|,y > 0, because if
IGllp¢yw = 0, then G = 0 a.e. and by (8.4) we will have F' = 0 a.e. Henceforth, we assume
0 < [[Flp(y,w <00 and 0 < [|G|,(.),w < 00. Define
_F N G

HFHp(~),w HGHp(-),w ’
then [|h1]|p(),w < 2 and so, hy € LPO) (w).

Since F' € L) (w), by the duality (Proposition 3.1), there exists hy € L) such that [hallpy =1
and

hy

1Pl <2 [ FwrtThadin <2 [ F(Hho)0? d, (8.5)
B B

where the latter inequality comes from assertion a) of Lemma 8.4.

Set v = pi,. By the usual Holder inequality, we have
0

/F(th)wﬁdua = /F(Rhl)—W(Rhl)V(th)wﬁdua
B B
1

<IPIP, (8.6)
where
I = / FPO(Rhy) ™70 (Hhy)wn) dptg,
B
and

I = /(Rhl)(th)wﬁdua.
B
In addition, from Lemma 8.3 and Lemma 8.4, respectively, R is bounded on LP() (w) and H is bounded

on L"), Thus by the Hélder inequality, assertions b) of Lemma 8.3 and Lemma 8.4, we have

I <2[|Rha|lpeywllHh2llp ) < 8llAillpey,wllhallp ) < 16.

By the definition of h; and assertion a) of Lemma 8.3, we have
4

1ellp),w

for ¢ € {F, G}. Next, by the Holder inequality and assertion b) of Lemma 8.4, we have

< hi < Rhy

- & 1=po wﬁ
I1S]B/F (C)(an(.),w) H(C)ha2(Qw @ dpa (C)



WEIGHTED NORM INEQUALITIES IN THE VARIABLE LEBESGUE SPACES 71

_ _1_
= 1P [ PO Ouwr dua(¢)
B
< 2PN IF ol Azl

<4lF|,

< o0.

Since Rhy € B; and (H hg)wﬁ € B; by Lemma 8.3 and Lemma 8.4, respectively, it follows from
Theorem 8.1 that v := (Rhy)1~P0 (thwﬁ) € B,,. Hence by (8.4) and the same argument as above,
we have
L = /Fpo(Rhl)l_po(th)wﬁdua
B

< C([U]Bpo)/GPO(Rhl)l—Po(th)wﬁdua
B

G 1—po .
<0l [ () b
p()w
B

= O, IGIER [ Glhaydu,
B

< 2C([] 3, IG5 |Gl | H Bl

< AC([v]B, Gy w0

Thus from (8.5) and (8.6), we have the result. O
8.3. The end of the proof of the sufficient condition in Theorem 1.6. We prove the following

Proposition 8.6. Let p(-) € P*

Consequently, the Bergman projector P, extends to a continuous operator on Lp(')(w).

(B) and w € By(.y. Then P; is a continuous operator on LP)(w).

Proof. We call again C.(B) the space of continuous functions of compact support in B and take
F ={(PFf,Ifl) : f € Cc(B)}. We recall from Proposition 2.6 that C.(B) is a dense subspace in
LPO) (w).

Let po be an arbitrary constant exponent greater than 1. Let v € B),,. By Theorem 1.5, for every
f € Ce(B), we have

[zt < (0n,,) [ 1Povdne.
B B
Thus by Theorem 8.5, for all f € C.(B), we have

_1 1
P53 fllpyw <16 x 4770 (C([v]B,,)) ™ [fllp().0-
We conclude by density. O
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