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WEIGHTED NORM INEQUALITIES IN THE VARIABLE LEBESGUE SPACES

FOR THE BERGMAN PROJECTOR ON THE UNIT BALL OF Cn

DAVID BÉKOLLÈ1, EDGAR LANDRY TCHOUNDJA1,2 AND ARSÈNE BRICE ZOTSA NGOUFACK3

Abstract. In this work we extend the theory of Békollè–Bonami Bp weights. Here, we replace the
constant p by a non-negative measurable function p(·), which is a log-Hölder continuous with lower

bound 1. We show that the Bergman projector on the unit ball of Cn is continuous on the weighted

variable Lebesgue spaces Lp(·)(w) if and only if w belongs to the generalised Békollè–Bonami class

Bp(·). To achieve this, we define a maximal function and show that it is bounded on Lp(·)(w) if

w ∈ Bp(·). We next state and prove a weighted extrapolation theorem that allows us to draw a

conclusion.

1. Introduction

The purpose of this work is to generalise the Békollè–Bonami theorem [2] for the Bergman projector
on the unit ball B of Cn to the case of weighted variable Lebesgue spaces. The case of the unweighted
variable Lebesgue spaces was treated by Chacon and Rafeiro [5, 15]. These authors showed that
the Bergman projector is bounded on variable Lebesgue spaces for exponent functions p(·), which
are log-Hölder continuous, with lower bound 1 (cf. Definition 1.1, below). The ingredients of their
proof are: the classical Békollè–Bonami theorem, the boundedness of the Hardy–Littlewood maximal
function on variable Lebesgue spaces and an extrapolation theorem. For the basic properties of
variable Lebesgue spaces, e.g., the boundedness of the Hardy–Littlewood maximal function and an
extrapolation theorem, we refer to [9, 11].

The σ-algebra on B is the Borel σ-algebra. Let ν be a positive measure on B. The variable Lebesgue
space on B, denoted by Lp(·)(ν), is a generalisation of the classical Lebesgue spaces obtained by
replacing the constant exponent p by a measurable exponent function p(·) : B → [0,∞). We denote
by P(B) this family of all exponent functions p(·) on B. For a measurable subset E of B, we introduce
the following notation:

p−(E) = ess inf
z∈E

p(z) and p+(E) = ess sup
z∈E

p(z)

and use the notation p− = p−(B) and p+ = p+(B). We denote by P+(B) the subfamily of P(B)
consisting of such p(·) that p+ < ∞. More precisely, for p(·) ∈ P(B), we say that f ∈ Lp(·)(ν) if for

some λ > 0, ρp(·)(
f
λ ) < ∞, where

ρp(·)(f) :=

∫
B

|f(z)|p(z)dν(z).

For p(·) ∈ P+(B), this definition can be simplified as follows: f ∈ Lp(·)(ν) if ρp(·)(f) < ∞. When ν is
a σ-finite measure and p(·) ∈ P(B) is such that p(·) ≥ 1, the functional

∥f∥p(·) = inf

{
λ > 0 : ρp(·)

(f
λ

)
≤ 1

}
is a norm on the space Lp(·)(ν), equipped with this norm, Lp(·)(ν) is a Banach space.

We denote by µ the Lebesgue measure on B. A non-negative locally integrable function on B is
called a weight. If dν = wdµ for a weight w, we call Lp(·)(ν) a weighted variable Lebesgue space. In
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the sequel, α is a positive number and we set dµα(z) = (1 − |z|2)α−1dµ(z). We shall focus on the
weighted variable Lebesgue space Lp(·)(wdµα), which we simply denote by Lp(·)(w).

In this paper, we take

d(z, ζ) =

{
||z| − |ζ||+

∣∣∣1− ⟨z,ζ⟩
|z||ζ|

∣∣∣ if z, ζ ∈ B \ {0},
|z|+ |ζ| if z = 0 or ζ = 0.

Here, for z = (z1, . . . , zn) and ζ = (ζ1, . . . , ζn) ∈ B, we have set

⟨z, ζ⟩ = z1ζ1 + · · ·+ znζn and |z| = ⟨z, z⟩ 1
2 .

This application d is a pseudo-distance on B. Explicitly, for all z, ζ, ξ ∈ B, we have d(z, ζ) ≤
2 (d(z, ξ) + d(ξ, ζ)) and 0 ≤ d(z, ζ) < 3.

In addition, for z ∈ B and r > 0, we denote by

B(z, r) = {ζ ∈ B : d(z, ζ) < r}
the open pseudo-ball centred at z and of radius r > 0.

Definition 1.1. A function p(·) ∈ P(B) is log-Hölder continuous on B if there exists a positive
constant c > 0 such that for all z, ζ ∈ B,

|p(z)− p(ζ)| ≤ c

ln(e+ 1
d(z,ζ) )

if z ̸= ζ.

We denote by P log(B) the space of all log-Hölder continuous functions on B. It is easily checked that

P log(B) ⊂ P+(B). As usual, we set P log
± (B) =

{
p(·) ∈ P log(B) : p− > 1

}
.

An example of a member of P log
± (B) is p(z) = 2 + sin |z|. We denote by P−(B) the subfamily of

P(B) consisting of such p(·) that p− > 1. So, P log
± (B) = P log(B) ∩ P−(B).

Definition 1.2. We denote by B the collection of pseudo-balls B of B such that B ∩ ∂B ̸= ∅. Next,
we define the maximal function mα by

mαf(z) = sup
B∈B

χB(z)

µα(B)

∫
B

|f(ζ)|dµα(ζ).

Observe that B from Lemma 2.1 is the set of pseudo-balls that are tangent to the boundary of B.

In the classical Lebesgue spaces, we have the following

Definition 1.3. Let p > 1 be a constant exponent. The Békollè–Bonami Bp−weight class consists of
weights w such that

sup
B∈B

(
1

µα(B)

∫
B

wdµα

)(
1

µα(B)

∫
B

w− 1
p−1 dµα

)p−1

< ∞.

This definition of Bp is equivalent to the following definition:

sup
B∈B

1

µα(B)
∥w

1
pχB∥p∥w− 1

pχB∥p′ < ∞,

where p′ is the conjugate exponent of p, i.e., 1
p + 1

p′ = 1.

In the same spirit, we introduce a variable generalisation of the Bp−weight class. Analogously to
the classical case, for p(·) ∈ P−(B), we say that p′(·) is the conjugate exponent function of p(·) if for
all z ∈ B, we have

1

p(z)
+

1

p′(z)
= 1.

Moreover, we set P±(B) = P−(B) ∩ P+(B), the subfamily of P(B) consisting of those exponent
functions p(·) such that 1 < p− ≤ p+ < ∞. We now define the variable Békollè–Bonami classes of
weights.
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Definition 1.4. Let p(·) ∈ P±(B). A weight w belongs to the variable Békollè–Bonami class on B,
denoted by Bp(·) if

[w]Bp(·) := sup
B∈B

1

µα(B)
∥w

1
p(·)χB∥p(·)∥w− 1

p(·)χB∥p′(·) < ∞.

We define the operator Pα on L1(B, dµα) by

Pαf(z) =

∫
B

f(ζ)

(1− ⟨z, ζ⟩)n+α
dµα(ζ).

The restriction to L2(B, dµα) of the operator Pα is called the Bergman projector of B. We also define
the positive Bergman operator P+

α by

P+
α f(z) =

∫
B

f(ζ)

|1− ⟨z, ζ⟩|n+α
dµα(ζ).

We now recall the classical Békollè–Bonami theorem:

Theorem 1.5 ([2]). Let w be a non-negative measurable function and let 1 < p < ∞ (p is a constant
exponent). The following two assertions are equivalent:

1. The Bergman operator Pα is bounded on Lp(wdµα);
2. w ∈ Bp.

Moreover, P+
α is bounded on Lp(wdµα) if w ∈ Bp.

The purpose of this work is to prove the following generalisation of the previous theorem.

Theorem 1.6. Let w be a non-negative measurable function and p(·) ∈ P log
± (B). The following two

assertions are equivalent:

1. The Bergman operator Pα is bounded on Lp(·)(wdµα);
2. w ∈ Bp(·).

Moreover, P+
α is bounded on Lp(·)(wdµα) if w ∈ Bp(·).

The problem under study is trivial if w(B) = 0, i.e., w ≡ 0 a.e. on B. We assume that w(B) > 0.
In [12], Diening and Hästo introduced the variable Muckenhoupt weight class Ap(·) on Rn and

showed that for p(·) ∈ P log
± (Rn), the Hardy–Littlewood maximal function is bounded on Lp(·)(w) only

if w ∈ Ap(·). In order to manage the necessary condition, they introduced a new class A+
p(·) which

coincides with Ap(·) when p(·) ∈ P log
± (Rn), but whose condition is easier to check. Later, Cruz–Uribe

and these two authors [8] gave a new proof of this result using the Calderón–Zygmund decomposition
and they also proved the reverse implication. Very recently, Cruz–Uribe and Cummings [7] extended
the result of [8] to the spaces of homogeneous type.

In this paper, we use the technique of [8, 12] to manage the proof of the necessary condition in
Theorem 1.6. Precisely, we shall introduce a new class denoted by B+

p(·) which coincides with Bp(·)

when p(·) ∈ P log
± (B). To deal with the sufficient condition, we rely on the result of [7] about the

boundedness on Lp(·)(w) of the Hardy–Littlewood maximal function on the space of homogeneous

type B, for p(·) ∈ P log
± (B) and w in the corresponding class of weights Ap(·). The proof then follows

two steps. First, we use this result to show that, for p(·) ∈ P log
± (B), the maximal function mα is

bounded on Lp(·)(w) if w ∈ Bp(·). Secondly, we lean on the first step to define a new extrapolation
theorem which allows us to complete the proof of the sufficient condition in Theorem 1.6.

The rest of our paper is organised as follows. In Section 2, we recall some preliminaries. Next, in
Section 3, we review the properties of weighted variable Lebesgue spaces, variable Békollè–Bonami
and Muckenhoupt classes of weights. In the end of this section, we state the theorem of Cruz–Uribe
and Cummings about the boundedness on Lp(·)(w) of the Hardy–Littlewood maximal function on B.
In Section 4, we prove the necessity of the conditions w

1
p(·) ∈ Lp(·)(dµα) and w− 1

p(·) ∈ Lp′(·)(dµα) in
Theorem 1.6. In Section 5, we define and study the class B+

p(·) and show the identity B+
p(·) = Bp(·).
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In Section 6, we prove the necessary condition in Theorem 1.6. In Section 7, we show that the
maximal function mα is bounded on Lp(·)(w) if w ∈ Bp(·). Finally, in Section 8, we prove a weighted
extrapolation theorem from which we deduce a proof of the sufficient condition in Theorem 1.6.

Let a and b be two positive numbers. Throughout the paper, we write a ≲ b if there exists C > 0
such that a ≤ Cb. We write a ≃ b if a ≲ b and b ≲ a.

2. Preliminaries

In this section, we present some background material regarding the unit ball of Cn as a space of
homogeneous type and the variable exponent Lebesgue spaces.

2.1. The unit ball is a space of homogeneous type. In this subsection, we recall some lemmas
from [2], where (B, d, µα) was first considered.

Lemma 2.1. Let z ∈ B and R > 0. The pseudo-ball B(z, r) meets the boundary of B (in other words,
B ∈ B) if and only if R > 1− |z|.

Lemma 2.2. Let z ∈ B and 0 < R ≤ 3, we have

µα(B(z,R)) ≃ Rn+1 (max(R, 1− |z|))α−1
.

Remark 2.3. From Lemma 2.1 and Lemma 2.2, if B(z,R) ∈ B, we have

µα(B(z,R)) ≃ Rn+α.

From Lemma 2.2, we deduce that (B, d, µα) is a space of homogeneous type. Next, we have the
following

Lemma 2.4 ([7]). There exist two positive constants C and γ such that for all ζ ∈ B(z,R), we have

µα(B(ζ, r)) ≥ C
( r

R

)γ
µα(B(z,R))

for every 0 < r ≤ R < ∞.

2.2. Variable exponent Lebesgue spaces. We denote by M the space of complex-valued measur-
able functions defined on B. Let ν be a positive measure on B. The family P(B) of variable exponents
is defined in Introduction. In the rest of the paper, we take p(·) ∈ P(B). The next definitions, proper-
ties and propositions are stated in [9,11,15]. We first recall some properties of the modular functional
ρp(·) : M → [0,∞], defined in the introduction as

ρp(·)(f) =

∫
B

|f(z)|p(z)dν(z).

Proposition 2.5. Let p(·) ∈ P(B) be such that p(·) ≥ 1.

(1) For all f ∈ M, ρp(·)(f) ≥ 0 and ρp(·)(f) = ρp(·)(|f |).
(2) For all f ∈ M if ρp(·)(f) < ∞, then |f(z)| < ∞ a.e. on B.
(3) ρp(·) is convex. In particular, for 0 < α ≤ 1 and f ∈ M, ρp(·)(αf) ≤ αρp(·)(f) and for

α ≥ 1, αρp(·)(f) ≤ ρp(.)(αf).
(4) ρp(·)(f) = 0 if and only if f(z) = 0 a.e. on B.
(5) If for almost all z ∈ B, |f(z)| ≤ |g(z)|, then ρp(·)(f) ≤ ρp(·)(g).

(6) If there exists β > 0 such that ρp(·)(
f
β ) < ∞, then the function λ 7−→ ρp(·)(

f
λ ) is continuous

and non-increasing on [β,∞[. In addition,

lim
λ−→∞

ρp(.)

(f
λ

)
= 0.

For p(·) ∈ P(B), the variable Lebesgue space Lp(·)(dν) is defined in the introduction.

Proposition 2.6 ([9, Theorem 2.7.2]). Let p(·) ∈ P+(B) be such that p(·) ≥ 1. Then the subspace of
continuous functions with a compact support in B is dense in the space Lp(·)(dν).

We next recall the Hölder inequality in the variable exponent context.
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Proposition 2.7 ([9, Theorem 2.26, Corollary 2.28]).

1. Let p(·) ∈ P(B) be such that p(·) ≥ 1. Then for all f, g ∈ M, we have∫
B

|fg|dν ≤ 2∥f∥p(·)∥g∥p′(·).

2. Let r(·), q(·) ∈ P(B) such that r(·), q(·) ≥ 1 and 1
q(x) + 1

r(x) ≤ 1 for all x ∈ B. Define

p(·) ∈ P(B) such that p(·) ≥ 1, by

1

p(x)
=

1

q(x)
+

1

r(x)
.

Then there exists a constant K such that for all f ∈ Lq(·) and g ∈ Lr(·), fg ∈ Lp(·) and

∥fg∥p(·) ≤ K∥f∥q(·)∥g∥r(·).

We record the following useful

Remark 2.8. The property p(·) ∈ P log
± (B) is also true for p′(·).

The following lemma will be useful.

Lemma 2.9. Let p(·) ∈ P log(B). Let B = B(x,R) be a pseudo-ball of B such that R < 1
4 . Then

p+(B)− p−(B) ≤ c

ln( 1
4R )

.

Lemma 2.10. Let p(·) ∈ P log(B). There exist two positive constants C1 = C1(α, n, p(·)) and C2 =
C2(α, n, p(·)) such that for every pseudo-ball B of B, we have

µα(B)p−(B)−p+(B) ≤ C1 and µα(B)p+(B)−p−(B) ≤ C2.

Proof. Since p+(B)−p−(B) ≥ 0, µα(B) < ∞, B ⊂ B and p(·) bounded, we have the second inequality.
We are going to prove the first inequality. Suppose that B = B(z,R).

1. If R ≥ 1
16 , from Lemma 2.2, there exists C > 0 such that µα(B) ≥ CRn+α and as p−(B) −

p+(B) ≤ 0, we obtain

µα(B)p−(B)−p+(B) ≤ (CRn+α)(p−(B)−p+(B)) ≤ (C(16)n+1)(p+(B)−p−(B)).

2. If R < 1
16 , from Lemma 2.4 and Lemma 2.2, there exist positive constants C,C ′ and γ such

that

µα(B(z,R)) ≥ C (4R)
γ
µα

(
B
(
z,

1

16

))
≥ C ′Rγ . (2.1)

Thus, since p−(B)− p+(B) ≤ 0, by Lemma 2.9, it follows from (2.1) that

µα(B)p−(B)−p+(B) ≤ (C ′Rγ)
p−(B)−p+(B)

≲ R
− γc

ln( 1
4R )

≤ exp(2γc). □

From the previous lemma, we easily deduce the following corollary.

Corollary 2.11. Let p(·) ∈ P log(B). There exists a constant C = C(α, n, p(·)) > 1 such that for every
pseudo-ball B of B and every z ∈ B, we have

1

C
≤ µα(B)p−(B)−p(z) ≤ C.
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3. Weighted Variable Lebesgue Spaces, Variable Békollè–Bonami and Muckenhoupt
Classes of Weights

3.1. Weighted variable Lebesgue spaces. Let w be a weight and let p(·) ∈ P(B) be such that
p(·) ≥ 1. The corresponding weighted variable exponent Lebesgue space Lp(·)(wdµα) consists of those
f ∈ M which satisfy the estimate

ρp(·),w(f) =

∫
B

|f(z)|p(z)w(z)dµα(z) < ∞.

We also denote it by Lp(·)(B, w) or, simply, Lp(·)(w), and denote its norm by ∥ · ∥p(·),w. It is easy to
check that

∥f∥p(·),w = ∥fw
1

p(·) ∥p(·).
In the sequel, we shall adopt the following notation:

w′ := w1−p′(·).

We recall the notion of a subordinate norm on Lp(·)(w) defined by

∥f∥′p(·),w := sup
∥g∥p′(·),w′=1

∣∣∣∣ ∫
B

f(ζ)g(ζ)dµα(ζ)

∣∣∣∣.
We next recall the following

Proposition 3.1 ([9, 11, Corollary 2.7.5]). Let p(·) ∈ P(B) such that p(·) ≥ 1 and let w be a weight.
Then

∥f∥p(·),w ≤ ∥f∥′p(·),w ≤ 2∥f∥p(·),w.

The following lemma will be very useful.

Lemma 3.2 ([9,11]). Let w be a non-negative measurable function and let p(·) ∈ P+(B) be such that
p− > 0. Then for every f ∈ M whose support is E, the following double inequality

min
(
ρp(·),w(f)

1
p−(E) , ρp(·),w(f)

1
p+(E)

)
≤ ∥f∥p(·),w ≤ max

(
ρp(·),w(f)

1
p−(E) , ρp(·),w(f)

1
p+(E)

)
holds.

It is equivalent to

min
(
∥f∥p−(E)

p(·),w , ∥f∥p+(E)
p(·),w

)
≤ ρp(·),w(f) ≤ max

(
∥f∥p−(E)

p(·),w , ∥f∥p+(E)
p(·),w

)
.

3.2. Variable Békollè–Bonami classes of weights. Concerning the variable Békollè–Bonami weight
class Bp(·), we record the following elementary

Remark 3.3. Let p(·) ∈ P±(B). If w ∈ Bp(·), the following two assertions are valid:

1) ∥w
1

p(·) ∥p(·) < ∞ and ∥w− 1
p(·) ∥p′(·) < ∞.

2) The functions w and w′ are integrable on B.

Proof. Otherwise, if ∥w
1

p(·) ∥p(·) = ∞, then necessarily ∥w− 1
p(·) ∥p′(·) = 0 and this would imply that

w ≡ ∞ a.e. Alternatively, if ∥w− 1
p(·) ∥p(·) = ∞, then necessarily ∥w

1
p(·) ∥p′(·) = 0 and this would imply

that w ≡ 0 a.e. Furthermore, by Lemma 3.2, for p(·) ∈ P±(B), assertions 1) and 2) are equivalent. □

We also have the following

Proposition 3.4. Let p(·) ∈ P±(B). For a weight w, the following two assertions are equivalent:

(1) w ∈ Bp(·).
(2) w′ ∈ Bp′(·).

Moreover, [w]Bp(·) = [w′]Bp′(·) .

The following simple lemma will be useful.

Lemma 3.5. Let p(·) ∈ P±(B). For a weight w, the following two assertions are equivalent:
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(1) w ∈ Bp(·);

(2) sup
B∈B

1
µα(B) ∥χB∥p(·),w ∥χB∥p′(·),w′ < ∞.

3.3. Variable Muckenhoupt classes of weights.

Definition 3.6. The Hardy–Littlewood maximal function Mα on the space of homogeneous type
(B, d, µα) is defined by

Mαf(z) = sup
B

χB(z)

µα(B)

∫
B

|f(ζ)|dµα(ζ),

where the supremum is taken over all pseudo-balls of B.

When p is a constant greater than 1, the Muckenhoupt class Ap consists of weights w which satisfy
the estimate

sup
B

(
1

µα(B)

∫
B

wdµα

)(
1

µα(B)

∫
B

w− 1
p−1 dµα

)p−1

< ∞,

where the sup is taken over all pseudo-balls B of B. This definition is equivalent to the following
definition:

sup
B

1

µα(B)
∥w

1
pχB∥p∥w− 1

pχB∥p′ < ∞,

where the sup is taken again over all pseudo-balls of B.
We next have the following variable generalisation of the variable Muckenhoupt weight classes.

This generalisation was given first by Diening and Hästo [12].

Definition 3.7. Let p(·) ∈ P±(B). A weight w belongs to the variable Muckenhoupt class Ap(·) on
B if

[w]Ap(·) := sup
B

1

µα(B)
∥w

1
p(·)χB∥p(·)∥w− 1

p(·)χB∥p′(·) < ∞,

where the sup is taken over all pseudo-balls of B.

Let p(·) ∈ P±(B). The following proposition is similar to Proposition 3.4.

Proposition 3.8. The following two assertions are equivalent:

(1) w ∈ Ap(·);
(2) w′ ∈ Ap′(·).

We record the following properties of Ap(·) and Bp(·).

Proposition 3.9.

1. The inclusion Ap(·) ⊂ Bp(·) holds with [w]Bp(·) ≤ [w]Ap(·) .

2. [w]Bp(·) ≥ 1
2 and [w]Ap(·) ≥ 1

2 .

Proof. 1. This follows directly from the definitions of Ap(·) and Bp(·).
2. We first give the proof for Bp(·). Let B ∈ B. From the Hölder inequality and the definition of

Bp(·), we have

1 =
1

µα(B)

∫
B

w
1

p(·)w− 1
p(·) dµα ≤ 2

µα(B)
∥w

1
p(·)χB∥p(·)∥w− 1

p(·)χB∥p′(·) ≤ 2[w]Bp(·) .

The proof for Ap(·) then follows from assertion 1. □

In [7], Cruz–Uribe and Cummings proved the following fundamental result for the maximal Hardy–
Littlewood function. This variable theorem generalises a well-known theorem of Muckenhoupt [14]
in the Euclidean space Rn. For the spaces of homogeneous type, the analogous theorem for constant
exponents was proved later by A. P. Calderón [4].

Theorem 3.10. Let p(·) ∈ P log
± (B). The following two assertions are equivalent:
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1. There exists a positive constant C such that for all f ∈ Lp(·)(w), we have

∥Mαf∥p(·),w ≤ C∥f∥p(·),w.
2. w ∈ Ap(·).

In fact, these authors [7] proved their result in the general setting of spaces of homogeneous type.
There, in addition to the condition p(·) ∈ P log(B), they have a condition at infinity which has the
following expression on the unit ball B: there are two constants c and p∞ such that

|p(z)− p∞| ≤ c

ln(e+ |z|)
for every z ∈ B. It is easy to show that this extra condition is satisfied on B.

Since mαf ≤ Mαf, we deduce the following

Corollary 3.11. Let p(·) ∈ P log
± (B) and w ∈ Ap(·). For the same constant C as in Theorem 3.10, we

have
∥mαf∥p(·),w ≤ C∥f∥p(·),w

for all f ∈ Lp(·)(w).

4. Necessity of the Conditions w
1

p(·) ∈ Lp(·)(dµα) and w− 1
p(·) ∈ Lp′(·)(dµα) in Theorem 1.6

Proposition 4.1. Let w be a weight and let p(·) ∈ P−(B). If the operator Pα is bounded on Lp(·)(w),

then w− 1
p(·) ∈ Lp′(·)(dµα).

Proof. If the operator Pα is bounded on Lp(·)(w), then for every f ∈ Lp(·)(w), we have

|Pα(f)(z)| < ∞ a.e. on B.
We show that for every non-negative f ∈ Lp(·)(w), we have

|Pα(f)(0)| < ∞. (4.1)

Indeed, it was proved in [2] that the Bergman projector Pα is a singular integral on the space of
homogeneous type (B, d, µα); in particular, there exist two positive constants c and C such that for
all z, ζ ∈ B with d(z, 0) < c, the following estimate holds:∣∣∣∣ 1

(1− ⟨z, ζ⟩)n+α
− 1

∣∣∣∣ ≤ Cd(z, 0) = C|z|. (4.2)

Let ϵ be a positive number such that ϵ≤min
(

1
2C , c

)
. There exists z∈B(0, ϵ) such that |Pα(f)(z)|< ∞.

So,

|Pα(f)(0)| ≤ |Pα(f)(z)|+ |Pα(f)(0)− Pα(f)(z)|

≤ |Pα(f)(z)|+
∫
B

f(ζ)

∣∣∣∣1− 1

(1− ⟨z, ζ⟩)n+α

∣∣∣∣ dµα(ζ)

≤ |Pα(f)(z)|+ Cϵ

∫
B

f(ζ)dµα(ζ) = |Pα(f)(z)|+ Cϵ|Pα(f)(0)|.

For the latter inequality, we have used (4.2). This implies that |Pα(f)(0)| ≤ 2|Pα(f)(z)| < ∞. This
proves (4.1).

Now, by a contradiction argument, suppose that w− 1
p(·) does not belong to Lp′(·)(dµα). Then

applying the closed graph theorem and using Proposition 3.1 above and Proposition 2.67 of [9]1, there
exists a non-negative g ∈ Lp(·)(dµα) such that∫

B

g(ζ)w(ζ)−
1

p(ζ) dµα(ζ) = ∞.

Let f = gw− 1
p(·) .We have f ∈ Lp(·)(w), but f does not belong to L1(B); in other words, |Pα(f)(0)| = ∞.

1Also refer to Exercise 4.7 of [3], for the analogous result for the classical Lebesgue spaces.
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This contradicts (4.1). □

Proposition 4.2. Let w be a weight and p(·) ∈ P−(B). If the operator Pα is bounded on Lp(·)(wdµ),

then w
1

p(·) ∈ Lp(·)(dµα).

Proof. Let 0 < r < 1 and define the function f(z) = (1− |z|2)1−αχB(0,r)(z) on B. We have

Pαf(z) =

∫
B

f(ζ)

(1− ⟨z, ζ⟩)n+α dµα(ζ)

=

∫
B(0,r)

1

(1− ⟨z, ζ⟩)n+α dµ(ζ)

=

∫
B(0,r)

1

(1− ⟨ζ, z⟩)n+α dµ(ζ).

Since the function ζ 7−→ 1
(1−⟨ζ,z⟩)n+α is analytic on B and B(0, r) is the Euclidean ball centred at 0

and of radius r, it follows from the mean value property that Pαf(z) ≡ Cr,n and so,

|Cr,n|∥w
1

p(·) ∥p(·) = ∥Pα(f)∥p(·),w. (4.3)

In addition,

ρp(·),w(f) =

∫
B(0,r)

w(z)(1− |z|2)(α−1)(1−p(z))dµ(z).

On the one hand, if α ≤ 1, we have (1 − |z|2)(α−1)(1−p(z)) ≤ 1 because (α − 1)(1 − p(z)) > 0 and
1− |z|2 ≤ 1. Consequently,

ρp(·),w(f) ≤
∫

B(0,r)

w(z)dµ(z) < ∞

because w is locally integrable.
On the other hand, if α > 1, we have (1− |z|2)(α−1)(1−p(z)) ≤ (1− |z|2)(α−1)(1−p+). So,

ρp(·),w(f) ≤ sup
z∈B(0,r)

(1− |z|2)(α−1)(1−p+)

∫
B(0,r)

w(η)dµ(η) < ∞

because w is locally integrable and supz∈B(0,r)(1− |z|2)(α−1)(1−p+) = (1− r2)(α−1)(1−p+).

Thus, since ρp(·),w(f) < ∞ in both cases, by Lemma 3.2, we obtain ∥f∥p(·),w < ∞ and as Pα is

bounded on Lp(·)(w), we deduce from (4.3) that there exists a positive constant cr,α,n such that

∥w
1

p(·) ∥p(·) ≤ cr,α,n∥f∥p(·),w < ∞.

Hence we have the result. □

5. The Weight Classes B+
p(·) and B++

p(·)

Definition 5.1. Let p(·) ∈ P±(B) and let w be a weight. We say that w is in the B+
p(·) class if

[w]B+
p(·)

:= sup
B∈B

1

µα(B)pB
∥wχB∥1∥w−1χB∥ p′(·)

p(·)
< ∞,

where

pB =

(
1

µα(B)

∫
B

1

p(x)
dµα(x)

)−1

.
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This class coincides with the Bp class when p(·) = p (p constant). We also adopt the following
notation:

⟨p⟩B =
1

µα(B)

∫
B

p(x)dµα(x).

Remark 5.2. Let p(·) ∈ P log(B) and let B be a pseudo-ball of B. As p−(B) ≤ pB , ⟨p⟩B ≤ p+(B), it
follows from Lemma 2.10 and Corollary 2.11 that

µα(B)p−(B) ≃ µα(B)pB ≃ µα(B)pB ≃ µα(B)⟨p⟩B ≃ µα(B)p+(B).

Lemma 5.3 ([11, Theorem 4.5.7]). Let p(·) ∈ P log(B) be such that p− > 0. Let B be a pseudo-ball
of B. Then

∥χB∥p(·) ≃ µα(B)
1

pB .

Proof. From Lemma 3.2, we have

min
(
µα(B)

1
p−(B) , µα(B)

1
p+(B)

)
≤ ∥χB∥p(·) ≤ max

(
µα(B)

1
p−(B) , µα(B)

1
p+(B)

)
.

Next, from Remark 5.2, we have µα(B)
1

p−(B) ≃ µα(B)
1

p+(B) ≃ µα(B)
1

pB because p(·) is bounded away
from zero. The conclusion follows. □

Lemma 5.4. Let p(·) ∈ P log
± (B) and let q be a constant exponent greater than p+ + 1. There exists a

positive constant C depending only on the log-Hölder constant of p(·) such that

[w]Bq
≤ C[w]B+

p(·)
.

Proof. As p(·) < p+ + 1 < q, we have q′

q < p′(·)
p(·) . Hence from the Hölder inequality (assertion 2 of

Proposition 2.7), we obtain

∥w−1χB∥ q′
q

≤ K∥χB∥β(·)∥w−1χB∥ p′(·)
p(·)

,

where
1

β(·)
=

q

q′
− p(·)

p′(·)
= q − p(·) > 1.

It is easy to check that β(·) is a member of P log(B) such that β− > 0. Consequently, from Lemma 5.3
and Remark 5.2, we have

∥χB∥β(·) ≃ µα(B)
1

βB ≃ µα(B)q−⟨p⟩B ≃ µα(B)q−pB .

Thus there exists a positive constant C such that

1
µα(B)q ∥wχB∥1∥w−1χB∥ q′

q

≤ C 1
µα(B)q ∥wχB∥1∥w−1χB∥ p′(·)

p(·)
µα(B)q−pB

= C 1
µα(B)pB ∥wχB∥1∥w−1χB∥ p′(·)

p(·)
≤ C[w]B+

p(·)

for all pseudo-balls B ∈ B. The conclusion follows. □

We recall the following

Definition 5.5. The weight class B∞ is defined by B∞ =
⋃

q∈(1,∞)

Bq.

Remark 5.6. It follows from Lemma 5.4 that if p(·) ∈ P log
± (B), we have

B+
p(·) ⊂ B∞.

In the rest of this article, to simplify the notation, we denote w(B) = ∥wχB∥1.
We next define another class of weights Λ, which contains the class B∞. For a reference, cf., e.g., [1].
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Definition 5.7. We call Λ the class consisting of those integrable weights w satisfying the following
property. There exist two positive constants C and δ such that the following inequality

µα(E)

µα(B)
≤ C

(w(E)

w(B)

)δ
(5.1)

holds whenever B ∈ B and E is a measurable subset of B.

Remark 5.8.

1. For w ∈ Λ, the weighted measure wdµα is doubling in the following sense. There exists a

positive constant C such that for every pseudo-ball B of B whose pseudo-ball B̃ of the same
centre and of double radius is a member of B, we have

w
(
B̃
)
≤ Cw(B).

This result easily follows from the definition of Λ.
2. We recall that w(B) > 0. For w ∈ Λ, this implies that w(B) > 0 for every pseudo-ball B of B.

Indeed, take B for B and B for E in (5.1).

Lemma 5.9. Let p(·) ∈ P log(B) be such that p− > 0. Let w ∈ Λ. Then

∥χB∥p(·),w ≃ w(B)
1

p+(B) ≃ w(B)
1

p−(B) ≃ w(B)
1

p(x) ≃ w(B)
1

pB

for all pseudo-balls B of B such that w(B) > 0 and for all x ∈ B.

Proof. Take B for B and B for E in Definition 5.7. We have(
C−1µα(B)

µα(B)

) 1
δ

w(B) ≤ w(B) ≤ w(B).

So,

w(B)p−(B)−p+(B) ≤ w(B)p−(B)−p+(B) ≲ µα(B)
1
δ (p−(B)−p+(B))w(B)p−(B)−p+(B).

It is easy to check that

min(1, w(B)p−−p+) ≤ w(B)p−(B)−p+(B) ≤ max(1, w(B)p−−p+).

Next, combining with Lemma 2.10 gives

min(1, w(B)p−−p+) ≤ w(B)p−(B)−p+(B) ≲ Cδ max(1, w(B)p−−p+).

Thus we have proved the estimates w(B)
1

p+(B) ≃ w(B)
1

p−(B) ≃ w(B)
1

p(x) ≃ w(B)
1

pB for all x ∈ B.
On the other hand, from Lemma 3.2, we have

min
(
w(B)

1
p−(B) , w(B)

1
p+(B)

)
≤ ∥χB∥p(·),w ≤ max

(
w(B)

1
p−(B) , w(B)

1
p+(B)

)
.

Hence

∥χB∥p(·),w ≃ w(B)
1

p−(B) ≃ w(B)
1

p+(B) . □

We recall again the notation w′(y) = w(y)1−p′(y).

Lemma 5.10. Let p(·) ∈ P log
± (B) and w ∈ B+

p(·). Then

∥w−1χB∥ p′(·)
p(·)

≃
(
ρ p′(·)

p(·)
(w−1χB)

)pB−1

= w′(B)pB−1. (5.2)

Proof. Let w ∈ B+
p(·) and B ∈ B. By the definition, we have

1

µα(B)pB
w(B)∥w−1χB∥ p′(·)

p(·)
≤ [w]B+

p(·)
. (5.3)

On the other hand, by the Hölder inequality (Proposition 2.7, assertion 1) and Lemma 5.9, we have

µα(B) =

∫
B

w(y)
1

p(y)w(y)−
1

p(y) dµα(y) ≤ 2∥w
1

p(·)χB∥p(·)∥w− 1
p(·)χB∥p′(·) ≃ w(B)

1
pB ∥w− 1

p(·)χB∥p′(·).
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Hence ∥∥∥∥w(B)
1

pB

µα(B)
w− 1

p(·)χB

∥∥∥∥
p′(·)

≳ 1. (5.4)

Consequently, from (5.4), Lemma 3.2, Lemma 5.9 and Corollary 2.11, we have:

1 ≲ ρp′(·)

(
w(B)

1
pB

µα(B)
w− 1

p(·)χB

)
=

∫
B

(
w(B)

1
pB

µα(B)

)p′(y)

w(y)−
p′(y)
p(y) dµα(y)

≃
∫
B

(
w(B)

µα(B)pB

) p′(y)
p(y)

w(y)−
p′(y)
p(y) dµα(y)

= ρ p′(·)
p(·)

(
w(B)

µα(B)pB
w−1χB

)
.

So, by Lemma 3.2, we have ∥∥∥∥ w(B)

µα(B)pB
w−1χB

∥∥∥∥
p′(·)
p(·)

≳ 1. (5.5)

Thus from (5.3) and (5.5), we have

∥w−1χB∥ p′(·)
p(·)

≃ µα(B)pB

w(B)
. (5.6)

Furthermore, from Remark 5.2 and as p(·) ∈ P±, we have the equivalences

µα(B)p+(B) ≃ µα(B)p−(B) ⇐⇒ µα(B)
1

p−(B)−1 ≃ µα(B)
1

p+(B)−1

⇐⇒ µα(B)
pB

p−(B)−1 ≃ µα(B)
pB

p+(B)−1 ,

from which we deduce that

µα(B)
pB

p+(B)−1 ≃ µα(B)
pB

p−(B)−1 ≃ µα(B)
pB

pB−1 ,

since p−(B) ≤ pB ≤ p+(B). Similarly, by Lemma 5.9, we deduce from the estimate

w(B)pB ≃ w(B)p+(B) ≃ w(B)p−(B)

that

w(B)
1

p−(B)−1 ≃ w(B)
1

p+(B)−1 ≃ w(B)
1

pB−1 .

So, from (5.6), we have

∥w−1χB∥
1

p+(B)−1

p′(·)
p(·)

≃ ∥w−1χB∥
1

p−(B)−1

p′(·)
p(·)

≃ ∥w−1χB∥
1

pB−1

p′(·)
p(·)

.

Since ρ p′(·)
p(·)

(
w−1χB

)
= w′(B), combining with Lemma 3.2 where p′(·)

p(·) replaces p(·), we obtain the

required result. □

Proposition 5.11. Let p(·) ∈ P log
± (B) and w ∈ B+

p(·). Then w′ ∈ B+
p′(·) and(

1

µα(B)p
′
B

∥w′χB∥1∥w′−1χB∥ p(·)
p′(·)

)pB−1

≃ 1

µα(B)pB
∥wχB∥1∥w−1χB∥ p′(·)

p(·)
≃ w(B)

µα(B)

(
w′(B)

µα(B)

)pB−1

for all pseudo-balls B ∈ B.
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Proof. We recall that w ∈ Λ by Remark 5.6. Hence, from Lemma 5.9 used with p(·)
p′(·) replacing p(·),

equation (5.2) and the property w ∈ B+
p(·), we obtain

1

µα(B)p
′
B

w′(B)∥w′−1χB∥ p(·)
p′(·)

=
1

µα(B)p
′
B

w′(B)∥χB∥ p(·)
p′(·) ,w

≃ 1

µα(B)p
′
B

w′(B)w(B)
1

pB−1

=

(
w(B)

µα(B)pB
w′(B)pB−1

) 1
pB−1

(5.7)

≃
(

w(B)

µα(B)pB
∥w−1χB∥ p′(·)

p(·)

) 1
pB−1

(5.8)

≤ [w]
1

pB−1

B+
p(·)

.

Hence w′ ∈ B+
p′(·) and from (5.7) and (5.8), we deduce that

w(B)

µα(B)pB
∥w−1χB∥ p′(·)

p(·)
≃ w(B)

µα(B)

(
w′(B)

µα(B)

)pB−1

. □

Definition 5.12. Let p(·) ∈ P±(B) and let w be a weight. We say that w is in the B++
p(·) class if

[w]B++
p(·)

:= sup
B∈B

w(B)

µα(B)

(
w′(B)

µα(B)

)pB−1

< ∞.

It is easy to check the following Proposition.

Proposition 5.13. Let p(·) ∈ P±(B). The following two assertions are equivalent:

1. w ∈ B++
p(·);

2. w′ ∈ B++
p′(·).

Lemma 5.14. Let p(·) ∈ P log
± (B) and w ∈ B++

p(·). Then for all pseudo-balls B of B,

∥χB∥p(·),w ≃ w(B)
1

p+(B) ≃ w(B)
1

p−(B) ≃ w(B)
1

pB .

Proof. Since w ∈ B++
p(·), we have w′(B) < ∞ and it follows from Lemma 3.2 that ∥χB∥p′(·),w′ < ∞.

Hence, by the Hölder inequality, we obtain

µα(B) ≤ 2∥χB∥p(·),w∥χB∥p′(·),w′

≤ 2∥χB∥p(·),w∥χB∥p′(·),w′ .

Therefore, from Lemma 2.10, we get

∥χB∥p−(B)−p+(B)
p(·),w ≲ µα(B)p−(B)−p+(B)∥χB∥p+(B)−p−(B)

p′(·),w′

≲ max
(
1, ∥χB∥p+−p−

p′(·),w′

)
. (5.9)

On the other hand, using again w ∈ B++
p(·), we have w(B) < ∞ and hence ∥χB∥p(·),w < ∞. Then

∥χB∥p+(B)−p−(B)
p(·),w ≤ ∥χB∥p+(B)−p−(B)

p(·),w ≤ max
(
1, ∥χB∥p+−p−

p(·),w

)
. (5.10)

Thus from (5.9) and (5.10), we have

∥χB∥p+(B)
p(·),w ≃ ∥χB∥p−(B)

p(·),w ,

and from Lemma 3.2, we conclude the proof. □

Lemma 5.15. Let p(·) ∈ P log
± (B). Then B++

p(·) ⊂ Λ.
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Proof. Let w ∈ B++
p(·). Let B ∈ B and E be a measurable subset of B. By the Hölder inequality and

from Lemma 3.2, we have

µα(E) ≤ 2∥χE∥p(·),w∥χE∥p′(·),w′

≤ 2∥χE∥p(·),w∥χB∥p′(·),w′

≤ 2max
(
w(E)

1
p+(B) , w(E)

1
p−(B)

)
∥χB∥p′(·),w′ .

However, since w′ ∈ B++
p′(·) by Proposition 5.13, from Lemma 5.14, we have

∥χB∥p′(·),w′ ≃ w′(B)
1

p′
+

(B) ≃ w′(B)
1

p′−(B) ≃ w′(B)
1

p′
B .

Hence, using w ∈ B++
p(·), we deduce that

µα(E) ≲ max
(
w(E)

1
p+(B)w′(B)

1
p′
+

(B) , w(E)
1

p−(B)w′(B)
1

p′−(B)

)
≤ max

(
[w]

1
p+(B)

B++
p(·)

, [w]
1

p−(B)

B++
p(·)

)
max

((
w(E)

w(B)

) 1
p+(B)

,

(
w(E)

w(B)

) 1
p−(B)

)
µα(B)

≤ max
(
[w]

1
p+

B++
p(·)

, [w]
1

p−

B++
p(·)

)(w(E)

w(B)

) 1
p+(B)

µα(B)

≤ max
(
[w]

1
p+

B++
p(·)

, [w]
1

p−

B++
p(·)

)(w(E)

w(B)

) 1
p+

µα(B).

Therefore

µα(E)

µα(B)
≲

(
w(E)

w(B)

) 1
p+

. □

Proposition 5.16. Let p(·) ∈ P log
± (B). Then B+

p(·) = B++
p(·).

Proof. For the inclusion B+
p(·) ⊂ B++

p(·), apply Proposition 5.11. For the reverse inclusion, apply

Lemma 5.15 and Lemma 5.9. □

Remark 5.17. From Proposition 5.11, Remark 5.6 and Lemma 5.9, we have the inclusionB+
p(·) ⊂ Bp(·)

for p(·) ∈ P log
± (B).

Now, we prove the reverse inclusion. In this direction, we first state the following result.

Lemma 5.18. Let p(·) ∈ P log
± (B) and w ∈ Bp(·). Then there exists a constant C > 1,

1

C
≤ ∥χB∥p−(B)−p+(B)

p(·),w ≤ C

for all B ∈ B.

Proof. By the Hölder inequality, we have

µα(B) ≤ 2∥χB∥p(·),w∥χB∥p′(·),w′

and as w ∈ Bp(·), from Lemma 2.10 and according to the estimate ∥χB∥p′(·),w′ < ∞ given by Re-
mark 3.3, we have

∥χB∥p−(B)−p+(B)
p(·),w ≲ µα(B)p−(B)−p+(B)∥χB∥p+(B)−p−(B)

p′(·),w′

≃ ∥χB∥p+(B)−p−(B)
p′(·),w′

≲ max
(
1, ∥χB∥p+−p−

p′(·),w′

)
.

On the other hand, according to the estimate ∥χB∥p(·),w < ∞ given by Remark 3.3, we have

∥χB∥p+(B)−p−(B)
p(·),w ≤ max(1, ∥χB∥p+−p−

p(·),w ). □
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From Lemma 3.2 and Lemma 5.18, we deduce the following

Corollary 5.19. Let p(·) ∈ P log
± (B) and w ∈ Bp(·). Then

∥χB∥p(·),w ≃ w(B)
1

p+(B) ≃ w(B)
1

p−(B) ≃ w(B)
1

pB ,

for all B ∈ B.

We next state the following

Theorem 5.20. Let p(·) ∈ P log
± (B). Then Bp(·) = B+

p(·) = B++
p(·).

Proof. From Remark 5.17, we have B+
p(·) ⊂ Bp(·). Let w ∈ Bp(·). By Proposition 3.4, w′ ∈ Bp′(·). It

follows from Corollary 5.19 that

w(B)

µα(B)

(
w′(B)

µα(B)

)pB−1

≃
(

1

µα(B)
∥χB∥p(·),w∥χB∥p′(·),w′

)pB

≤ max
(
1, [w]

p+

Bp(·)

)
. □

To end this section, we record with the same proof the following analogous theorem for the variable
Muckenhoupt weight classes.

Theorem 5.21. Let w be a weight and let p(·) ∈ P log
± (B). The following three assertions are equiva-

lent:

1. w ∈ Ap(·);

2. sup
B

1
µα(B)pB ∥wχB∥1∥w−1χB∥ p′(·)

p(·)
< ∞, where the sup is taken over all pseudo-balls of B;

3. sup
B

w(B)
µα(B)

(
w′(B)
µα(B)

)pB−1

< ∞, where the sup is taken over all pseudo-balls of B.

6. Proof of the Necessary Condition in Theorem 1.6

The aim of this section is to prove the following result.

Proposition 6.1. Let w be a weight and let p(·) ∈ P log
± (B). If the Bergman projector is bounded on

Lp(·)(wdµα), then w ∈ Bp(·).

Proof. According to Theorem 5.20, it suffices to prove that w ∈ B++
p(·), i.e., the following estimate

sup
B∈B

w(B)

µα(B)

(
w′(B)

µα(B)

)pB−1

< ∞ (6.1)

holds. From Proposition 4.1, we have w− 1
p(·) ∈ Lp′(·)(dµα) and from Proposition 4.2, we have w

1
p(·) ∈

Lp(·)(dµα). In particular, w(B) < ∞ and w′(B) < ∞. Thus we just have to show the estimate (6.1)
for the pseudo-balls of radius smaller than a positive constant R0, because if the radius of B is larger,
then B can be identified with B. We use the following

Lemma 6.2 ([2]). There exist three positive numbers R0, c and Cα such that the following holds. For
every pseudo-ball B1 ∈ B of radius R < R0, there exists a pseudo-ball B2 ∈ B of the same radius such
that d(B1, B2) = cR, that satisfies the following property: for every non-negative measurable function
f supported in Bi and for two distinct superscripts i, j ∈ {1, 2}, we have

|Pαf | ≥ CαχBjµα(B
i)−1

∫
Bi

fdµα. (6.2)

Thus, by taking f = χBi in (6.2), we obtain

|PαχBi(z)| ≥ χBj (z)Cαµα(B
i)−1

∫
Bi

χBidµα ≃ χBj (z).

Using the growth of the norm ∥ · ∥p(·),w, we obtain

∥PαχBi∥p(·),w = ∥w
1

p(·)PαχBi∥p(·) ≳ ∥χBjw
1

p(·) ∥p(·).
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So, using the fact that Pα is bounded on Lp(·)(wdµα), we obtain

∥χBjw
1

p(·) ∥p(·) ≲ ∥Pα∥∥χBi∥p(·),w.

We then deduce that

∥χB1w
1

p(·) ∥p(·) ≃ ∥χB2w
1

p(·) ∥p(·). (6.3)

In the rest of the proof, we shall take f = w′χB1 . We have f ∈ Lp(·)(wdµα) since

ρp(·),w(f) =

∫
B

w(z)−p′(z)χB1(z)w(z)dµα(z) = ρp′(·)(w
− 1

p(·)χB1) < ∞

by Proposition 4.1. However, ρp(·),w(f) =
∫
B1 w

′dµα = w′(B1). Also, from (6.2) and the previous
equality, we have

χB2(z)w′(B1) ≤ C−1
α µα(B

1)|Pαf(z)|.
Moving to the norm ∥ · ∥p(·),w, we obtain

∥w
1

p(·)χB2∥p(·)w′(B1) ≤ C−1
α µα(B

1)∥Pαf∥p(·),w.

Then using the boundedness of Pα on Lp(·)(wdµα), the previous inequality implies

∥w
1

p(·)χB2∥p(·)w′(B1) ≤ C−1
α µα(B

1)∥Pα∥∥f∥p(·),w
and combining with (6.3), we obtain the following

Lemma 6.3 (Main Lemma). Suppose that Pα is bounded on Lp(·)(wdµα). Then

∥w
1

p(·)χB∥p(·)w′(B) ≤ CC−1
α µα(B)∥Pα∥∥w′χB∥p(·),w (6.4)

for every pseudo-ball B ∈ B of radius smaller than R0. The absolute constants R0, C and Cα were
respectively defined in Lemma 6.2, (6.3) and (6.2).

At this level, we need to calculate ∥w
1

p(·)χB∥p(·) and ∥w′χB∥p(·),w. This calculation is not as obvious
as in the case where p(·) is constant.

Lemma 6.4. Let p(·) ∈ P(B). If Pα is bounded on Lp(·)(w), then Pα is bounded on Lp′(·)(w′).

Proof. We first recall that the weighted Bergman projector Pα is the orthogonal projector from the
(Hilbert)–Lebesgue space L2(dµα) to its closed subspace L2(dµα) ∩ Hol(B) (the standard weighted
Bergman space). We call Cc(B) the space of continuous functions with a compact support in B. By
Proposition 2.6, Cc(B) is a dense subspace of Lp(·)(w) and Lp′(·)(w′). From Proposition 3.1 and the
boundedness of Pα on Lp(·)(w), for all f ∈ Cc(B), we have

∥Pαf∥p′(·),w′ = sup
g∈Cc(B):∥g∥p(·),w=1

∣∣∣∣ ∫
B

Pαf(ζ)g(ζ)dµα(ζ)

∣∣∣∣
= sup

g∈Cc(B):∥g∥p(·),w=1

∣∣∣∣ ∫
B

f(ζ)Pαg(ζ)dµα(ζ)

∣∣∣∣
≤ 2 sup

g∈Cc(B):∥g∥p(·),w=1

∥f∥p′(·),w′∥Pαg∥p(·),w

≤ 2 ∥Pα∥ ∥f∥p′(·),w′ .

We have used the elementary fact that Cc(B) is contained in L2(dµα). For the last but one inequality,
we have used the Hölder inequality. □

Lemma 6.5. Let p(·) ∈ P(B) and let w be a weight. If Pα is bounded on Lp(·)(w), then for all t > 0,

∥tχ{|Pαf |>t}∥p(·),w ≤ ∥Pα∥ ∥f∥p(·),w.

Proof. It suffices to remark that for all t > 0, tχ{|Pαf |>t} ≤ |Pαf |. □
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Lemma 6.6. Let p(·) ∈ P log
± (B) and w be a weight. If Pα is bounded on Lp(·)(w), then

∥χB∥p(·),w ≃ w(B)
1

p+(B) ≃ w(B)
1

p−(B)

for all pseudo-balls B of B.

Proof. If ∥χB∥p(·),w ≥ 1, then ∥χB∥p−−p+

p(·),w ≤ ∥χB∥p−−p+

p(·),w ≤ ∥χB∥p−(B)−p+(B)
p(·),w ≤ 1. So,

∥χB∥p−(B)−p+(B)
p(·),w ≃ 1. (6.5)

Otherwise, if ∥χB∥p(·),w < 1, then by the Hölder inequality, we have

µα(B) ≤ 2∥χB∥p(·),w∥χB∥p′(·),w′

≤ 2∥χB∥p(·),w∥χB∥p′(·),w′. (6.6)

Hence from (6.6) and Lemma 2.10, we have

∥χB∥p−(B)−p+(B)
p(·),w ≤ 2p+−p−µα(B)p−(B)−p+(B)∥χB∥p+(B)−p−(B)

p′(·),w′

≲ max
(
1, ∥χB∥p+−p−

p′(·),w′

)
. (6.7)

We point out that ∥χB∥p′(·),w′ < ∞ according to Proposition 4.1, since Pα is bounded on Lp(·)(w). On

the other hand, using again the boundedness of Pα on Lp(·)(w), we have the estimate ∥χB∥p(·),w < ∞
according to Proposition 4.2. Then

∥χB∥p+(B)−p−(B)
p(·),w ≲ max

(
1, ∥χB∥p+−p−

p(·),w

)
< ∞. (6.8)

Thus, from (6.5), (6.7) and (6.8), we deduce that

∥χB∥p+(B)
p(·),w ≃ ∥χB∥p−(B)

p(·),w

for all pseudo-balls of B. Applying Lemma 3.2 gives

∥χB∥p(·),w ≃ w(B)
1

p+(B) ≃ w(B)
1

p−(B) . □

End of the proof of Proposition 6.1. We go back to the Main Lemma (Lemma 6.3). On the one hand,

since Pα is bounded on Lp(·)(w), it follows from Lemma 6.4 that Pα is also bounded on Lp′(·)(w′). So,
from Lemma 6.6 with p′(·) in the place of p(·) and w′ in the place of w, we have

∥χB∥p′(·),w′ ≃ w′(B)
1− 1

p−(B) ≃ w′(B)
1− 1

p+(B) .

This implies the estimate w′(B)
1

p−(B) ≃ w′(B)
1

p+(B) . It then follows from Lemma 6.3 that

∥w′χB∥p(·),w ≃ w′(B)
1

pB .

On the other hand, ∥w
1

p(·)χB∥p(·) = ∥χB∥p(·),w ≃ w(B)
1

pB by Lemma 6.6. Inequality (6.4) of the
Main Lemma takes the following form:

w(B)
1

pB w′(B) ≲ µα(B)w′(B)
1

pB .

Equivalently,

sup
B∈B

w(B)

µα(B)

(
w′(B)

µα(B)

)pB−1

< ∞.

We have shown the estimate (6.1). This finishes the proof of Proposition 6.1. □
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7. Boundedness on Lp(·)(w) of the Maximal Function mα

In this section, we prove the boundedness of the maximal function mα on Lp(·)(w) when w ∈ Bp(·).
As in [2], we use the regularisation operator that we recall here with some of its properties.

Definition 7.1. For all k ∈ (0, 1), we define the regularisation operator Rα
k of order k by

Rα
k f(z) =

1

µα(Bk(z))

∫
Bk(z)

f(w)dµα(w),

where Bk(z) = {ζ ∈ B : d(z, ζ) < k(1− |z|)}.

Proposition 7.2. For all k ∈ (0, 1), there exists a constant Ck > 1 such that for every non-negative
locally integrable function f, the following two estimates

1) mαf ≤ CkmαR
α
k f ;

2) C−1
k mαg ≤ Rα

kmαg ≤ Ckmαg

hold.

Lemma 7.3. Let k ∈ (0, 1
2 ). If z′ ∈ Bk(z), then z ∈ Bk′

(z′), where k′ = k
1−k , and χBk(z)(z

′) ≤
χBk′ (z′)(z). Moreover, there exists a constant Ck > 1 such that

C−1
k µα(B

k(z)) ≤ µα(B
k′
(z′)) ≤ Ckµα(B

k(z)).

Lemma 7.4. Let k ∈
(
0, 1

5

)
and p(·) ∈ P log

± (B). For w ∈ Bp(·), there exists a constant Ck > 1 such

that for all z, z′ ∈ B such that z′ ∈ Bk(z), we have

C−1
k w(Bk(z)) ≤ w(Bk′

(z′)) ≤ Ckw(B
k(z)).

Proof. We have Bk(z) ⊂ B2k′
(z′) and Bk′

(z′) ⊂ B6k(z). From Theorem 5.20 and Remark 5.6, we
have w ∈ Λ. Apply Remark 5.8 to conclude. □

Lemma 7.5. Let k ∈ (0, 1
2 ). There exists a positive constant Ck such that for all non-negative locally

integrable f, g, we have ∫
B

f(ζ)Rkg(ζ)dµα(ζ) ≤ Ck

∫
B

g(z)Rkf(z)dµα(z).

We also recall the following elementary

Lemma 7.6. Let z0 ∈ B and r > 1 − |z0|. For z ∈ B (z0, r) and ζ ∈ Bk(z), we have ζ ∈ B(z0, ar)
with a = 2(2k + 1)r.

In the rest of this section, to simplify the notation, we write σ = Rα
kw. The following result is a

generalisation to the variable exponent of the analogous result in [2, Lemma 10].

Proposition 7.7. Let p(·) ∈ P log
± (B), k ∈ (0, 1

2 ) and w ∈ Bp(·). Then Rα
kw ∈ Ap(·) with [Rα

kw]Ap(·) ≲
[w]Bp(·) .

Proof. From Theorem 5.21, it suffices to show that

σ(B)

µα(B)

(
σ′(B)

µα(B)

)p(z0)−1

≲ [w]Bp(·)

for every pseudo-ball B of B.
We write a = 2k+1. Let B = B(z0, r) be a pseudo-ball in B. We set B′ = B(z0, ar). We distinguish

two cases: 1. B ∈ B; 2. B is not a member of B.
1. Suppose first that B ∈ B. We claim that there exists a positive absolute constant Ck such that

σ(B)

µα(B)
≤ Ck

w(B′)

µα(B′)
. (7.1)
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Indeed, from the Fubini-Tonelli theorem and Lemma 7.3, we have

σ(B) =

∫
B

σ(z)dµα(z)

=

∫
B

(
1

µα(Bk(z))

∫
Bk(z)

w(ζ)dµα(ζ)

)
dµα(z)

=

∫
B

(∫
B

χBk(z)(ζ)χB(z)

µα(Bk(z))
dµα(z)

)
w(ζ)dµα(ζ)

≲
∫
B

(∫
B

χBk′ (ζ)(z)χB′(ζ)

µα(Bk′(ζ))
dµα(z)

)
w(ζ)dµα(ζ)

= w(B′).

For the latter inequality, we have used Lemma 7.6. Moreover, since B ⊂ B′ and µα(B) ≃ µα(B
′), we

obtain
σ(B)

µα(B)
≲

σ(B′)

µα(B′)
.

Furthermore, from the Hölder inequality and Lemma 5.9, we have

σ−1(z) =
µα(B

k(z))

w(Bk(z))

≤ 2

w(Bk(z))
∥w

1
p(·)χBk(z)∥p(·)∥w

− 1
p(·)χBk(z)∥p′(·)

≃ 1

w(Bk(z))
w(Bk(z))

1
p(z)w′(Bk(z))

1
p′(z)

=

(
w′(Bk(z))

w(Bk(z))

) 1
p′(z)

.

Hence

σ′(z) =
(
σ−1

)p′(z)−1
(z) ≲

(
w′(Bk(z))

w(Bk(z))

) 1
p(z)

.

From the Hölder inequality and Lemma 5.9, we have

σ′(B) =

∫
B

σ′(z)dµα(z)

≲
∫
B

(
w′(Bk(z))

w(Bk(z))
w(z)

) 1
p(z)

w(z)−
1

p(z) dµα(z)

≤ 2∥w− 1
p(·)χB∥p′(·)∥

(
w′(Bk(.))

w(Bk(.))
w(.)

) 1
p(.)

χB∥p(·)

≲ w′(B)
1

p′(z0) ∥
(
w′(Bk(.))

w(Bk(.))
w(.)

) 1
p(.)

χB∥p(·) (7.2)

Since w′ ∈ Λ, from Lemma 5.9, we have β := ∥w′ 1
p(·)χB′∥p(·) ≃ w′(B′)

1
p(z0) . Thus as B ⊂ B′, from

Lemma 7.3 and Lemma 7.4, we have

ρp(.)

(
1

β

(
w′(Bk(.))

w(Bk(.))
w

) 1
p(.)

χB

)
=

∫
B

1

βp(z)

w′(Bk(z))

w(Bk(z))
w(z)χB(z)dµα(z)
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≃
∫
B

1

w′(B′)

w′(Bk(z))

w(Bk(z))
w(z)χB(z)dµα(z)

= w′(B′)−1 ×
∫
B

(
1

w(Bk(z))

∫
B

w′(ζ)χBk(z)(ζ)χB(z)w(z)dµα(ζ)

)
dµα(z)

≤ Ckw
′(B′)−1 ×

∫
B

(
1

w(Bk′(ζ))

∫
B

χBk′ (ζ)(z)χB′(ζ)w(z)dµα(z)

)
w′(ζ)dµα(ζ)

= Ck.

For the latter inequality, we have used Lemma 7.6. Hence we obtain∥∥∥∥(w′(Bk(.))

w(Bk(.))
w

) 1
p(.)

χB

∥∥∥∥
p(·)

≲ Ckw
′(B′)

1
p(z0) .

Consequently, we deduce from (7.2) that

σ′(B) ≲ Ckw
′(B)

1
p′(z0)w′(B′)

1
p(z0) ≤ Ckw

′(B′)

because B ⊂ B′. Moreover, as µα(B) ≃ µα(B
′), we have

σ′(B)

µα(B)
≤ Ck

w′(B′)

µα(B′)

and hence (
σ′(B)

µα(B)

)p(z0)−1

≤ C ′
k

(
w′(B′)

µα(B′)

)p(z0)−1

. (7.3)

Combining (7.1) and (7.3) gives

σ(B)

µα(B)

(
σ′(B)

µα(B)

)p(z0)−1

≤ γk
w(B′)

µα(B′)

(
w′(B′)

µα(B′)

)p(z0)−1

≤ γk[w]Bp(·) (7.4)

by Theorem 5.20.
2. Suppose next that the pseudo-ball B is not a member of B, i.e., r ≤ 1− |z0|. In the case, where

k(1−|z0|) ≤ r ≤ 1−|z0|, we have B ⊂ B(z0, 1−|z0|) and µα(B) ≃ (1−|z0|)n+α ≃ µα(B(z0, 1−|z0|)).
The pseudo-ball B(z0, 1− |z0|) is a member of B; so, we can apply to it the computations of the first
case. We obtain

σ(B)

µα(B)

(
σ′(B)

µα(B)

)p(z0)−1

≲
σ(B(z0, 1− |z0|))
µα(B(z0, 1− |z0|))

(
σ′(B(z0, 1− |z0|))
µα(B(z0, 1− |z0|))

)p(z0)−1

≲ [w]Bp(·) .

Next, if 0 < r < k(1− |z0|), then for z ∈ B, we have (1− k)(1− |z0|) ≤ 1− |z| ≤ (1 + k)(1− |z0|).
This shows that µα(B

k(z0)) ≃ µα(B
k(z)). We also claim that w(Bk(z0)) ≃ w(Bk(z)). Indeed, it is

easy to show the inclusions Bk(z0) ⊂ B(z, 4k(1−|z|)) and Bk(z) ⊂ B(z0, 2k(2+k)(1−|z0|)). Then the
claim follows with application of Remark 5.8. Combining with the estimate µα(B

k(z0)) ≃ µα(B
k(z))

gives

σ(z) ≃ σ(z0) (7.5)

for every z ∈ B. Now, by Remark 2.8, p′(·) is a member of P log
± (B). Then by Lemma 5.9 and

Corollary 2.11, we have

σ(z0)
1−p′(z0) ≃ σ(z)1−p′(z0) ≃ σ(z)1−p′(z).

Combining with (7.5) gives

σ(B)

µα(B)

(
σ′(B)

µα(B)

)p(z0)−1

≃ 1. (7.6)

The conclusion of the lemma follows after a combination of (7.4) and (7.6) with Theorem 5.20. □
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Lemma 7.8. Let p(·) ∈ P log
± (B), k ∈ (0, 1

2 ) and w ∈ Bp(·). Then

(Rα
k g(z))

p(z) ≲ Rα
k (g

p(·))(z) + 1

for all non-negative functions g such that ∥g∥p(·),w = 1 and all z ∈ B.

Proof. As ∥g∥p(·),w = 1, from the Hölder inequality (assertion 1 of Proposition 2.7), we have

1

2∥χBk(z)∥p′(·),w′

∫
Bk(z)

g(ζ)dµα(ζ) ≤ ∥gχBk(z)∥p(·),w = 1.

Therefore from the usual Hölder inequality and Lemma 2.10, we obtain

(Rα
k g(z))

p(z) =

(
1

2∥χBk(z)∥p′(·),w′

∫
Bk(z)

g(ζ)dµα(ζ)

)p(z)

µα(B
k(z))−p(z)2p(z)∥χBk(z)∥

p(z)
p′(·),w′

≤ 2p(z)
(

1

2∥χBk(z)∥p′(·),w′

∫
Bk(z)

g(ζ)dµα(ζ)

)p−(B)

µα(B
k(z))−p(z)∥χBk(z)∥

p(z)
p′(·),w′

≲

(
1

µα(Bk(z))

∫
Bk(z)

g(ζ)dµα(ζ)

)p−(B)

µα(B
k(z))p−(B)−p(z)∥χBk(z)∥

p(z)−p−(B)
p′(·),w′

≤ µα(B
k(z))p−(B)−p(z)∥χBk(z)∥

p(z)−p−(B)
p′(·),w′

1

µα(Bk(z))

∫
Bk(z)

g(ζ)p−(B)dµα(ζ)

≲
1

µα(Bk(z))

∫
Bk(z)

gχg≥1(ζ)
p−(B)dµα(ζ) + 1

≲ Rα
k g

p(·)(z) + 1.

For the last but one inequality, we also used the following inequality:

∥χBk(z)∥
p(z)−p−(B)
p′(·),w′ ≤ max(1, ∥χB∥p+−p−

p′(·),w′). □

Lemma 7.9. Let p(·) ∈ P log
± (B), k ∈ (0, 1

2 ) and w ∈ Bp(·). Then

∥Rα
k g · w

1
p(·) ∥p(·) ≲ ∥g · (Rα

kw)
1

p(·) ∥p(·)

for all non-negative functions g belonging to Lp(·)(Rα
kwdµα).

Proof. From Proposition 7.7, we have σ = Rα
kw ∈ Ap(·) ⊂ Bp(·) because w ∈ Bp(·). Without loss of

generality, we assume that ∥g∥p(·),σ = 1. Thus from Lemma 7.8 and Lemma 7.5, we have

ρp(·)(R
α
k g · w

1
p(·) ) =

∫
B

(Rα
k g(z))

p(z)w(z)dµα(z)

≲
∫
B

Rα
k (g

p(·))(z)w(z)dµα(z) + w(B)

≲
∫
B

g(z)p(z)σ(z)dµα(z) + w(B)

≲ 1 + w(B).

For the last inequality, apply Lemma 3.2. □

We still use the notation σ = Rα
kw, with k ∈ (0, 1

2 ).
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Lemma 7.10. Let k ∈ (0, 1
2 ), p(·) ∈ P log

± (B) and w ∈ Bp(·). Then there exists a positive constant

C([w′]Bp′(·)) depending on [w′]Bp′(·) such that for every non-negative function g ∈ Lp′(·)(σ′), we have

∥Rα
k g∥p′(·),w′ ≤ C([w′]Bp′(·))∥g∥p′(·),σ′

for all non-negative functions g ∈ Lp′(·)(σ′).

Proof. Without loss of generality, we assume that ∥g∥p′(·),σ′ = 1. From Proposition 3.8 and Proposi-
tion 7.7, we have σ′ ∈ Ap′(·) ⊂ Bp′(·) because w ∈ Bp(·). Thus since ∥g∥p′(·),σ′ = 1, using Lemma 7.8
and Lemma 7.5, we have

ρp′(·),w′(Rα
k g) =

∫
B

(Rα
k g(z))

p′(z)w′(z)dµα(z)

≲
∫
B

Rα
k (g

p′(·))(z)w′(z)dµα(z) + w′(B)

≲
∫
B

g(z)p
′(z)Rα

kw
′(z)dµα(z) + w′(B)

=

∫
B

g(z)p
′(z)σ′(z)σ′(z)−1Rα

kw
′(z)dµα(z) + w′(B)

≤ [w′]Bp′(·)

∫
B

g(z)p
′(z)σ′(z)dµα(z) + w′(B)

≲ [w′]Bp′(·) + w′(B).

Indeed, the last inequality follows from Lemma 3.2; for the last but one inequality, using Theorem 5.20
and Lemma 5.9 for w′ in the place of w, we get

σ′(z)−1Rα
kw

′(z) = (Rα
kw(z))

p′(z)
p(z) Rα

kw
′(z) ≲ [w′]Bp′(·)

because Bk(z) is ’almost’ a member of B, as it is a subset of the member B(z, 1−|z|) of B, µα(B
k(z)) ≃

µα(B(z, 1− |z|)) and w′ ∈ Bp′(·). So, by Lemma 3.2, we get

∥Rα
k g∥p′(·),w′ ≲ C([w′]Bp′(·)). □

Lemma 7.11. Let p(·) ∈ P log
± (B), f non-negative in Lp(·)(w), k ∈

(
0, 1

2

)
and w ∈ Bp(·). Then

∥Rα
k f(R

α
kw)

1
p(·) ∥p(·) ≤ C([w′]Bp′(·))∥f∥p(·),w.

Proof. We still write σ = Rα
kw. By the duality (Proposition 3.1), there exists a non-negative function

g satisfying ∥g∥p′(·),σ′ = 1 and such that

∥Rα
k f∥p(·),σ ≤ 2

∫
B

g(z)Rα
k f(z)dµα(z).

Next, from Lemma 7.5, the Hölder inequality and Lemma 7.10, we obtain

∥Rα
k f∥p(·),σ ≲

∫
B

f(z)Rα
k g(z)dµα(z)

≤ 2∥f∥p(·),w∥Rα
k g∥p′(·),w′

≤ 2C([w′]Bp′(·))∥f∥p(·),w∥g∥p′(·),σ′

= 2C([w′]Bp′(·))∥f∥p(·),w.

Hence we have the result. □



WEIGHTED NORM INEQUALITIES IN THE VARIABLE LEBESGUE SPACES 67

Theorem 7.12. Let p(·) ∈ P log
± (B). If w ∈ Bp(·), there exists a non-negative function C defined on

(0,∞) such that for all f ∈ Lp(·)(w), we have

∥mαf∥p(·),w ≤ C([w]Bp(·))∥f∥p(·),w.

Proof. By Proposition 3.4, we have the equality [w]Bp(·) = [w′]Bp′(·) . So, from Lemma 7.11, we have

∥Rα
k f · (Rα

kw)
1

p(·) ∥p(·) ≤ C([w]Bp(·))∥f∥p(·),w. (7.7)

Hence Rα
k f ∈ Lp(·)(σ). Next, since σ ∈ Ap(·) by Proposition 7.7, Corollary 3.11 gives

∥mα(R
α
k f) · (Rα

kw)
1

p(·) ∥p(·) ≲ ∥(Rα
k f) · (Rα

kw)
1

p(·) ∥p(·). (7.8)

Hence from (7.7) and (7.8), we have mα(R
α
k f) ∈ Lp(·)(Rα

kwdµα). Now, Lemma 7.9 gives

∥Rα
k (mα(R

α
k f))w

1
p(·) ∥p(·) ≲ ∥mα(R

α
k f) · (Rα

kw)
1

p(·) ∥p(·).

Next, by Proposition 7.2, there exists a positive constant C such that

mαf ≤ CRα
k (mα(R

α
k f)).

This implies that

∥mαf∥p(·),w ≲ ∥mα(R
α
k f) · (Rα

kw)
1

p(·) ∥p(·).

Finally, applying (7.8) and (7.7) successively, we have the result. □

8. A Weighted Extrapolation Theorem and the Proof of the Sufficient Condition in
Theorem 1.6

We are now ready to prove the sufficient condition in Theorem 1.6, we adapt the strategy used
in [10].

8.1. Preliminary results. We recall the B1 class of weights. A weight w belongs to B1 if

[w]B1
:= ess sup

z∈B

mαw(z)

w(z)
< ∞.

In Rn, the analogue of the following factorisation theorem was proved for the Muckenhoupt classes
Ap, 1 < p < ∞, by Jones [13].

Theorem 8.1. For a constant exponent p such that 1 < p < ∞, the following two assertions are
equivalent:

1) w ∈ Bp;

2) there exist w1 ∈ B1 and w2 ∈ B1 such that w = w1w
1−p
2 .

Proof. We first show the implication 2) ⇒ 1). Suppose that w = w1w
1−p
2 with w1, w2 ∈ B1. For all

B ∈ B and z ∈ B, we have

1

µα(B)

∫
B

widµα ≤ [wi]B1
wi(z), i = 1, 2. (8.1)
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Thus as (1− p′)(1− p) = 1, we have w1−p′
=
(
w1w

1−p
2

)1−p′

= w1−p′

1 w2. So, from (8.1), we have(
1

µα(B)

∫
B

wdµα

)(
1

µα(B)

∫
B

w1−p′
dµα

)p−1

=

(
1

µα(B)

∫
B

w1w
1−p
2 dµα

)(
1

µα(B)

∫
B

w1−p′

1 w2dµα

)p−1

≤ [w1]B1
[w2]

p−1
B1

(
1

µα(B)

∫
B

w2dµα

)1−p(
1

µα(B)

∫
B

w1dµα

)

×
(

1

µα(B)

∫
B

w2dµα

)p−1(
1

µα(B)

∫
B

w1dµα

)−1

= [w1]B1 [w2]
p−1
B1

.

Hence w ∈ Bp.
We next show the converse implication 2) ⇒ 1). Suppose that w ∈ Bp. Set q = pp′ and define the

operator S1 on the space M by

S1f(z) = w(z)
1
q

(
mα

(
fp′

w− 1
p

)
(z)
) 1

p′
.

By the Minkowski inequality, S1 is sublinear. Moreover, from the constant exponent version of
Theorem 7.12 [2, Proposition 3], we have∫

B

S1f(z)
qdµα(z) =

∫
B

(
mα

(
fp′

w− 1
p

)
(z)
)p

w(z)dµα(z) ≲ C
(
[w]Bp

) ∫
B

fq(z)dµα(z).

In other words, ∥S1∥q ≲
(
C
(
[w]Bp

)) 1
q .

Similarly, denote again w′ = w1−p′ ∈ Bp′ and define the operator S2 on the space M by

S2f(z) = w′(z)
1
q

(
mα

(
fpw

′− 1
p′
)
(z)
) 1

p

.

By the Minkowski inequality, S2 is also sublinear. Moreover,∫
B

S2f(z)
qdµα(z) ≲ C

(
[w′]Bp′

)∫
B

fq(z)dµα(z).

In other words, ∥S2∥q ≲ C
((

[w′]Bp′

)) 1
q

=
(
C
(
[w]Bp

)) 1
q .

We use the following

Lemma 8.2. Set S = S1 + S2 and define the operator R on M by

Rh(z) =

∞∑
k=0

Skh(z)

2k∥S∥kq
with S0h = |h|. Then

a) |h| ≤ Rh;
b) ∥Rh∥q ≤ 2∥h∥q;
c) S(Rh) ≤ 2∥S∥qRh.

Proof of Lemma 8.2. By the definition of Rh, we have h ≤ Rh. Moreover,

∥Rh∥q ≤
∞∑
k=0

∥Skh∥q
2k∥S∥kq

≤ ∥h∥q
∞∑
k=0

1

2k
= 2∥h∥q.

Next, the sublinearity of S gives S(Rh) ≤ 2∥S∥qRh. □
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Applying assertion c) of Lemma 8.2, we obtain

w(z)
1
q

(
mα

(
(Rh)p

′
w− 1

p

)
(z)
) 1

p′
= S1(Rh)(z) ≤ S(Rh)(z) ≤ 2∥S∥qRh(z). (8.2)

Now, set w2 = (Rh)p
′
w− 1

p . By (8.2), we have w2 ∈ B1.
Similarly, we have

w′(z)
1
q

(
mα (Rh)

p
w

′− 1
p′ (z)

) 1
p

= S2(Rh)(z) ≤ S(Rh) ≤ 2∥S∥qRh(z). (8.3)

Now, set w1 = (Rh)pw
′− 1

p′ . By (8.3), we have w1 ∈ B1. Moreover, w1w
1−p
2 = w ∈ Bp. This finishes

the proof of Theorem 8.1. □

Lemma 8.3. Let p(·) ∈ P log
± (B) and w ∈ Bp(·). We define the operator R on Lp(·)(w) by

Rh(x) =

∞∑
k=0

mk
αh(x)

2k∥mα∥kLp(·)(w)

where for k ≥ 1,mk
α = mα ◦mα ◦ · · · ◦mα︸ ︷︷ ︸

k−times

and m0
αh = |h|. Then R satisfies the following properties:

a) |h| ≤ Rh;
b) R is bounded on Lp(·)(w) and ∥Rh∥p(·),w ≤ 2∥h∥p(·),w;
c) Rh ∈ B1 and [Rh]B1

≤ 2∥mα∥Lp(·)(w).

Proof. The proof of assertions a) and b) are the same as for assertions a) and b) of Lemma 8.2. Here,
we use the sublinearity of mα.
Finally, by the definition of Rh, we have

mα(Rh)(x) ≤
∞∑
k=0

mk+1
α h(x)

2k∥mα∥kLp(·)(w)

≤ 2∥mα∥Lp(.)(w)

∞∑
k=0

mk+1
α h(x)

2k+1∥mα∥k+1
Lp(.)(w)

≤ 2∥mα∥Lp(.)(w)Rh(x).

Thus Rh ∈ B1 and [Rh]B1 ≤ 2∥mα∥Lp(.)(w). □

Lemma 8.4. Let p(·) ∈ P log
± (B) and w ∈ Bp(·). Define the operator H on Lp′(·) by

Hh = R′
(
hw

1
p(·)

)
w− 1

p(·)

. where

R′g(x) =

∞∑
k=0

mk
αg(x)

2k∥mα∥kLp′(.)(w′)

.

Then

a) |h| ≤ Hh;

b) H is bounded on Lp′(·) and ∥Hh∥p′(·) ≤ 2∥h∥p′(·);

c) Hh · w
1

p(·) ∈ B1 and [Hh · w
1

p(·) ]B1
≤ 2∥mα∥Lp′(.)(w′).

Proof. The proof is the same as for Lemma 8.3. We replace p(·) by p′(·) and w ∈ Bp(·) by w′ ∈ Bp′(·).

The property p′(·) ∈ P log
± (B) comes from Remark 2.8. □
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8.2. A weighted extrapolation theorem. We denote by F a family of couples of non-negative mea-
surable functions. We are now ready to state and prove the following weighted variable extrapolation
theorem.

Theorem 8.5. Suppose that for some constant exponent p0 > 1, there exists a function C : (0,∞) →
(0,∞) such that for all v ∈ Bp0

and (F,G) ∈ F , we have∫
B

F (x)p0v(x)dµα(x) ≤ C([v]Bp0
)

∫
B

G(x)p0v(x)dµα(x). (8.4)

Then given p(·) ∈ P log
± (B) and w ∈ Bp(·), we have

∥F∥p(·),w ≤ 16× 4−
1
p0

(
C([v]Bp0

)
) 1

p0 ∥G∥p(·),w

for all (F,G) ∈ F and F ∈ Lp(·)(w).

Proof. We use the technique of Cruz–Uribe and Wang in [10, Theorem 2.6]. Let (F,G) ∈ F . If
∥F∥p(·),w = 0, we have the result. Otherwise, ∥F∥p(·),w > 0 and hence ∥G∥p(·),w > 0, because if
∥G∥p(·),w = 0, then G = 0 a.e. and by (8.4) we will have F = 0 a.e. Henceforth, we assume
0 < ∥F∥p(·),w < ∞ and 0 < ∥G∥p(·),w < ∞. Define

h1 =
F

∥F∥p(·),w
+

G

∥G∥p(·),w
,

then ∥h1∥p(·),w ≤ 2 and so, h1 ∈ Lp(·)(w).

Since F ∈ Lp(·)(w), by the duality (Proposition 3.1), there exists h2 ∈ Lp′(·) such that ∥h2∥p′(·) = 1
and

∥F∥p(·),w ≤ 2

∫
B

Fw
1

p(·)h2dµα ≤ 2

∫
B

F (Hh2)w
1

p(·) dµα, (8.5)

where the latter inequality comes from assertion a) of Lemma 8.4.
Set γ = 1

p′
0
. By the usual Hölder inequality, we have∫

B

F (Hh2)w
1

p(·) dµα =

∫
B

F (Rh1)
−γ(Rh1)

γ(Hh2)w
1

p(·) dµα

≤ I
1
p0
1 I

1
p′0
2 , (8.6)

where

I1 :=

∫
B

F p0(Rh1)
1−p0(Hh2)w

1
p(·) dµα

and

I2 :=

∫
B

(Rh1)(Hh2)w
1

p(·) dµα.

In addition, from Lemma 8.3 and Lemma 8.4, respectively, R is bounded on Lp(·)(w) and H is bounded

on Lp′(·). Thus by the Hölder inequality, assertions b) of Lemma 8.3 and Lemma 8.4, we have

I2 ≤ 2∥Rh1∥p(·),w∥Hh2∥p′(·) ≤ 8∥h1∥p(·),w∥h2∥p′(·) ≤ 16.

By the definition of h1 and assertion a) of Lemma 8.3, we have

φ

∥φ∥p(·),w
≤ h1 ≤ Rh1

for φ ∈ {F, G}. Next, by the Hölder inequality and assertion b) of Lemma 8.4, we have

I1 ≤
∫
B

F p0(ζ)

(
F (ζ)

∥F∥p(·),w

)1−p0

H(ζ)h2(ζ)w
1

p(ζ) dµα(ζ)
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= ∥F∥p0−1
p(·),w

∫
B

F (ζ)H(ζ)h2(ζ)w
1

p(ζ) dµα(ζ)

≤ 2∥F∥p0−1
p(·),w∥F∥p(·),w∥Hh2∥p′(·)

≤ 4∥F∥p0

p(·),w

< ∞.

Since Rh1 ∈ B1 and (Hh2)w
1

p(·) ∈ B1 by Lemma 8.3 and Lemma 8.4, respectively, it follows from

Theorem 8.1 that v := (Rh1)
1−p0

(
Hh2w

1
p(·)
)
∈ Bp0

. Hence by (8.4) and the same argument as above,
we have

I1 =

∫
B

F p0(Rh1)
1−p0(Hh2)w

1
p(·) dµα

≤ C([v]Bp0
)

∫
B

Gp0(Rh1)
1−p0(Hh2)w

1
p(·) dµα

≤ C([v]Bp0
)

∫
B

Gp0

(
G

∥G∥p(·),w

)1−p0

(Hh2)w
1

p(·) dµα

= C([v]Bp0
)∥G∥p0−1

p(·),w

∫
B

G(Hh2)w
1

p(·) dµα

≤ 2C([v]Bp0
)∥G∥p0−1

p(·),w∥G∥p(·),w∥Hh2∥p′(·)

≤ 4C([v]Bp0
)∥G∥p0

p(·),w.

Thus from (8.5) and (8.6), we have the result. □

8.3. The end of the proof of the sufficient condition in Theorem 1.6. We prove the following

Proposition 8.6. Let p(·) ∈ P log
± (B) and w ∈ Bp(·). Then P+

α is a continuous operator on Lp(·)(w).

Consequently, the Bergman projector Pα extends to a continuous operator on Lp(·)(w).

Proof. We call again Cc(B) the space of continuous functions of compact support in B and take
F = {(P+

α f, |f |) : f ∈ Cc(B)}. We recall from Proposition 2.6 that Cc(B) is a dense subspace in
Lp(·)(w).

Let p0 be an arbitrary constant exponent greater than 1. Let v ∈ Bp0 . By Theorem 1.5, for every
f ∈ Cc(B), we have ∫

B

(P+
α f)p0vdµα ≤ C

(
[v]Bp0

) ∫
B

|f |p0vdµα.

Thus by Theorem 8.5, for all f ∈ Cc(B), we have

∥P+
α f∥p(·),w ≤ 16× 4−

1
p0

(
C([v]Bp0

)
) 1

p0 ∥f∥p(·),w.
We conclude by density. □
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