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Abstract. In this paper the numerical techniques for modeling and determining the electronic

spectrum and structure of quantum nanostructures is explored. The authors focus on solving the
stationary Schrödinger equation using a finite difference scheme. To determine the eigenvalues and

eigenfunctions, Danilevsky’s method adapted for systems with three-diagonal matrices is developed.

The approach is validated through a series of numerical experiments conducted with various input
parameter values, demonstrating the robustness and efficiency of the proposed methods. The ob-

tained results can be used for the investigation and optimization of electronic properties of quantum

heterostructures.

1. Introduction

The Schrödinger equation is a fundamental equation in quantum mechanics that describes the
quantum state of particles with different potentials, including particles confined in a potential well.
Solving this differential equation has significant implications in various fields such as atomic physics,
molecular physics, solid-state physics, etc.

The stationary Schrödinger equation and the numerical methods for solving it, that is finding eigen-
values and eigenvectors, form an important area of research in quantum mechanics and computational
physics. A variety of approaches have been developed to solve these problems, leading to significant
progress in both theory and in application. Along with traditional approaches, specialized methods
are used to improve computational efficiency and accuracy.

The papers cited below describe various numerical methods and approaches for solving stationary
Schrödinger equations and eigenvalue problems, offering a range of techniques that can be applied
depending on the specific requirements of the stated problem. Iterative methods such as the Lanczos
algorithm and Arnoldi method have gained popularity due to their efficiency in handling large, sparse
matrices [1, 9]. They are recommended as a relatively rapid means for determining a small num-
ber of larger eigenvalues and modal columns of a large matrix. The eigenstates of the gravitational
Schrödinger equation developing a new algorithm to compute these eigenvalues are explored in [3].
This study provides a novel approach to addressing the Schrödinger equation within a gravitational
framework, contributing to the understanding of quantum effects in gravitational fields. [13] offers an
exact resolution method for the 1D polynomial Schrödinger equation, solving eigenvalue problems with
real polynomial potentials. This method stands out for its applicability to a wide range of potential
functions. Gusev et al. [6] apply a symbolic-numeric approach to solve boundary-value problems for
the Schrödinger equation by using the finite element method. Their work focuses on scattering prob-
lems and resonance states, demonstrating the effectiveness of combining symbolic computation with
numerical methods. In 2016 Graen and Grubmüller [5] present NuSol, a numerical solver specifically
designed for the 3D stationary nuclear Schrödinger equation. Their solver uses advanced techniques,
including Krylov subspace methods, to accurately determine eigenvalues and eigenvectors, demon-
strating the potential for practical applications in nuclear physics. Sandin, Ögren, and Gulliksson [12]
focus on the stationary multicomponent nonlinear Schrödinger equation, particularly under angular
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momentum constraints. Their numerical approach addresses the complexities of nonlinear interactions
in quantum systems, contributing to the study of Bose-Einstein condensates and other phenomena.
In [7], a numerical study of the Schrödinger–Newton equations is carried out, exploring the implica-
tions of coupling Schrödinger equations with gravitational effects. Their research provides insights
into the behavior of quantum systems under gravitational influence, particularly in the context of
spherically symmetric solutions. In [10], a model reduction approach for computing eigenvalues and
eigenfunctions of Schrödinger equations is introduced. The work emphasizes the efficiency of reduced
models in solving high-dimensional problems offering a significant computational advantage while
maintaining accuracy.

In the present paper, the numerical technique for modeling and determining the electronic spec-
trum and structure of quantum nanostructures is studied. The authors focus on solving the stationary
Schrödinger equation using a finite difference scheme. To determine the eigenvalues and eigenfunc-
tions, we consider Danilevsky’s method for systems with three-diagonal matrices. The proposed
computational scheme significantly reduces the use of computational resources. The approach is vali-
dated theoretically as well as through a series of numerical experiments conducted with various input
parameter values, demonstrating the robustness and efficiency of the proposed methods. The ob-
tained results can be used for investigation and optimization of the electronic properties of quantum
heterostructures.

2. Problem Formulation and Numerical Model:
Reducing a Physical Problem to a Linear Algebra Problem

Let us consider one-dimensional Schrödinger equation that describes the quantum state of a particle
confined in a potential well with 1D Coulomb potential inside it. It is represented mathematically as

− ℏ
2m∗

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x), x ∈ [−l, l], (2.1)

with the boundary conditions

ψ(−l) = ψ(l) = 0, (2.2)

where

V (x) = V0(x)−
1

ε[((x− x0)2 + b)]1/2

with

V0(x) =

{
0, −a < x < a,

U0, x < −a, x > a.

Here ψ(x) is the wave function, V (x) is the potential energy function, E is the energy eigenvalue, ℏ
is the reduced Planck’s constant, and m∗ is the effective mass of the particle, 0 < a < l, ε, b, U0, x0
are the given constants.

To solve problem (2.1), (2.2) numerically, the finite difference method is used. First, on the segment
[−l, l], we introduce a regular grid

ωh =
{
xi = −l + ih, i = 0, 1, . . . , N, hN = l

}
,

and approximate problem (2.1), (2.2) by the following homogeneous difference scheme:

Λy + λhy = 0, −l < xi = ih < l, y0 = yN = 0, i = 1, 2, . . . , N − 1, (2.3)

where

Λy = (yx)x − p(x)y, p(x) =
2m∗

ℏ2
V (x), λ =

2m∗

ℏ2
E.

Remark. Note that problem (2.1), (2.2) is a special case of the Sturm–Liouville problem for a
second-order ordinary differential equation. The Sturm–Liouville problem, or the problem of finding
eigenvalues and corresponding eigenfunctions, is formulated as follows [11]: Determine the values



ON A METHOD OF SOLVING THE SCHRÖDINGER EQUATION AND ITS APPLICATION 33

of the parameter λ (eigenvalues) for which there exist non-trivial solutions (eigenfunctions) to the
following homogeneous differential equation (and find these non-trivial eigenfunctions, as well):

d

dx

(
k(x)

du

dx

)
− q(x)u+ λr(x)u = 0, 0 < x < 1,

u(0) = u(1) = 0.
(2.4)

Here, k(x), q(x), r(x) are piecewise smooth functions which satisfy the conditions

0 < c1 ≤ k(x) ≤ c2, 0 < c1 ≤ r(x) ≤ c3, 0 ≤ q(x) ≤ c4,

where c1, c2, c3 and c4 are the constants.

For the approximate solution of problem (2.4), the finite difference method is used and the dif-
ferential problem is replaced by the difference scheme. For this purpose, on the segment [0, 1], we
introduse a regular grid ωh = {xi = ih, i = 0, 1, . . . , N, hN = 1}, and approximate problem (2.4) by
the following homogeneous difference scheme:

Λy + λhρy = 0, 0 < xi = ih < 1, y0 = yN = 0, i = 1, 2, . . . , N − 1, (2.5)

where it is supposed that Λy = (ayx)x − d(x)y represents a homogeneous difference operator with
order of approximation O(h2). Such scheme can be obtained if the scheme coefficients, e.g., are chosen
according to the following formulas, in the case of continues initial coefficients

ai = ki−1/2 = k(xi − 0.5h), di = qi, ρi = ri.

In the case of piecewise smooth coefficients of (2.4), we can use the expressions

ai = 0.5
(
k(xi−1/2 − 0) + k(xi−1/2 + 0)

)
,

di = 0.5
(
q(xi + 0) + q(xi − 0)

)
, ρi = 0.5

(
r(xi − 0) + r(xi + 0)

)
.

In [11], one can find other options for selecting the coefficients of the scheme in the case of piecewise
smooth coefficients of (2.4).

For the convergence of the difference scheme the following theorem is valid.

Theorem. If coefficients k(x), q(x) and r(x) of equation (2.4) are sufficiently smooth functions, then
when h → 0, the solution of the difference scheme (2.5) uniformly converges to the solution of the
Sturm–Liouville problem (2.4) and the following estimation

|λhn − λn| = O(h2) and ∥yn − un∥c = O(h2),

is true, where {λ, u(x)} is the solution of the differential problem (2.4), and {λhn, yn} is the solution
of the difference problem (2.5).

It is proven [11] that when the coefficients of the initial problem are piecewise smooth, the solution of
the difference scheme uniformly converges to the solution of the differential problem with order O(h).

Given the above observation, we can conclude that the solution of the difference scheme (2.3) will
uniformly converge to the solution of the differential problem (2.1), (2.2).

The difference problem (2.3) forms a system of linear algebraic equations with a tridiagonal matrix.
Accordingly, the following sections will focus on the algorithm for constructing the eigenvalues and
eigenvectors for tridiagonal matrices.

3. Eigenvalue Problem. Danilevsky Method for Tridiagonal Matrix

It is almost impossible to specify the best algorithm for finding the eigenvalues of a matrix. Each
of these algorithms has its merits and demerits, which should be taken into account when choosing
one or another algorithm.

Many numerical methods for solving the eigenvalue problem are based on matrix similarity trans-
formations, which reduce a given matrix to a form whose eigenvalues are relatively easy to find. The
matrix similarity transformation does not change the eigenvalues of the matrix, but transforms its
eigenvectors according to a certain algorithm. Therefore, if a transformation is selected that allows us
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to obtain a matrix whose characteristic polynomial can be easily written, then any standard iterative
method can be applied to compute the roots of the resulting characteristic equation.

The efficiency of different methods for writing the characteristic equation can be judged relying
on the analysis of several different methods relative to the number of operations required for the
implementation of a particular method given in [8]. Namely, among the methods for writing the
characteristic equation, starting with fifth-order matrices, Danilevsky’s method is the most favorable
in terms of the number of operations.

The computational scheme using Danilevsky’s method is based on the principal property of similar
matrices as they have identical characteristic polynomials. Danilevsky proposed (n-1)-step similarity
transformation of the rows of a matrix A(n× n), starting from the last row, which reduces the given
matrix to the so-called canonical Frobenius form [4]

Φ =


p1 p2 p3 · · · pn−1 pn
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 0

 .

The construction of the characteristic polynomial of the latter matrix is not associated with significant
difficulties. Indeed,

|Φ− λE| = |

∣∣∣∣∣∣∣∣∣∣∣∣

p1 − λ p2 p3 · · · pn−1 pn
1 −λ 0 · · · 0 0
0 1 −λ · · · 0 0
0 0 1 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
.

If we expand this matrix according to the elements of the first row, we finally obtain

|Φ− λE| = (−1)n
(
λn − p1λ

n−1 − p2λ
n−2 − p3λ

n−3 − · · · − pn−1λ− pn
)
= (−1)nPn(λ),

where

Pn(λ) = λn − p1λ
n−1 − p2λ

n−2 − p3λ
n−3 − · · · − pn−1λ− pn.

As mentioned above, Pn(λ) is also the characteristic polynomial of the matrix A and by finding its
roots we can determine the eigenvalues of the initial matrix A.

Thus, our main objective is to construct the Frobenius matrix Φ. The case of tridiagonal matrix is
particularly important for us, because the difference scheme (2.3) corresponds to the system of linear
equations with such a matrix. Let’s rewrite (2.3) in a general form: find the values of the parameter
λ for which a non-trivial solution exists for the following system of linear algebraic equations

Ax⃗ = λx⃗, A(n× n),

and find this non-trivial solution, as well. Here, A represents a square tridiagonal matrix with elements
aij , x⃗ is a vector with components x1, x2, . . . , xn. The λ numbers are the eigenvalues of the matrix A,
and the corresponding x⃗ vectors are the eigenvectors. The characteristic equation of the matrix A is
det(A− λE) = 0.
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4. Computational Scheme

Let’s describe the computational scheme of Danilevski’s method for the following tridiagonal ma-
trix A

A =



a11 a12 0 · · · 0 0 0
a21 a22 a23 · · · 0 0 0
0 a32 a33 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · an−2,n−2 an−2,n−1 0
0 0 0 · · · an−1,n−2 an−1,n−1 an−1,n

0 0 0 · · · 0 an,n−1 ann


.

The 1-st step of the transformation (k = 1): Suppose, the leading element an,n−1 ̸= 0. We
will not consider here the case of a zero leading element. Divide last three elements of the (n− 1)-th
column by the leading element an,n−1 and in the resulting matrix subtract the (n − 1)-th column,
multiplied by ann, from the n-th column. We obtain the following matrix

B(1) =



a11 a12 0 · · · 0 0 0

a21 a22 a23 · · · 0 0 0

0 a32 a33 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · an−2,n−2
1

an,n−1
an−2,n−1 − ann

an,n−1
an−2,n−1

0 0 0 · · · an−1,n−2
1

an,n−1
an−1,n−1 an−1,n − ann

an,n−1
an−1,n−1

0 0 0 · · · 0 1 0


.

The described process is equivalent to multiplying the matrix A from the right by the transformation
matrix Mn−1, which is obtained from the identity matrix (n×n) by replacing the (n− 1)-th row with
the following row {

0, 0, . . . , 0,
1

an,n−1
,− an,n

an,n−1

}
.

It is obtained from the unit matrix by performing the same operations on it. Hence

B(1) = AMn−1 =



a11 a12 0 · · · 0 0 0

a21 a22 a23 · · · 0 0 0

0 a32 a33 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · an−2,n−2 b
(1)
n−2,n−1 b

(1)
n−2,n

0 0 0 · · · an−1,n−2 b
(1)
n−1,n−1 b

(1)
n−1,n

0 0 0 · · · 0 1 0


.

Thus, this transformation changes only the entries from the intersection of (n−1)-th and n-th columns
and (n− 2)-th and (n− 1)-th rows of the matrix A.

In the matrix B(1), we have

b
(1)
i,n−1 = (Mn−1)n−1,n−1 · ai,n−1, i = n− 2, n− 1,

b
(1)
n−2,n = (Mn−1)n−1,n · an−2,n−1, and b

(1)
n−1,n = (Mn−1)n−1,n · an−1,n−1.

However, the matrix AMn−1 obtained through the described process is not similar to the matrix A.
To obtain a matrix that is similar to A and shares the same eigenvalues, we need to multiply

AMn−1 from the left by the inverse of Mn−1, where M
−1
n−1 is obtained from the (n × n) unit matrix
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by replacing the (n− 1)-th row with the following row

{0, 0, . . . , 0, an,n−1, an,n}.
We can easily verify that Mn−1M

−1
n−1 = E. This multiplication will display only (n− 1)-th row of the

matrix B(1). Then we will have

A(1) =M−1
n−1AMn−1 =



a11 a12 0 · · · 0 0 0
a21 a22 a23 · · · 0 0 0
0 a32 a33 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · an−2,n−2 a
(1)
n−2,n−1 a

(1)
n−2,n

0 0 0 · · · a
(1)
n−1,n−2 a

(1)
n−1,n−1 a

(1)
n−1,n

0 0 0 · · · 0 1 0


,

where

a
(1)
n−2,j = b

(1)
n−2,j , j = n− 1, n,

a
(1)
n−1,n−2 = an−1,n−2an,n−1, a

(1)
n−1,n−1 = b

(1)
n−1,n−1an,n−1 + an,n, a

(1)
n−1,n = b

(1)
n−1,nan,n−1.

As we can see, we obtained the matrix, where the last row matches the corresponding row of the
Frobenius matrix. Thus, the first step of reducing matrix A to the Frobenius form is complete.

Let’s continue this process and consider the k-th step.

The k-th step of the transformation (k = 2, . . . , n−2): Suppose, the leading element a
(k−1)
n−k+1,n−k

̸= 0. In the resulting matrix of the previous step A(k−1), let’s divide the elements of the (n − k)-th

column by the leading element a
(k−1)
n−k+1,n−k and in the obtained matrix subtract the (n−k)-th column,

multiplied by a
(k−1)
n−k+1,j , from the j-th column, j = n− k + 1, . . . , n.

This trasformation will allert only the entries in the columns from n− k to n, and (n− k)-th and
(n− k − 1)-th rows of the the matrix A(k−1). It is equivalent to multiply the matrix A(k−1) from the
right byMn−k. The matrixMn−k is obtained from the (n×n) unit matrix by replacing the (n−k)-th
row with the following row{

0, . . . , 0,
1

a
(k−1)
n−k+1,n−k

,−
a
(k−1)
n−k+1,n−k+1

a
(k−1)
n−k+1,n−k

, . . . ,−
a
(k−1)
n−k+1,n

a
(k−1)
n−k+1,n−k

}
.

Thus, in the obtained matrix B(k−1) = A(k−1)Mn−k,

b
(k−1)
n−k−1,j = a

(k−1)
n−k−1,n−k(Mn−k)n−k,j , j = n− k, . . . , n,

b
(k−1)
n−k,n−k = a

(k−1)
n−k,n−k(Mn−k)n−k,n−k, b

(k−1)
n−k,j = a

(k−1)
n−k,j + a

(k−1)
n−k,n−k(Mn−k)n−k,j + a

(k−1)
1j ,

j = n− k + 1, . . . , n.

The other elements remain the same.
To obtain a matrix that is similar to A and shares the same eigenvalues, we have to multiply B(k−1)

from the left by M−1
n−k, where it is obtained from the unit matrix (n× n) by replacing the (n− k)-th

row with the following row{
0, . . . , 0, a

(k−1)
n−k+1,n−k, a

(k−1)
n−k+1,n−k+1, . . . , a

(k−1)
n−k+1,n

}
.

We can easily verify that Mn−kM
−1
n−k = E. This multiplication will change only the entries in the

(n−k)-th row of the matrix B(k−1), with indices from (n−k, n−k−1) to (n−k, n). Then we obtain
the matrix A(k), where the last k rows matche the corresponding rows of the Frobenius matrix and

a
(k)
n−k,j = a

(k−1)
n−k+1,1b

(k−1)
n−k,j , j = n− k − 1, and j = n,

a
(k)
n−k,j = a

(k−1)
n−k+1,1b

(k−1)
n−k,j + a

(k−1)
n−k+1,j+1, j = n− k, . . . , n− 1.
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Let’s consider the final step of the transformation.

The (n − 1)-th step of the transformation: In the final step, the leading element is a
(n−2)
21 ̸= 0.

We multiply the matrix A(n−2) from the right by M1, and then from the left by M−1
1 , where M1 is

obtained from the unit matrix by replacing the first row with the following row{
1

a
(n−2)
21

,−a
(n−2)
22

a
(n−2)
21

, . . . ,−
a
(n−2)
2,n−1

a
(n−2)
21

,−a
(n−2)
2n

a
(n−2)
21

}
,

and M−1
1 is obtained from the unit matrix by replacing the first row with the following row{

a
(n−2)
21 , a

(n−2)
22 , . . . , a

(n−2)
2,n−1, a

(n−2)
2n

}
,

we can easily verify that M1M
−1
1 = E. The product A(n−2)M1 will have the form

B(n−1) = A(n−2)M1 =


b
(n−2)
11 b

(n−2)
12 · · · b

(n−2)
1,n−1 b

(n−2)
1,n

1 0 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 0
0 0 · · · 1 0

 ,

where

b
(n−2)
11 = a

(n−2)
11 (M1)11, b

(n−2)
ij = a

(n−2)
11 (M1)1j + a

(n−2)
1j , j = 2, . . . , n.

To ensure the similarity of matrices, we multiply this matrix on the left by M−1
1 . As a result, we

obtain the matrix

A(n−1) =M−1
1 M−1

2 · · ·M−1
n−1AMn−1 · · ·M2M1

which has the canonical form of the Frobenius matrix corresponding to A:

A(n−1) =M−1
1 B(n−1) =M−1

1 M−1
2 · · ·M−1

n−1AMn−1 · · ·M2M1

=


a
(n−1)
11 a

(n−1)
12 · · · a

(n−1)
1,n−1 a

(n−1)
1n

1 0 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 0
0 0 · · · 1 0

 .
where

a
(n−1)
1j = a

(n−2)
21 b

(n−2)
1j + a

(n−2)
2,j+1 , j = 1, . . . , n− 1, a

(n−1)
1n = a

(n−2)
21 b

(n−2)
1n .

If we introduce the notation a
(n−1)
1j = pj , we obtain

A→ Φ =


p1 p2 · · · pn−1 pn
1 0 · · · 0 0
0 1 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0

 ,

from which we can derive the characteristic equation of the original matrix

λn − p1λ
n−1 − p2λ

n−2 − · · · − pn−1λ− pn = 0.
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5. Algorithm for Computing the Eigenvectors

Danilevsky’s method facilitates the construction of the eigenvectors of a given matrix A after the
eigenvalues have been determined. Suppose, λ is an eigenvalue of the matrix A. It follows that λ is also
an eigenvalue of the Frobenius matrix Φ corresponding to A. The eigenvector of the matrix represents
the non-zero solution y⃗ = (y1, y2, y3, . . . , yn−1, yn) of the system of linear equations (Φ− λE)y⃗ = 0,

p1 − λ p2 p3 · · · pn−1 pn
1 −λ 0 · · · 0 0
0 1 −λ · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · −λ 0
0 0 0 · · · 1 −λ

 ·


y1
y2
y3
· · ·
yn−1

yn

 =


0
0
0
· · ·
0
0

 ,

or 

(p1 − λ)y1 + p2y2 + p3y3 + · · ·+ pn−1yn−1 + pnyn = 0,

y1 − λy2 = 0,

y2 − λy3 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn−2 − λyn−1 = 0,

yn−1 − λyn = 0.

(5.1)

(5.1) represents a homogeneous system of equations with the determinant equal to zero. Let’s find its
non-trivial solution up to a proportionality coefficient. Suppose that yn = 1. Then

yn−1 = λ, yn−2 = λ2, . . . , y2 = λn−2, y1 = λn−1.

Thus, the eigenvector to be searched for is of the form

y⃗ = (λn−1, λn−2, . . . , λ2, λ, 1)T .

Let us denote by x⃗ = (x1, x2, x3, . . . , xn−1, xn)
T the corresponding eigenvector of the matrix A,

then

x⃗ =Mn−1Mn−2 · · ·M2M1y⃗.

M1y⃗ will have the following form:

M1y⃗ =



1

a
(n−2)
21

−a
(n−2)
22

a
(n−2)
21

· · · −
a
(n−2)
2,n−1

a
(n−2)
21

−a
(n−2)
2n

a
(n−2)
21

0 1 · · · 0 0
0 0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0
0 0 · · · 0 1


·



y1
y2
y3
. . .
yn−2

yn−1

yn



=



1

a
(n−2)
21

(
λn−1 −

n∑
k=2

a
(n−2)
2k λn−k

)
λn−2

. . .
λ2

λ
1


=


x1
y2
. . .
yn−2

yn−1

yn

 .
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Note that the M1y⃗ transformation changes only the first coordinate of the vector y⃗. Similarly, the
second coordinate of the vector is transformed by means of the matrix M2,

M2M1y⃗ =



x1

1

a
(n−3)
32

(
λn−2 −

n∑
k=3

a
(n−3)
3k λn−k

)
λ3

. . .
λ
1


=


x1
x2
y3
. . .
yn−1

yn

 .

And so on, using the matrix Mn−1, the (n− 1)-th coordinate of the vector is transformed

Mn−1Mn−2 · · ·M2M1y⃗ =



1 0 · · · 0 0 0
0 1 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0
1

an,n−1
− ann
an,n−1

0 0 · · · 0 0 1

 ·


x1
x2
· · ·
xn−2

yn−1

yn



=



x1
x2
· · ·
xn−2

1

an,n−1
(λ− ann)

1


=


x1
x2
· · ·
xn−2

xn−1

xn

 .

Thus, the process of obtaining the eigenvector of the initial matrix A is completed.
Let’s write the formulas for computing the components of the eigrenvector separately,

x1 =
1

a
(n−2)
21

(
λn−1 −

n∑
k=2

a
(n−2)
2k λn−k

)
=

1

t21

(
λn−1 −

n∑
k=2

t2kλ
n−k

)
,

x2 =
1

a
(n−3)
32

(
λn−2 −

n∑
k=3

a
(n−3)
3k λn−k

)
=

1

t32

(
λn−2 −

n∑
k=3

t3kλ
n−k

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn−2 =
1

a
(1)
n−1,n−2

(
λ2 −

n∑
k=n−1

a
(1)
n−1,kλ

n−k
)
=

1

tn−1,n−2

(
λ2 −

n∑
k=n−1

tn−1,kλ
n−k

)
,

xn−1 =
1

an,n−1
(λ− ann) =

1

tn,n−1
(λ− tnn),

xn = 1,

where when reducing to the canonical Frobenius form, the matrix T will be filled in step by step, with
one row being saved at each step of the process

T =


0 0 · · · 0 0 0
t21 t22 · · · t2,n−2 t2,n−1 t2n
0 t32 · · · t3,n−2 t3,n−1 t3n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · tn−1,n−2 tn−1,n−1 tn−1,n

0 0 · · · 0 tn,n−1 tnn
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=



0 0 · · · 0 0 0

a
(n−2)
21 a

(n−2)
22 · · · a

(4)
2,n−2 a

(4)
2,n−1 a

(n−2)
2n

0 a
(n−3)
32 · · · a

(n−3)
3,n−2 a

(3)
3,n−1 a

(n−3)
3n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · a
(1)
n−1,n−2 a

(1)
n−1,n−1 a

(1)
n−1,n

0 0 · · · 0 an,n−1 ann


.

The above scheme can be applied even in the case of a full matrix A, significantly reducing memory
usage when calculating eigenfunctions.

On the other hand, we can use directly the tridiagonal structure of the matrix A. Assume we have
already determined all the eigenvalues of the matrix Φ, or what is the same, of the matrix A. Let λ
be any eigenvalue of A. Let us denote by x⃗ = (x1, x2, x3, . . . , xn−1, xn) the corresponding eigenvector
of the matrix A, which is a non-zero solution of the equation (A− λE)y⃗ = 0,

a11 − λ a12 · · · 0 0

a21 a22 − λ · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · an−1,n−1 − λ an−1,n

0 0 · · · an,n−1 ann − λ

 ·


x1
x2
· · ·
xn−1

xn

 =


0
0
· · ·
0
0

 . (5.2)

(5.2) represents a homogeneous system of equations with the determinant equal to zero. Let’s find its
non-trivial solution up to a proportionality coefficient. Suppose that xn = 1. We can then solve the
resulting system of equations in a backward direction to determine the remaining components of the
eigenvector. From the equation an,n−1xn−1 + (ann − λ)xn = 0, we obtain xn−1 = −ann−λ

an,n−1
, and from

the equation i+ 1, i = n− 2, . . . , 1, we can compute

xi =
−(aii − λ)xi − ai,i+1xi+1

ai,i−1
.

6. Numerical Results

Let’s consider the following physical problem: a hydrogen like atom is in a one-dimensional rectan-
gular box, which models very well any impurity in a semiconductor quantum well [2]. The Schrödinger
equation to be solved in atomic units looks as

− 1

2m∗
d2Ψ

dx2
+ v(x)Ψ = EΨ, x ∈ [−l, l], l > 0, (6.1)

Ψ(−l) = Ψ(l) = 0, (6.2)

v(x) = v0(x)−
1

ε[((x− x0)2 + a2B)]
1/2

, (6.3)

where

v0(x) =

{
0, −a < x < a,

u0, x < −a, x > a,
(6.4)

0 < a < l, aB = 9.0, ε = 10.0, m∗ = 0.25, u0 = 0.031,

and a, l, x0 are the given constants. To reduce the physical problem to a linear algebra problem, we
rewrite (6.1) in a following form:

d2Ψ

dx2
− 2m∗v(x)Ψ + 2m∗EΨ = 0, x ∈ [−l, l].

Introducing a grid ωh = {xi = −l + ih, i = 0, 1, . . . , n, hn = l} on the segment [−l, l], we can
approximate the problem (6.1)–(6.4) by the following scheme:

Λy − λhy = 0, y0 = yn = 0,
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where y is a vector with the components yi, i = 1, . . . , n− 1, that approximate the function Ψ(x),

Λy = (yx)x − 2m∗v(x)y, λh = −2m∗E,

and

Λ =



−2m∗v(x1)−
2

h2
1

h2
· · · 0 0

1

h2
−2m∗v(x2)−

2

h2
· · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · −2m∗v(xn−2)−
2

h2
1

h2

0 0 · · · 1

h2
−2m∗v(xn−1)−

2

h2


.

The values of E then are calculated from the expression E = − λh

2m∗ .
Below, in Tables 1-3, we present the numerical results, that is, the values of two smallest eigenvalues

E1, E2, and the corresponding normalized eigenfunctions ψ1 and ψ2 are given graphically in Figures
1–6) for different values of input parameters a, l and x0.

Table 1

# a l x0 E1 E2

1.1 9.4 29.4 0 0.00650829 0.0406823

1.2 18.9 38.9 0 −0.00177341 0.0187639

1.3 28.3 48.3 0 −0.00403597 0.00916731

13 
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Figure 2. ψ2 for 1.1, 1.2 and 1.3 variants

Table 2

# a l x0 E1 E2

2.1 9.4 29.4 −9.4 0.00787984 0.0404619

2.2 18.9 38.9 −9.4 −0.00103017 0.0185145

2.3 28.3 48.3 −9.4 −0.00367912 0.00894366
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The Fig.7 shows the potential energy function 𝑣(𝑥) for the different values of  𝑥0. 
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Figure 7 shows the potential energy function v(x) for the different values of x0.
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Figure 7. v(x) for different values of x0 (see Tables 1–3).

Figures 8, 9 show the graphs of the eigenfunction corresponding to the two smallest eigenvalues for
different values of n (or equivalently, the grid step size h), using the input data from the variant 1.1
(see Table 1).
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7. Conclusion 

This article presents a method for numerical investigating the quantum state of a particle confined 

in a potential well with 1D Coulomb center, described by the one-dimensional stationary 

Schrödinger equation. By employing the finite difference method, the spatial domain is discretized, 

resulting in a linear algebraic system with a tridiagonal matrix. The Danilevsky method was 

effectively applied to this matrix, enabling the determination of eigenvalues and eigenfunctions 

with enhanced computational efficiency. The proposed algorithm for eigenfunction computation, 

characterized by its adaptability to full matrices, significantly reduces memory overhead.  

The numerical results obtained affirm the robustness and stability of the proposed method, 

demonstrating convergence properties that can be applied to investigate and optimize of the 

electronic properties of quantum heterostructures.  

Future research will aim to generalize this approach, including investigation other techniques, to 

encompass more complex quantum systems, thereby broadening the mathematical and physical 

insights into quantum mechanical behavior and material characteristics. 
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7. Conclusion

This article presents a method for numerical investigating the quantum state of a particle confined
in a potential well with 1D Coulomb center, described by the one-dimensional stationary Schrödinger
equation. By employing the finite difference method, the spatial domain is discretized, resulting in
a linear algebraic system with a tridiagonal matrix. The Danilevsky method was effectively applied
to this matrix, enabling the determination of eigenvalues and eigenfunctions with enhanced com-
putational efficiency. The proposed algorithm for eigenfunction computation, characterized by its
adaptability to full matrices, significantly reduces memory overhead.

The obtained numerical results confirm the robustness and stability of the proposed method, demon-
strating convergence properties that can be applied to the study and optimization of the electronic
properties of quantum heterostructures.

Future research will be aimed at generalizing this approach, including investigation of other methods
to cover more complex quantum systems, thereby expanding the mathematical and physical insights
into quantum mechanical behavior and material characteristics.
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