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GLOBAL WELL-POSEDNESS, GEVREY CLASS REGULARITY FOR THE
DEBYE-HUCKEL SYSTEM IN VARIABLE FOURIER-BESOV-MORREY
SPACES

ACHRAF AZANZAL'* CHAKIR ALLALOU? AND SAID MELLAINI?

Abstract. This paper is devoted to studying the existence of solutions for the Cauchy problem of
the Debye—Hiickel system with low regularity initial data in variable Fourier—Besov—Morrey spaces.
We show that there exists a unique global solution if the initial data are sufficiently small and
—24 —24 -

PO FN P’() " In addition, we study

o ) p(),A()q 7 p():A()q
the analyticity of global solutions and prove that global solutions are Gevrey regular.

belong to the variable Fourier-Besov space . .4

1. INTRODUCTION

In this paper, for the Debye-Hiickel system in R™ x Rt we consider the following Cauchy problem:

0w — Av=-V - (vV¢) in R™ x (0, 00),
ow — Aw =V - (wV ) in R"™ x (0, 00), (1)
Ap=v—w in R™ x (0,00), .

v(z,0) = vo(z), w(z,0)=we(z) in R,

where the unknown functions v = v(z,t) and w = w(x,t) denote densities of the electron and the hole
in electrolytes, respectively, ¢ = ¢(x,t) denotes the electric potential, vg(x) and wp(x) are the initial
data. Throughout this paper, we assume that n > 4.

Note that the function ¢ is determined by the Poisson equation in the third equation (1.1) and has
the form

¢=(-A)" (w—v)=F (|{]2F (w - v)),
where # is the Fourier transform. So, system (1.1) can be reduced to the system
o —Av=-V-(vV(-A)Hw—-v)) in R"x(0,00)
dw—Aw=V-(wV(-=A)"Hw-v)) in R"x(0,00)
v(x,0) = vo(z), w(z,0)=wy(x) in R™
The Debye-Hiickel system (1.1) is scaling invariant in the following sense: if (v, w) solves (1.1)

with the initial data (vo,wo) (¢ can be determined by (v,w)), then (vy,w,) with (v,,wy) (z,t) :=
(v?v,7*w) (yx,~v%t) is also a solution to (1.1) with the initial data

(V0,7: wo,4) (%) = (v*v0, v*wo) () (1.2)
(¢ can be determined by (vy,w-)).

Definition 1.1. A critical space for the initial data of system (1.1) is any Banach space E C . (R™)
whose norm is invariant under the scaling (1.2) for all v > 0, i.e.,

([ (V0,4 wo,~) ()] 5 = I(vo, wo) ()| -
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In accordance with these scales, we can show that the space pairs % A4 ;5;: mq X FN ;f: /\”(/Tq are
critical for (1.1).

System (1.1) has been studied extensively in various function spaces. Karch in [20] established
the proof of the existence and uniqueness of global solutions of system (1.1) for initial data in the

Besov spaces B, ., with the conditions —1 < s < 0 and p = ;5. Later, Zhao et al. [27] established

the global and local well-posedness for system (1.1) in the critical Besov space ,@_,3+; (R™) with
2<p<2nandl<r < oo (which improved the corresponding results of Karch obtained in [20]).
Kurokiba and Ogawa in [21] obtained similar results for the initial data in critical Lebesgue and Sobolev
spaces. Very recently, Azanzal, Abbassi and Allalou [4] proved that small data global existence and

large data local existence of mild solutions of system (1.1) in critical Fourier-Morrey—Besov space

24242 —24+2 42 .
FNong! TXTAN 7" (more related research can be found in [5-10,13, 16,17, 22-25]). It

should be noted that for the Navier-Stokes equations, there is no existence result for initial data
in a space with regularity index s < —1. In fact, the nonlinear term of (1.1) appears to be more
closely related to the quadratic nonlinear heat equation (~ u?) than to the Navier-Stokes equations
(~ w - Vu).Thus, the Debye-Hiickel system has a better property than the Navier-Stokes equations
in regard to the existence of solutions.

Our first aim in this paper is to show the existence of global solutions of system (1.1). The second
aim is to prove the analyticity of global solutions to system (1.1) by using the method of Gevrey
estimate, which was first introduced by Foias and Temam [18]. Since then, the Gevrey class technique
has become an important approach in the study of the space analyticity of solutions, which was later
developed by several researchers, particularly with regard to the Navier-Stokes equations (NSE).
In 2017, Zhao [26] proved that the global mild solutions to system (1.1) are Gevrey regular for all
2<p<2nand 1l <r <oo. Inspired by this, we will establish the Gevrey class regularity for system

—2+4-7

(1.1) in the variable Fourier-Besov—Morrey spaces % A () ;’('() )q. The Gevrey class technique enables

us to avoid cumbersome recursive estimation of higher-order derivatives.
Throughout this paper, let X, Y be Banach spaces, we use (v,w) € X to denote (v,w) € X x X
and

[ollxey = [lvllx +[lvllys (v, w)lx = [lvllx + lwlx,

C will denote the constants which may be different at different places, A ~ B means that there are
two constants C7,Cy > 0 such that

C1B <A< (3B,

V < W denotes the estimate V< CW for some constant C' > 1, and p’ is the conjugate of p satisfying
%—&—i:lforlﬁpgoo.

1.1. Preliminaries. The proofs of the results discussed in this work are based on a dyadic partition
of unity in the Fourier variables, known as the homogeneous Littlewood—Paley decomposition. We
present briefly this construction below. For more detail, we refer the reader to [11].

Let f € S’ (R™). Define the Fourier transform as

=710 =en [
Rn
and its inverse Fourier transform as

f) =7 @) = 2 ¥ [ e p(epa.

]Rn
Let ¢ € S (R?) be such that 0 < ¢ <1, supp(p) C {£€R?: 3 <[¢] <5}
and

Z@ (277¢) =1, forall £#0.

JEZL
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We denote ‘
pi€) =0 (276, (&)= Y eul6)
k<j—1
and
h(z) = 7 lp(a), gla) =F 'P(a).
We now present some frequency localization operators:

Ajf=¢i(D)f = 2nj/h (27y) f(z - y)dy,
Rd
Sif = 30 Auf=wy(D)f =2 [ g(2y) fla~ i
k<j-1 Rd
where A; = S; — S;_; is a frequency projection to the annulus {|¢| ~ 27} and S; is a frequency to
the ball {|¢| < 271,
From the definition of A; and S, one easily derives that
AjALF=0, if |j—k|>2
A; (Sp-1fARf) =0, if |j—Fkl >5.

We define the Morrey space with a variable exponent MPA((.')).

Definition 1.2 ([2]). Let &7, denote the set of all measurable functions p(-) : R™ — (0, 00) such that

0 <p_ =ess inf p(z), esssupplr) =py <oo.
x€R? x€ERR

The Lebesgue space with a variable exponent is defined by

Lp(')(R") = {f : R™ — R is measurable, / |f(x)|p(“’)dx < oo},
]Rn

with the Luxemburg-Nakano norm

1]l o = int {A 0 /(@wux < 1}.

R™

The space LP()(R™) equipped with the norm || - ||;» is a Banach space, since the LP(") does not
have the same desired properties as LP. So, we assume the following standard conditions to ensure
that the Hardy-Littlewood maximal operator M is bounded on LP()(R™):

(1) (Locally log-Holder continuous). There exists a constant Clog(p) such that

Olog (p)
e+lr—yl~)
(2) (Locally log-Holder continuous). There exist a constant Ciog(p) and some constant independent
of x such that
Clog (p)

log(e + |z])’
C'°8(R™) denote the set of all functions p(-) : R™ — R satisfying (1) and (2).

Definition 1.3 ([2]). Let p(-), A(-) € Zo(R™) with 0 < p_ < p(z) < A(z) < oo, the Morrey space

Ip(z) — p(y)| < Toa( , forany z, y € R" and x # y.

[p(x) = poc| < for all z € R™.

with a variable exponent Mz:\((-.)) = M;‘((_')) (R™) is defined as the set of all measurable functions on R"
such that
||f||M:(<»)> = swp [P X 7P fX B(ag,r) | Lp) < 0.
: xo n.r

According to the definition of the LP()-norm, | f|| 220 also has the following form:
r(-)

n

. = f
(= sup InfqA>0:p,0(r*® P “xp,m) <1
Il =, sup { Pp() L XBom)
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We now present some important lemmas from [2].
Lemma 1.1. Let p(-) € Po(R™). For any measurable function f,

esthlp Pp(-) (fXB(Lr)) = Pp(~)(f) :

Lemma 1.2. If p(-) € Z,(R"), then ||f\|M,,(<_.)) = |1£llLreo -

Definition 1.4 ([2]). Let p(-), ¢(-), A(-) € Po(R™) with p(-) < A(-), the mixed Morrey-sequence space
IQ(')(MA(('))) includes all sequences {h;};jcz of measurable functions in R" such that

AC >)()\{h }jez) < oo for some A > 0. For {h;}; € 11¢ )(M;‘(:)), we define

Pracy (), )

. h;
”{hj}jezHN(I)(J\/[:,\((.»))) ;= inf {)\ > O, plq(')(M;‘((.')))({TJ}jeZ) < 1} < 00,

where:

|W<w> (@) thB(xO’T)|
1

s ((hibiez) = Eint {8, 0, [

z)
JEL R 9.;‘1@

P@) dg < 1}.

Notice that if gy < oo and p(x) < g(z), then

pl"“(M;?((-‘)))({hi}ieNO) B % xoeSRlip7.>o H('TW_WL'XB(IO r) DQ( )H fEon
1€Ng ’

Definition 1.5 ([3]). Let s(-) € C'°8(R") and p(-), q(-) € Zo(R")NC°8(R™) with 0 < p_ < p(+) < 0.

e The homogeneous variable Besov space

B oy ={ue s Pl

is a Banach space with the norm

e = [{20Au

o) < 400}

HU| jeZ||eq(-)(Lp(-))7

where Aju = ¢;(-) * u and P denotes the set of all polynomials.
e The homogeneous variable Fourier—Besov space

s(0) .
FB = {u €SP ullpppo < +oo}

is a Banach space with the norm

U s = {42750 ﬁ}
| ||323E;q() H{ P jen

zq(~>(Lp(->)'

Definition 1.6 ([2]). Let s(-) € C°2(R") and p(-), q(-), A(-) € Zo(R™) N C°8(R™) with 0 < p_ <
p(x) < A(x) < oo. The homogeneous Besov—Morrey space with a variable exponent .47 o )))\( () B
defined by the set of all f € 2'(R™) such that

Js()A
Wy =420} haoqing, <o
The space 2'(R™) is the dual space of
PR") ={f e SR") : (D*f)(0) =0, YVa e N"}.

Definition 1.7 ([1]). Let s(-) € C'°(R") and p(-), q(-), A(:) € Zo(R™) N C'°8(R") with 0 < p_
< p() < A(") € oo. The homogeneous Fourier—-Besov—Morrey space with a variable exponent
51/1/ ) )\() o) 18 defined by the set of all f € 2'(R™) such that

1z e

= js(-), .. F1o0
(-),2().a() ”{2 @]f}—oo“[q(-)(M:((‘~))) < 00.
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Remark 1.1. . Notice that if A(:) = p(-), then from Lemma (1.2), we have MPO) = 1p0). As

)
\ p(:)
a result, JJV p(a() = 5‘7Bp( )l

o In case p = /\ = 2 we have F Ny’ = FBS, = BS =M%,

Definition 1.8 ([1]). Let s(-) € C'°8(R™), p(-), q(-), A(-) € Po(R") N C'°8(R"), T € (0,00) and
1 <¢q, 8 < oo. We define the Chemin—Lerner type homogeneous Fourier—-Besov—Morrey space with a
variable exponent £ ([0, T); F.4 ) ) by

(), A(+).q
2L (011 FN 30 50) = 1 € P®Y Mg oiyznety ) <)
with the norm
is() ‘
Wvarong, o= (S 1206 e )

Lemma 1.3. The derivation 80‘ ﬁﬂs( )t

ar
Alg 7 '/V

())\ Y 18 a bounded operator.
Proof. We have
Hagf||9:/1/;(()>A e = ”{2]8( @Jaaf} ||lq(M)‘( ))
= {2 O, l¢] 1< solliaary
S 22020, FY2 a2
< s(- @ ) 1-3
~ ||f||9%<(~>>,:<‘~>!q (13)
where in (1.3) we used the fact that || ~ 27 Vj € Z. O
Remark 1.2. As a consequence of Lemma 1.3, we have the following estimates:
”V : f”y%ﬂ(() N S Hf”y,ys(')“) S
IAfll o0 S Nfllz pe0r42
P()A()a

PO

Proposition 1.1. Let g be a smooth function on R™\{0} whz'ch is homogeneous of degree k. The
operator g(D) is continuous from fe/iﬁ.()‘))\(,)_q to ‘/’/Iﬁ() NAWE

Proof. Let u € 9%?()‘7);(’3#, we obtain

lg@)ull 5yt = ||{2j(s(')’k)<pj(S)Q(D)u@)}‘i"ooHm(M:fff)

= {2/ 0;(€)9()a} 5o llyaas MAO)

_ j(s(-)—k)
= {20 P, ©)le] g(m) e liaqar)
< PO P02 )2l

= CHUHQW?())M) -

We have the following

Proposition 1.2. For the Morrey spaces with variable exponents, the following inclusions are estab-
lished.

(1) (Holder Z.nequality) ( [2]) Litp('): pi(')’ p2(')1} /\()’ )‘1('); >\2() c g@o(Rn) such thatp(:n) S )\(x),
pie) < Malw), p2@) < 2(), ey = L T )
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1
and = + . Then there exists a constant C depending only on p_ and such that

19120 < CllAllapao gl
holds for every f € M ) and ge M (( ))
(2) ([2]) Let po(-),p () Mo();A1(), () € Po, and so(-), s1(-) € L™ NC8(R™) with so(-) > s1(-).

1
If el and so(z) — s = s1(z) — 55 are locally log-Holder continuous, then
s0(+) s1(°)
Moot 201a0) T P OM a0 (1.4)
(3) ([2]) For p(:) € C'8(R") and 1) € L*(R"), assume ¥(z) = sup [|¢(y)| is integrable. Then
y¢B(0,|x|)

£ %%l gy < O a1 ¥ e,

1 1
forall feM (())( "), where e = —1(=) and C depends only on n.
e e

In our discussion, we will use the following result related to the Chemin—Lerner space, which deals
with the product of two functions in this space.

Proposition 1.3 ([28]). Let 1 < p,q,r,11,r2 < 00 and s1,82 € R such that s < ,, s9 < , and

$1 4 89 > max{; — %,0}, where 1/p+1/p" = 1. Then for u € FB;!,,v € #B;?,, one has
||uv||$T(O’T;<g/73;}q+52*“'/P') < C”uHD%” (O,T;ﬂB;}q)HU||$""2(0,T;<?B;,2Q)’ (15)

where £ = L 4+ L.
T T1 T2
Remark 1.3. If we take p = 2, then (1.5) becomes

||UU||$,«(OTL¢W91+92 n/v') < Ollull g 017 N3, )||U||3Tz 017N 5% )

2. WELL-POSEDNESS

In this section, we use contraction mapping in the critical Banach spaces to obtain the global
well-posedness of the Debye—Hiickel system.

Lemma 2.1 ([3]). Let X be a Banach space with the norm ||-|| and B : X x X — X a bilinear operator
such that for any 1,22 € X, ||B (1, z2)|| < n||x1|| ||z2||, then for any y € X such that 4n|y|| < 1, the
equation x = y + B(z,x) has a solution x in X. In particular, the solution is such that ||z|| < 2||y||
and it is the only one such that ||z|| < %

Now, we consider the Cauchy problem of the dissipative equation
ug — Au = f(x,t) %n R™ x RT, @21)
u(z,0) = g in R”,

for which we have the following
Lemma 2.2 ([28]). Let I = [0,T), T € (0,00], 1 < r, ¢ < o0, p(-), pl() () € Py(R"™),

p1() < p(4), () M) < oo and s(-) € C'8(R"™). Assume that ug € 9/1/ ‘(j() and f €

.,2”( L,FZN PN ‘Z)( " ) Then the Cauchy problem (1.1) has a unique solution u € foo(f;

s()+
PN IE‘”)QXT( ‘/Vp()A ) such that for all r1 € [r,o0],
et S S luol| st Il SO+ —R~+2o2 -

el o ,
p1 <>xl<(>)q TN yyara (1,7 v

Moreover, if ¢ < oo, then u € ‘5([ JJVZ,I( ;(())q)
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We are now in the position to present our first main result.
Theorem 2.1. Let p(-),A\(:) € P (R") N C*e (R"), 2 < r < 400, 2 < p(-) <6, p(-) < A(+) < 0
and 1 < g < 3. Then there exists a positive constant oo such that for any initial data (vo,wo) €

o _n_
/() :
FN ()X (yq Wit

||(U0,’U)0)H —2+p/72_) < oo,
METORYOR"
system (1.1) has a unique global solution (v,w) € ¥, where

+p/rz)+2 r(m+. g -2t 5+2 o (m+. g p2t%
)z (REZa 5 Y n g (R 75 ).

v = (R 74,70

In addition,

10, wllar S lwo, wolll - 2+ 575

p(:),A().q
Remark 2.1. e Recently, Cui and Xiao [15] established the global existence of (1.1) in the
Fourier-Besov space # B, , with s = —2 + ﬁ. Consequently, Theorem 2.1 extends and com-

plements his result.
e Theorem 2.1 can be seen as a meaningful complement to the corresponding results of the
Debye—Hiickel system in usual Fourier—-Besov—Morrey spaces.

Proof of Theorem 2.1. According to Duhamel’s principle, the mild solution (v,w) for system
(1.1) can be represented as

t)vg — /%/(t —7)V - (V@) (-, 7)dT := 21 (v, w),

= (t)wo — /%/(t — 1)V - (wVo) (-, 7)dr := Za(v,w),

where J (t)u := e'®u = F 1 (e " F (u)).
It is worth noting that the space %" defined in Theorem 2.1 is a Banach space equipped with the
norm

2+2
)’

l[ulle = Hu”gr( —ar g+ T el A + Il Hx&(ﬂw S FN

. LrRY,FN
TN (A ( 224

Let ,
= /%(t — 1)V - (V@) (7, z)dr
0
We define the mapping ¢ as: ¥ (v,w) := (Z1(v,w), Z2(v,w)) = (v,w). Notice that ¢ (t)vy can be

regarded as the solution to equation (2.1) with f = 0. According to Lemma 2.2 and considering the
assumption p(-) > 2, we obtain

2 ()voll Carp 2y S vl —24 s
= (R K i a ) TN i XS
% _ < n
| UO||$, <R+ FNy 22 +2 ) < ol Jfo;(/())q’
e%/ n < n .
O,y S0, ooy
Then [[# (t)vollay S llvoll 24 2
BPYOR
Similary, || (t)wolly S Hon 247 - Thus
p(+),A(),q
(A (t)vo, H (H)wo)ll g < C [|(vo, wo)ll 24 s (2.2)

p(-),A(),q
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We have the following bilinear estimate:

12 (v, §)llar < Call(v, )] (2.3)
Indeed, let p*(-) = GPIE'()) and s(-) = =2 + 70 %, using Holder’s inequality, Hausdorf-Young’s
inequality, Young’s inequality, embedding (1.4), and Proposition 1.3, we get

| %B(v, )| < e +%>
zr (vt gy PO

¢
_ / H(t—1)V - (0V)dr
/ $T<R+g‘7”/<>f<(>)q >
¢
,S /QJS() —(t— ”')‘E‘ ( . (Uvd)))dT
(Rt )
L (R+’Mp(‘)) la
¢
< / oD COR S L NF @Vl a0 dr
Lp* ) o LT (R+)
0 K
¢
S / rp ()2](5 )+1)(p e . ||’UV¢||M%('> dr
Lp*() g L7 (Rt)
0 b
¢
< Qi (— 15 +2) o= (t=7)2% || 57T 9~ 5T o HA \Y% H d ‘
~ / " e Lr* ) s(vV9) Mgt ! Lr(R*)
] 5 lq
< || |[27(=3+%+2) HA vV¢ H ‘e*t22j22j‘
sVe) Mg || ey HED,
(342 || ;
5 2.7( 3+6+7")‘A]('UV¢) .
L8 llLr @) ||q
<
< ||UV¢)”3T(R+ oy —a+ g2y
<
~ HUV¢)”$T(R+ TN
<
1ol g 50 2+2)|\ [ s i) (2.4)
where in inequality (2.4) the following fact is used:
127757 05 L
_ 27079,
:1nf{)\>0:/ﬁ de <1}
R3
: A
=inf{A >0 : ‘7 27"dz <1}
R3
6p(2%)

-rG G0 < 1

=inf{A>0 : /‘cp

<C.
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Since ¢ = (—A)~!(w — v), Lemma 1.3 implies that
||V¢|| i pngz S ||(an)H 24242 -

LTREFN 5,207 LR TN 5,00 )

Thus we have

Ile%}('l)>¢)|| ( 72+%+%>
o rtigy PO

p(),A(),q

<
< v Hgoo(w st [| (v, w)]|a
S w,w)ll
Similary, we obtain
% n
H ('anb)H (RJr ?/V22+ 5 )mfoo(Rﬂff/V;i:i)
N [CEDIES

Consequently, the desired estimate (2.3) is established.
By using the estimate (2.3), we get

121 (v, w) |l 5 < 1| (ol 5 + Co || (v, w)|5, -

Similary, we obtain
122 (v, w) g < | (E)woll oy + Co [|(v,w) 3 -

[P (v, w)llg < ([(A ()vo, H# (t)wo)ll g + Ca H(v,w)\@-

By Lemma 2.1, we know that if ||(JZ (t)vo, # (t)wo)|ls < k with k = c then ¢ has a fixed point
in the closed ball B(0,2k) := {z € # : ||z|la < 2x}. From the estimate ( 2), there exists a positive
constant C7 depending only on n such that

1A (t)vo, A (t)wo)llg < Cull(vo, wo)ll 2 s

4O
r(:),A(),q

Thus, if ||(vo, wp)l| 2+p/() < o with o = &, then we have [|(J(t)vo, # (t)wo)ll5 < x. This
. ) AC)a

proves the global existence for small initial data.

3. GEVREY CLASS REGULARITY

In this section, we show the analyticity of the solution obtained in Theorem 2.1 (in the sense of
Gevray class).
Our second main result of this paper is given below.

Theorem 3.1. Assume that p(-),\(:) € Py (R") N C8 (R™), 1 < r < 400, 2 < p(-) <6, p(-) <
M) < 00 and 1 < q < 3. Then there exists a positive constant of, such that for any initial data (vo, wo)

in FN T with
in FN ) N Vi
||(v0,w0)|\ —2p_p < oy,

system (1.1) has a unique analytic solution such that
H (eﬁ\m VD] )H S o, wo)|  sep
TN o)A

where eVHPly = Z1(eVillg),
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Proof. Let us sketch the proof of Theorem 1.2. Setting V(¢) = eVUPlu(t), W(t) = eV!Ply(t) and
®(t) = eViPlg(t) = W(t) — V(t). Then we see that (V(£), W(t)) satisfies the following integral
system:

t
V(t) = eVIPL# (v — /e[(ﬁ—@lDlHt—sm}v LeVAIDI (e—ﬁlD\V(s)e—ﬁlDIW(s)) ds
0
1= eVUPLA (tyvy — B(V, ®),

W(t) = eVIPlg (t)wy +

\ﬁ

l(VDIPIE=08]g VAP (o=VAIPIyy (5)e=AIPI V0 (s) ) ds

= VPl (t)wo + %(W,(I)).

We recall an auxiliary lemma that will help us to prove that the global-in-time mild solutions of
system (1.1) are Gevrey regular.

Lemma 3.1 ([3]). Let 0 < s <t < oo. Then the following inequality
1 1
tlal = 38 <)laf?  sla —b] bl < ©
holds for all a,b € R™.

In order to obtain the Gevrey class regularity of the solution, we start with estimating the lin-
_ n 2
car term eVPI ¢ (t)vy. Using the Fourier transform, multiplying by 2 SUORE @, and taking the

L"(RT; M (())) -norm, we obtain

< Hex/ﬂﬁ\ftlﬁﬁgﬂ'(*%ﬁ%)

2]( 2+p’() 2 e\[‘Dt%/( )

(R4 A )
LR M ()

i)
SD] 0 LT(RJF'M)\('))
()

. 2
< He—%\£\223(—2+ﬁ.)+?)

@jﬁo‘ N
ot A
Lr®HAD)

where we have used the fact that eVHEI=3tEl* — =3 (VEEI-1)*+3 < 3.
Hence, by taking the [?-norm, we conclude that

He‘/zw'%(t)vo” ol 24 s
LTREGFN Ly ) P().A().a
Analogously, we have
VID| H <
e t)v v —2+f~
H (t)vo L ®EFN 2+ +$) [[voll ) pfif(’_(;))q
and
VD] 5
e t)v Coin S n_ .
H (£)vo LR TN ;52 ) <l Ouywpf;r;’(())q
Then Heﬁ‘D‘Jf(t)voH@ Slvoll o —avins
p(:),A().q
|, Slhwoll op
¥ P(‘)’f(‘()’)q
Thus
/Pt (0w, P Wywo)|| | S w0 wo)ll ar
a P ()
p(-):A(+).q
On the other hand, let
n 2
s() == —2 —.
©) IO



GLOBAL WELL-POSEDNESS, GEVREY CLASS REGULARITY FOR THE DEBYE-HUCKEL SYSTEM 29

Using Lemma 3.1, we get

10.

11.

12.

13.

14.

15.

—

2750, B(V, @)

r(R+: M)
Lr(RT5M, ()

t
< 2j(s(-)+1)<pjex/ﬂ£\/ef(tfr)lélz(e—ﬁ\D\V/e—\ﬁlDlv@)dq—
0 Lr(REMy()
i
< ||2i0 D eVl / e (1=l / (e-VTEV(E = y)e VIV () dydr
0 Rn LT(R-F;M;\((‘.)))
t
< 2(3(.)+1)(‘0j/e—%(t—r)|f|2/e\/ﬂ{\—%(t—‘r)\£|2—\ﬁ(|§—y|+‘y|)(V(g_y)VQ)(y))dydT
Lr R+ M)y
0 B p(-)
t
. _l(t_r 2 T NS A
< 2j(s<,)+1>%/e L)l /(V(g_y)VCD(y))dydT
Lr(R+;MN))
0 Rn p(+)
t
< 2j(s<~>+1><pj/ef%ufﬂmﬁ(ﬁﬁ)m :
0 LT(R_F;M;((.‘)))

repeating the same arguments used to obtain the bilinear estimate (2.3), we get
1V, )| S IV W)l 0
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