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SOLUTIONS OF SINGULAR INTEGRAL EQUATIONS OF GENERALIZED

CONVOLUTION TYPE

ABBAS SEDKY NAGDY AND KHALED MAHMOUD HASHEM

Abstract. This article presents a class of singular integral equations of convolution kind in the
class {0}. Fourier transforms are used to transform these equations into Riemann boundary value

problems (RBVPs) with discontinuous coefficients. For such problems, we proposed a novel method

and found the solutions in the class {0}.

1. Introduction

In several fields, especially engineering mechanics, physics, elasticity theory and fracture mechanics,
the boundary value problems for analytic functions have been widely used. Many boundary value
problems for analytic functions and singular integral equations with Cauchy kernel have seen extensive
study and are widely used by many authors (see [5,9,10,15]). Convolution type integral equations and
singular integral equations are the two important classes of integral equations. These equations are
transformed into novel, discontinuous RBVPs by using Fourier transforms, different from the classical
ones. The aim of this paper is to develop an application of the theory to generalised convolution-type
singular integral equations with a Cauchy kernel. We investigate the problem in both cases, normal
type and non-normal type, by using the theory of integral equations and the generalized theory of
resolvent kernel operator. In this paper several results are improved (see References [1, 16,19].

2. Preliminaries

Definition 2.1. We say that ∅ (x) is an element of a space with Hölder continuous functions H
on [−N,N ], if any positive real integer r exists such that for any x1, x2 ∈ [−N,N ] , the condition
|∅ (x2)− ∅ (x1)| ≤ r |x2 − x1|α (0 < α ≤ 1) holds.

Definition 2.2. Suppose ∅ (x) is a continuous function on the entire real domain. The function

∅ (x) ∈ H̃, if the following conditions are satisfied:
(i) ∅ (x) ∈ H on [−N,N ] in the case of any large enough positive number N .

(ii) |∅ (x2)− ∅ (x1)| ≤ k
∣∣∣ 1
x 2

− 1

x1

∣∣∣ for any |xi| > N (i = 1, 2), k > 0.

Definition 2.3. Let the function ∅ (x) satisfy the conditions:

(i) ∅ (x) ∈ H̃.
(ii) ∅ (x)∈ L1 (R), where L1 (R) =

{
∅ (x) |

∫
R
|∅ (x)|dx < ∞

}
.

The function ∅ (x) ∈ {{0}}, if the Hölder criterion for a neighborhood N∞ of ∞ is satisfied, we
denote as ∅ (x) ∈ H (N∞) .

Definition 2.4 (see [4,6,13,14,17,18]). (1) If the function ∅ (x) belongs to the class{0}, the Fourier
transform of ∅ (x) is

F [∅ (x)] = 1√
2π

∫
R

∅ (x) eisx dx = Φ(s) ,

belongs to the class {{0}}.
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(2) The convolution for any functions f (x) , g (x) ∈ {0}, has the form

(f ∗ g) (x) = 1√
2π

∫
R

f (x− t) g (t) dt, t ∈ R.

(3) The operator T of the Cauchy principal integral is defined as follows:

Tf (x) =
1

πi

∫
R

f (y)

y − x
dy.

Lemma 2.1. If f (x) ∈ {0} , then F [Tf (x)] = − sgn (s)F (s), where F (s) = F [f (x)].

Proof. We have

F [Tf (x)] =
1√
2π

∫
R

[
1

πi

∫
R

f (y)

y − x
dy

]
eisxdx

= − 1√
2π

∫
R

[
1

πi

∫
R

eisx

x− y
dx

]
f (y)dy. (2.1)

Extended Residue Theorem provides us with

1

πi

∫
R

eisx

x− y
dx =


eisy s > 0,

0 s = 0,

−eisy s < 0.

(2.2)

Substituting (2.2) into (2.1), we obtain

F [Tf (x)] = − sgn (s)
1√
2π

∫
R

f (x) eisxdx = − sgn (s)F (s) .

Similarly, F [Tf (−x)] = − sgn (s)F (−s). □

Lemma 2.2. If f (x) ∈ {0}, then F [sgn(x)f (x)] = TF (s).

Proof. We have

F [ sgn (x) f (x)] =
1√
2π

∫
R

sgn(x)f (x) eisxdx

=
1√
2π

∫
R+

f (x) eisx dx+
−1√
2π

∫
R−

f (x) eisx dx

= F+ (s) + F− (s) ,

where R+ = [0,∞), R− = (−∞, 0].
Since TF = F+ + F−, therefore F [sgn (x) f (x)] = TF (s). □

Lemma 2.3 (see [5]). If the functions f, g ∈ {0} , then
(f ∗ g) (x) ∈ {0} , F [f ∗ g (x)] = F (s)G (s) ,

where F (s) = F [f (x)], G (s) = F [g (x)].

3. Presentation of the Problem

We study the solutions of the following generalized singular integral equation (SIE ) with a convo-
lution kernel :

af (t) + bTf (t) + cT ( d ∗ f) (t) + (α ∗ f) (t) + (β ∗ sgn (y) f) (t)
+ sgn (−t) (r ∗ f) (t)

+(r ∗ (sgn (y) f) (t) = g (t) , (3.1)
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where a, b, c are the constants, the functions d (t), α (t), β (t), r (t), g (t) ∈ {0}.
In this article, we present a novel method [17, 18] for solving equation (3.1), this method differs

from the classical methods [2,4,6,8]. Applying Fourier transforms to both sides of equation (3.1) and
using Lemmas 2.1–2.3, we obtain

A (x)F (x) +B (x)TF (x) +

∫
R

K (y, x)F (y) dy = G (x) , x ∈ R, (3.2)

where A (x) = F [α (x)]− c sgn (x)F [d (x)]− b sgn (x) + a, B (x) = F [β (x)],

K (y, x) = − 1

πi

r (y)− r(x)

y − x
.

By the inverse Fourier transform, f (x) = F−1 [F (x)], the solution of equation (3.2) is the same as
that of equation (3.1).

Section 3.1 The case of normal type. If A (x) ± B (x) ̸= 0, equation (3.2) is said to be of the
normal type. We look for the general solution of the following characteristic equation of (3.2):

A (x)F (x) +B (x)TF (x) = G (x) , x ∈ R. (3.3)

We define the holomorphic function

Ψ (z) =
1

2πi

∫
R

F (y)

y − z
dy, z /∈ R. (3.4)

From the Plemelj formula [15], we have

F (x) = Ψ+ (x)−Ψ− (x) , TF (x) = Ψ+ (x) + Ψ− (x) , x ∈ R. (3.5)

Substituting equation (3.4) into equation (3.3), equation (3.3) is related to the Riemann boundary
value problem (RBVP)

Ψ+ (x) = N (x)Ψ− (x) +M (x) , x ∈ R, (3.6)

where

N (x) =
A (x)−B (x)

A (x)+B (x)
, M (x) =

G (x)

A (x)+B (x)
.

Let χ = IndR N (x) = 1
2π [argN(x)]R, then we called the value χ is the index of

problem (3.6). Let the two points in the upper– and lower-half of the planes z2, z1, respectively, be

fixed, then Ind
(

z−z2
z−z1

)−χ

N (x) = 0. We take a continuous branch of logN(x) such that logN (∞) = 0,

letting σ =∝ +iθ = 1
2πi {logN (−0)− logN (+0)}. If ∝ is an integer, then x = 0 is referred to as an

ordinary node, otherwise when x = 0, is called as a special node. We define

X+ (x)

X−(x)
=

A (x)−B (x)

A (x)+B (x)
, (3.7)

X (z) =

{
eΓ(z) ReZ > 0(

z−z1
z−z2

)χ

eΓ(z) Re z < 0
,

Γ (z) =
1

2πi

∫
R

log
[(

y−z1
y−z2

)χ

N (y)
]

y − z
dy.

If the order of Ψ (z) in (3.6) are m at infinity, we define the solution obtained in Rm. From equation
(3.5), we have Ψ (∞) = 0, therefore we look for a solution of equation (3.6) in R−1. From the method
used in [3, 11,12], we have the following:
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When χ ≥ 0, equation (3.6) has the solution

Ψ (z) =
X (z)

2πi

∫
R

G (y)

[A (y)+B (y)]X+ (y) (y − z)
dy +X (z)Pχ−1 (z) , z /∈ R, (3.8)

where Pχ−1 (z) is an arbitrary polynomial of degree χ− 1.
When χ < 0, equation (3.6) has a unique solution if and only if the conditions∫

R

G (y) yj

[A (y)+B (y)]X+ (y)
dy = 0, j = 0, 1, 2, . . . ,−χ− 1

are satisfied. From equation (3.7), we suppose

Z (x) = [A (x)+B (x)]X+ (x) = [A (x)−B (x)]X− (x) ,

A1 (x) =
A(x)

A2 (x)−B2 (x)
, B1 (x) =

B(x)

A2 (x)−B2 (x)
.

From equations (3.8) and (3.5), we obtain the following general solution F◦(x) of (3.3):

F◦ (x) = Ψ+ (x)−Ψ− (x) = ρG (x) + B1 (x)Z (x)Pχ−1 (z) ,

where

ρG (x) = A1 (x) G (x)− B1 (x)Z (x)

πi

∫
R

G (y)

Z (y) (y − x)
dy.

When χ ≥ 0, by the Vekua regularization method [7] in equation (3.2), we get the Fredholm integral
equation (FIE)

F (x) + ρH (x) = F◦ (x) , x ∈ R, (3.9)

where

H (x) =

∫
R

K (y, x)F (y) dy, x ∈ R.

Hence the solution f (x) of equation (3.1) belongs to {0} and the solution F (x) of equation (3.2)
belongs to {{0}}.

When x = 0 is an ordinary node, the condition

H (0) = G (0) (3.10)

must be necessary for equation (3.9) solved in {{0}}.
If x = 0 is a special node, C0 is a polynomial constant term of the polynomial Pχ−1, the condition

C0 +
1

2πi

∫
R

H (y)−G (y)

Z (y)
dy = 0

holds. When χ < 0, in addition to condition (3.10), the condition∫
R

H (y)−G (y)

Z (y)
(y − z1)

−j
dy = 0, j = 1, 2, . . . , (−χ) (3.11)

must be satisfied when x = 0 is an ordinary node.
If x = 0 is a special node, the condition∫

R

H (y)−G (y)

Z (y)
y−1dy = 0

should be added to formula (3.11) for the solvability. The Fredholm integral equation

F (x) + ρH (x) = ρG (x) , x ∈ R (3.12)

is obtained by using the regularised equation (3.2).
Applying the concepts of Fredholm integral equations to equations (3.9) and (3.12), we obtain the

following results:
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Theorem 3.1. If χ ≥ 0, the solution of equation (3.9) exists if and only if the conditions∫
R

F◦ (x)uj (x) dx = 0, j = 1, 2, . . . , n

are satisfied, where u1, u2, . . . , un are the set of all solutions of the corresponding homogeneous equation
(3.9). The solution of equation (3.9) is

F (x) = ∆ (x) +

n∑
j=1

kjuj (x) , (3.13)

where kj, j : 1 → n are the constants and

∆(x) = F◦ (x)+

∫
R

η1 (y, x)F◦ (y) dy,

where η1 (y, x) is the resolvent kernel of equation (3.9) (see [2]).

From equation (3.13), the solutions of equation (3.1) in the class {0} is expressed by

f (x) = F−1 [F (x)] .

If χ < 0, the necessary and sufficient conditions for the solutions of equation (3.12) in the class
{{0}} has the form ∫

R

G(x)uj (x) dx = 0, j = 1, 2, . . . , n,

and the general solution of equation (3.12) is

F (x) = ∆∗ (x) +

n∑
j=1

kjuj (x) , x ∈ R, (3.14)

where

∆∗ (x) = G (x) +

∫
R

η2 (y, x)G (y) dy, x ∈ R,

and, η2 (y, x) is the resolvent kernel of equation (3.12). From equation (3.14), hence the solutions of
equation (3.1) in the class {0} is expressed by

f (x) = F−1 [F (x)] .

Section 3.2 The case of non-normal type. Consider the functions A (x)+B (x) and A (x)−B (x)
having common and equal order zero points r1, r2, . . . , rm (rj ∈ R) with the orders a1, a2, . . . , am, re-
spectively, and A (x)+B (x) contains a number of zero points r′1, r

′
2, . . . , r

′
n

(
rj ̸= r′k, r′k ∈ R

)
with

the orders b1, b2, . . . , bn, respectively, A (x)−B (x) contains a number of zero points r′′1, r
′′
2, . . . , r

′′
q,

(rj ̸= r′′i, r
′′
i ∈ R) with the orders c1, c2, . . . cq, respectively.

Let

ω1 (x) =

n∏
j=1

(x− r′j)
bj , ω2 (x) =

q∏
j=1

(x− r′′j)
cj ,

n∑
j=1

bn =Q1,

q∑
j=1

cj = Q2,

where aj ≥ 0, bj ≥ 0, cj ≥ 0. Equation (3.6) can be written in the form

Ψ+ (x) =
ω2 (x) (x− z1)

Q1

ω1 (x) (x− z2)
Q2

Ñ (x)Ψ− (x) +M (x) , x ∈ R, (3.15)

where Ñ (x) ̸= 0 x ∈ R.
By the generalized Liouville theorem, the general solution of the homogeneous equation (3.15) is

given by

Ψ̃ (z) =

{
X (z)ω2 (z) (z − z1)

Q1−χ
Pχ−Q1−Q2−1 (z) Re z > 0,

X (z)ω1 (z)
(z−z2)

Q2

(z−z1)
χ Pχ−Q1−Q2−1 (z) Re z < 0,
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where Pχ−Q1−Q2−1 (z) is a polynomial of degree (χ−Q1 −Q2 − 1) ≥ 0, if (χ−Q1 −Q2 − 1) < 0
then Pχ−Q1−Q2−1 (z) = 0.

Using the generalized Liouville theorem, the solution of the non-homogeneous equation (3.15) has
singularity at r′j , r

′′
j . We use the Hermite interpolation polynomial Hl (z) of degree Q1 + Q2 − 1

with zero-points of order bj , cj at r′j , r
′′
j , respectively to find a solution to equation (3.15) in the

class {0}, then the solution is given by

E (z) =

X (z)
[
V (z)− Hl(z)

(z−z1)
χ

]
(z−z1)

Q1

ω1(z)
Re z > 0,

X (z)
[
V (z)− Hl(z)

(z−z1)
χ

]
(z−z2)

Q2

ω2(z)
Re z < 0,

(3.16)

where

V (z) =
1

2πi

∫
R

G (y)

ω2 (y) (y − z1)
Q1Z(y) (y − z)

dy, z /∈ R.

The solution in (3.16) is a particular solution of (3.15), hence the general solution of (3.15) is given
by

Ψ(z) = E (z)+Ψ̃ (z) .

Similarly to the normal type case (Section 3.1), we have:
1. If χ ≥ 0, equation (3.2) corresponds to FIE,

F (x) + ρ̃H (x) = G̃ (x) , x ∈ R, (3.17)

which satisfies the condition

[H (x)−G (x)](l)
∣∣∣
x=rj

= 0, j = 1, 2, . . . ,m; l = 0, 1, 2, . . . , aj − 1, (3.18)

where

ρ̃ H (x) =
A1 (x)U (x)H(x)

ω2 (x) (x− z1)
Q1

− B1 (x)U (x)Z(x)

πi

∫
R

H (y)

ω2 (y) (y − z1)
Q1Z(y) (y − x)

dy,

G̃ (x) = ρ̃G (x) +
2B1 (x)R (x)Z(x)

(x− z1)
χ .

When x ≥ 0, we have

U (x) =
(x− z1)

Q1

ω1 (x)
, R (x) = (x− z1)

Q1

[
Hl(x)

ω1 (z)
− ω2 (z)Pχ−Q1−Q2−1

]
.

When x < 0, we have

U (x) =
(x− z2)

Q2

ω2 (x)
, R (x) = (x− z2)

Q2

[
Hl(x)

ω2 (z)
− ω1 (z)Pχ−Q1−Q2−1 (z)

]
.

2. If χ < 0, equation (3.2) corresponds to FIE,

F (x) + ρ̃H (x) = G0 (x) , x ∈ R, (3.19)

which satisfies condition (3.18). If x ≥ 0, we get

G0 (x) = ρ̃G (x) +
2B1 (x)Hl (x)Z(x)

ω1 (z)
,

and if x < 0, we get

G0 (x) = ρ̃G (x) +
2B1 (x)Hl (x)Z (x) (x− z2)

Q2

ω2 (z) (x− z1)
Q1

.
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Theorem 3.2. If χ ≥ 0, the solution of equation (3.17) exists if and only if the conditions∫
R

G̃ (x)u∗
j (x) dx = 0, j = 1, 2, . . . , n,

are satisfied, where u∗
1, u

∗
2, . . . , u

∗
n are the set of all solutions of the corresponding homogeneous

equation (3.17). The solution of equation (3.17) is

F (x) = ∆∗ (x) +

n∑
j=1

eju
∗
j (x) , (3.20)

where ej (j = 1, 2, . . . , n) are the constants and

∆∗ (x) = G̃ (x) +

∫
R

η3 (y, x) G̃ (y) dy, x ∈ R,

where η3 (y, x) is the resolvent kernel of equation (3.17) (see [2]).

From equation (3.20), the solutions of equation (3.1) in the class {0} is expressed by

f (x) = F−1 [F (x)] .

If χ < 0, the necessary and sufficient conditions for the solutions of equation (3.19) in the class
{{0}} are ∫

R

G0 (x)u
∗
j (x) dx = 0, j = 1, 2, . . . , n,

where u∗
1, u

∗
2, . . . , u

∗
n are the set of all solutions of the corresponding homogeneous equation (3.19).

The solution of equation (3.19) is

F (x) = ∆∗
1 (x) +

n∑
j=1

eju
∗
j (x) , x ∈ R, (3.21)

where

∆∗
1 (x) = G0 (x) +

∫
R

η4 (y, x)G0 (y) dy, x ∈ R,

and η4 (y, x) is the resolvent kernel of equation (3.19). From equation (3.21), hence the solutions of
equation (3.1) in the class {0} is expressed by

f (x) = F−1 [F (x)] .

4. Example

To illustrate how the method succeeds, we give an example.
In equation (3.1) we assume

a = c = 0, b = 1, α (y) = r (y) = 0, β (y) = 4
(√

2π
)−1 (

1 + y2
)
,

g (y) =

{
2
(√

2π
)−1 (

1 + y2
)
− 2

(
2i
√
2π

)−1
, y ̸= 0,

0, y = 0,

the functions α (y), r (y), β (y), g (y) belong to the class {0}, hence equation (3.1) can be written in
the form

Tf (t) + ( β ∗ sgn (y) f) (t) = g (t) . (4.1)

Let l1 (y) = l2 (y) =
β(y)
2 , then equation (4.1) has the form

Tf (t) +
(
l1 ∗ f+

)
(t) +

(
l2 ∗ f+

)
(t) = g (t) .

By the Fourier transformation to equation (4.1), we obtain

− sgn (t)F (t) + e−|t|F+ (t)− e−|t|F− (t) = e−|t| − sgn (t) . (4.2)



154 A. S. NAGDY AND KH. M. HASHEM

Then equation (4.2) has the form

F+ (t) = C (t)F− (t) +Q(t), (4.3)

where C (t) = 1, Q (t) = 1.
Since

Γ (z) =
1

2πi

∫
R

logC(y)

y − z
dy = 0,

and from [4], the index χ = 0, X (z) = 1.
Hence, from the method used in Section 3, the solution of equation (4.3) is

F (z) =
X (z)

2πi

∫
R

Q (y)

X+ (y) (y − z)
dy + eX (z) , z /∈ R,

and then

F (z) =
1

2πi

∫
R

1

(y − z)
dy + e, z /∈ R.

From [19], we have

1

2πi

∫
R

1

(y − z)
dy =

{
1
2 Im z > 0

− 1
2 Im z < 0,

hence the solution of equation (4.3) is given by

F (z) =

{
e+ 1

2 Im z > 0,

e− 1
2 Im z < 0.

Thus equation (4.1) has the solution f (x) = F−1 [F (x)].
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equation involving Erdélyi–Kober fractional integrals on the unbounded interval. Prog. Fract. Differ. Appl. 2 (2016),
no. 3, 153–168.

14. L. N. Mishra, M. Sen, On the concept of existence and local attractivity of solutions for some quadratic Volterra

integral equation of fractional order. Appl. Math. Comput. 285 (2016), 174–183.
15. N. I. Muskhelishvilli, Singular Integral Equations. Nauka, Moscow, 2002.

16. T. Nakazi, T. Yamamoto, Normal singular integral operators with Cauchy kernel on L2. Integral Equations Operator
Theory 78 (2014), no. 2, 233–248.



SOLUTIONS OF SINGULAR INTEGRAL EQUATIONS OF GENERALIZED CONVOLUTION TYPE 155

17. Li. Pingrun, Generalized boundary value problems for analytic functions with convolutions and its applications.

Math. Meth. Appl. Sci. 42 (2019), no. 8, 2631–2645.
18. Li. Pingrun, Non-normal type singular integral-differential equations by Riemann-Hilbert approach. J. Math. Anal.

Appl. 483 (2020), no. 2, 123643.
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