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ON THE EXISTENCE OF BOUNDED SOLUTIONS ON THE REAL AXIS R FOR
SYSTEMS OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

NESTAN KEKELIA

Abstract. Effective sufficient conditions for the existence of bounded solutions satisfying the Nico-
letti condition for systems of linear impulsive differential equations on the real axis are established.
The method for constructing such solutions is given. The sufficient conditions for the existence of a
unique solution and its positivity are established, as well. As a particular case, the problem of the
existence of bounded solutions is studied.

1. STATEMENT OF THE PROBLEM. BASIC NOTATION AND DEFINITIONS

For the linear system of impulsive differential equations

Z—j = P(t)z +q(t), t € R\T, (1.1)
x(m+) —x(n—) = G(n)z(n) +uln) (=1,2,...), (1.2)

consider the problem of the bounded on R solution
sup{|lz(®)|| : t € R} < +o0, (1.3)

where P € Lioo(R;R™ ™), ¢ € Lioe(R;R™), G € Bioc(T;R"™ ™), u € Bioc(T;R™), T = {11,72,...},
1 €R (l: 1,2,...), T #Tk lfl?ék (l,k:].,Q,...).

In this paper, the effective sufficient conditions are established for the existence of solutions of
problem (1.1), (1.2), (1.3). Analogous results for the problem involving the systems of ordinary
differential equations can be found in [4,5] (see also references therein).

Quite a number of issues on the theory of linear systems of differential equations with impulsive
effect have been studied sufficiently well (for a survey of the results in impulsive systems see, e.g.,
[1-3,6], and the references therein).

In the present paper, the use will be made of the following notation and definitions:

R =] — 00; +00[; [a; 0] and ]a; b[ (a;b € R) are, respectively, closed and open intervals.

I is an arbitrary finite or infinite interval from R.

R™*™ is the space of all real n x m matrices X = (z;;)

n,m
,j=1

n
X = max > |ayl.
j=1,....m #

i=1

R"™ = R™*! is the space of all real column n-vectors z = (x;)™_,.

If X € R™", then X!, det(X) and r(X) are, respectively, the matrices, inverse to X, the
determinant of X and the spectral radius of X.

I,, is the identity n x n - matrix; §;; is the Kroneker symbol, i.e. d;; = 1 and d;; = 0 for ¢ # j
(i,7=1,2,...).

The inequalities between the real matrices are understood componentwise.

We say that some property holds in the set I if it holds on every closed interval from I.

A matrix-function is said to be continuous, integrable, non-decreasing, etc., if each of its components
is such.

with the norm
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b
V(X)) is the sum of total variations of components x;; (i =1,...,n; j =1,...,m) of the matrix-

a
function X : [a,b] — R™*™,
If X : I — R™™ is a matrix-function, then \/(X) is the sum of total variations on I of its

I
components z;; (i =1,...,n; j = 1,...,m); V(X)(t) = (v(zi;)(t)); 2, for t € I; where v(z;;)(a) = 0,

t
v(xij)(t) = V(z45) and a € I is some fixed point.

X (t—) and X(t+) are, respectively, the left and the right limits of the matrix-function X : I —
Rnxm.
[ Xloo = sup{[| X (@) : ¢ € I},
BV (I;R™ ™) is the normed space of all bounded variation matrix-functions X : I — R™*™ (i.e.,
such that \/(z) < co) with norm [|X||s.
I

BV (I; D), where D C R™*™ is the set of all bounded variation matrix-functions X : I — D.

BVio(I; D) is the set of all X : I — D for which the restriction on [a, b] belongs to BV ([a,b]; D)
for every closed interval [a,b] from I.

AC([a,b]; D) is the set of all absolutely continuous matrix-functions X : [a,b] — D.

AC\oc(I; D) is the set of all matrix-functions X : I — D, whose restrictions to an arbitrary closed
interval [a, b] from I belong to AC([a,b]; D).

AC\oo(I\T; D), where T = {m1,72,...}, m € I (I = 1,2,...), 71 # 7 (I # k), is the set of all
matrix-functions X : I — D, whose restrictions to an arbitrary closed interval [a,b] from I\T belong
to AC([a,b]; D).

ACV(I,T; D) = AC(I\T; D) N BV (I; D).

ACVioe(I, T, D) = AC1oc(I\T; D) N BVioc(I; D).

T; =T N J for every interval J C I.

B(T;R™ ™) is the set of all matrix-functions G : T — R™*™ such that

+oo
S IG@)] < +oo.
=1

Bioo(T; R™ ™) is the set of all matrix-functions G : T — R™*™ such that

Z IG(1)|| < 400 for every [a,b] C I.

TIETa,b]

L([a,b] ; R™*™) is the set of all Lebesgue integrable matrix-functions X : [a, b] — R™*"™.

Lioe(I; R™ ™) is the set of all the Lebesgue integrable matrix-functions X : [a,b] — R™*™ whose
restrictions to an arbitrary closed interval [a,b] from I belong to L([a,b] ; R™*™).

We say that the pair (X, Y) consisting of the matrix-functions X € L(I;R™*") and Y € B(T;R"*"™)

satisfies the Lappo-Danilevskii condition at the point a if

X(t)/tX(T)dT:/tX(T)dT X(t)
/tX(T)dT- <Z Y(n) = <Z Y(Tl)-/tX(T)dT

fort € I.

Definition 1.1. Under a solution of the impulsive differential system (1.1), (1.2) we understand a
continuous from the left vector-function x € ACVi,c(R, T; R™) satisfying both the system

2'(t) = p(t)z(t) + q(t) for a.a. t € R\T
and relation (1.2) for every I = {1,2,...}.
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We assume that the condition
det(l, + G(1)) #0 (1=1,2,...) (1.4)
holds.

Remark 1.1. By Definition 1.1, under a solution of the impulsive system (1.1), (1.2) we understand
the continuous from the left vector-function. If under a solution we understand the continuous from
the right vector-function, then we have to require the condition

det(I, —G(m)) #0(1=1,2,...)
instead of (1.4).

The results corresponding to this case are analogous to those corresponding to the first case given
in this paper, if we replace the expressions of type I,, + G(7;) by I, — G(7;) the intervals [s, t[ by s, t],
and the right limits by the left ones.

If a € Lioc(R;R) and 5 € B(T;R) are such that 1+ 3(r) #0 (I =1,2,...), then the problem

d
CTJ: = a(t)z for a.a. t € R\T,

z(n+) — x(n—) = B(m)z(n) 1 =1,2,...);
z(0)=1
has the unique solution §(, gy and it is defined by

exp <fta(7-) dr) I[I (A+8(m)), t>0,

g(a,ﬁ) (t) — Ot o< <t
exp <f a(T) dT) [T A+p8(m)"t t<o.
0 t<T<0

Let Y(a,p)(t,s) = §(a’ﬁ)(t)§(_alﬁ)(s) be the Cauchy function of the problem. Then

Viap)(t,s) = exp </ta(7') dr) II sen(i+B(m)) for t > s,

s s<T<t

Y(a,p)(t,s) = ’y(_alﬁ)(s,t) for t < s.
Note that the equalities
dg(_al)lg) (tvtO)
dt
N n+) € (n=) =€ M)A+ B(n)) 1=12,...) (1.6)

= —a(t)é, s (. o) for a.a. t € R\T, (1.5)

hold (see [2,3]).
Remark 1.2. Let a € L([a,b];R), B € B(T R) be such that 1+ 8(7) > 0 (l =1,2,...) and one
of the function f rydr + Y. B(n), f (r)dr+ > In|l+ B(7)| and f T)ydr+ > (1+

a<T <t a alT <t a<T <t
B(m))~B(n) be non-decreasing (non-increasing). Then the other two functlons will be non-decreasing
(non-increasing), as well.

‘We introduce the operator

v(Q)(t) = sup{r >t : ((7) < ((t+) + 1},

if ( : R — R is a non-decreasing function, and

v(¢)(t) = inf{r <t:((7) <((t—) + 1},

if ( : R — R is a non-increasing function.
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2. FORMULATION OF THE RESULTS

For every t; € RU{—o00,+o0} (i = 1,...,n), we put No(t1,...,t,) = {i: t € R}. It is evident
that N()(tl,...,tn):{l,...7n} lftZER(Z:L 5 )7 and NO(t17~- t ) lft E{ OO+OO}
(i=1,...,n).

In the case, where ¢; = —oo (t; = +00), we assume sgn(t —¢;) = 1 for t € R (sgu(t — ¢;) = —1 for
teR).

Theorem 2.1. Let
1+gii(7’l)7é0(i=1,...,n;l=1,2,...) (21)
and let there exist t; € RU{—o00, 400} (i =1,...,n) such that

szk—sup{\/mmupm( N+ ¥ bt -+ gum) ()]st € R < oo

ti<m <t

(i#k ik=1,...n), (2.2)

sup{’/l%tf ool dr+ Y (el + gt | € R < o0

ti<T<t
(i#£k; ,k=1,...,n) (2.3)
and
sup{|vi(t,t;)| : t € R} < 400 for i € No(t1,...,tn), (2.4)
where Yi(t,T) = Vpyi g0 (& T) (0 =1,...,0).
Let, moreover, the matriz S = (Sik)?,kzlf where s;; =0 (i =1,...,n), be such that
r(S) < 1. (2.5)

Then for every ¢; € R (i € No(t1,...,tn)), system (1.1), (1.2) has at last one bounded on R solution
satisfying the condition

Z‘i(tz’) =C; fO?” RS No(tl, Ce ,tn). (26)

In the case, if No(t1,...,t,) = @, conditions (2.4) and (2.6) are eliminated and the theorem takes
the following form.

Theorem 2.1'. Let conditions (2.1), ( 2) and (2.3) hold for some t; € {—o0,+o0} (i = 1,. ),
where Yi(t,T) = Y(piygi)(6T) (0 = ,n), and the matriz S = (S'Lk)l,k’:1’ where si; = 0
(i=1,...,n), satisfy condition (2.5). System (1.1), (1.2) has at last one solution, bounded on R.

Corollary 2.1. Let

1+ gii(n)>00G=1,...,n; 1 =1,2,...) (2.7)
and let there ezist t; € RU{—o0; 400} (i = 1,...,n) such that conditions (2.2), (2.3), (2. ) and (2.5)
hold, where S = (sir)i'y=1, i = 0 (1 = 1,...,n) and %i(t,7) = Y, .00 7) (0 = 1,...,n). Let,

moreover, the functions
t

Sgn(tti)[ /pik(T)dT+ > (1+9ii(71))19ik(71)],

t; ti ST <t

sgn(t—ti){ /qi(T)dT—‘r Z (1+gii(n))_1ui(n)], (i#£k; i,k=1,...,n) (2.8)

t; <<t

3
be non-decreasing on R.

Then for every ¢; € Ry (i € No(t1,...,tn)), system (1.1), (1.2) has at last one nonnegative and
bounded on R solution satisfying condition (2.6).
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If No(t,...,t,) = @, then Corollary 2.1 has the following form.

Corollary 2.1'. Let conditions (2.7) and (2.8) hold and let there exist t; € {—o0,+00} (i =1,...,n)
such that condition (2.2), (2.3) and (2.5) hold, where S = (si)iy—1, 85 = 0 (i = 1,...,n) and
Yi(t,T) = Ypingio)(t7) (@ = 1,...,n). Then system (1.1), (1.2) has at last one nonnegative and
bounded on R solution.

Theorem 2.2. Let (2.1) hold and let there exist t; € R U {—o0, 400} (4 ,m) such that
= 1,.

.

conditions (2.2), (2.3), (2.4) and (2.5) hold, where S = (sik)'y—y, Sii ..,m) and
Yi(t, T) = Ypiigin) (&, T) (i =1,...,n). Let moreover,
li%gitnf’yi((),t) =0 forie{l,....,n}\No(t1,...,tn). (2.9)

Then for every ¢; € R (i € No(t1,...,tn)), system (1.1), (1.2) has the unique and bounded on R
solution (x;)P_, satisfying condition (2.6) and

Zm — i ()] < po™ for teR (m=1,2,...), (2.10)

where py and « are the positive numbers independent of m, (Xim)f, (m =0,1,...) is the sequence of
the vector-functions of the components which are defined by

Ti0(t) = 05 Tim(t) = yi(t)

.S { / il Ppis (PN a (T A+ S st m) (1 + i) gk (7)1 (1)

k=1;k#i t; t; <<t
Gi=1,...,m; Lm=1,2,...) (2.11)

and the functions y; (i =1,...,n) are defined due to
t

yi(t) = civi(t, ti) + /%(@ﬂ%(ﬂ dr

123
+ Y vult, )1+ gia(n) Mui(m) for i € No(t, ... tn), (2.12)
tiST<t
t
w(®)= [ttt dr

t;

+ Z Yi(t, ) (1 + gis (1) tus(my) for i € {1,...,n\No(t1,...,tn), (2.13)
ti<m<t

Corollary 2.2. Let 2 (2.7) hold and let there exist t; € RU {—o0,4+00} (i =1,...,n) such that the

functions sgn(t — t;) Pu dr+ > g (’rl)) (i=1,...,n) are non-increasing on R,

t, <<t

lim inf [/p“ )dr + Z 9i: (1) } =400 forie{l,...,n}\No(t1,...,tn), (2.14)
0

t—t;
¢ o< <t

/|pzk Ndr+ D 11+ gi4(7) gin(m))]

i< <t
t

< hik sgn(t—ti)[ /p“ dT+ Z —&-g“ Tl gii(Tl) (215)

t; ti<T<t
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forteR (i #k; i,k=1,...,n) and
r(H) <1, (2.16)
where by, (i,k =1,...,n) are such that H = ((1 — dix)hik )} s -
Let, moreover,
0(G:)(t)
p=sw{| [ llars Y gt )
t

t<<v () (¢)

:tER} <+4oo(i=1,...,n), (2.17)

where Gi(t) = &(p,i.g.0)(t)sgn(t —t;) (i =1,...,n). Then the condition of Theorem 2.2 is true.
Corollary 2.3. Let there exist the points t; € R U {—o0 —|—oo} (i = 1,...,n) and the functions

a :R—>R, B :T—R(i=1,...,n) such that sgn(t — t;) (faz ydr + 51(77)) (i=1,...,n)
are non-decreasing on R and the conditions e
pii () sgn(t — t;) < uoy(t) (i =1,...,n), (2.18)
1 <gu(m) <nufi(n) i=1,...,n; 1=1,2,...), (2.19)
lpin(O)| < niwci(t) (@ # k; i, k=1,...,n) (2.20)
and
lgin(T)| < nawBi(m) (P #k; i,k=1,...,n5 1=1,2,...) (2:21)

hold on R, where H = ((1 5zk)77ik|77ii|71)zk:1-
Let, moreover,
v(9:)(t)
p; = sup ‘ / G(m)ldr+ Y1 +77iﬁi(n))_1ui(n)|‘ te R} < +00
t t<m <v(94)(t)
(i=1,...,n), (2.22)

where ¥;(t) = (0., (1) sgn(t — ;) (i =1,...,n). Then Theorem 2.2 is true.

Theorem 2.2'. Let (2.1) hold and let there exist t; € {—o0,+00} (i = 1,...,n) such that condi-
tions (2.2), (2.3), (2. 4) and (2.5) hold, where S = (sir)iy—y, s =0 (i = 1,...,n) and vi(t,7) =
Vpisgi) (& T) (E=1,...,m).
Let, moreover,
hgnlnf'yz(o t)y=0 for ie{l,...,n}.
—t;

Then system (1.1), (1.2) has the unique and bounded on R solution (z;)I,, and
Z|xz — Zim ()| < poa™ for teR (m=1,2,...),

where py and « are the positive numbers independent of m, (zim)?_, (m =0,1,...) is the sequence of
vector-functions the components which are defined by

;0 (t) = O7
t

Tim () = /fyi(t,r)qi(T) dr + Z Yi(t, ) (1 + gii(m)) M ui(m)

i ti<m <t

+ Y [ /% (&, )ik Tkm-1 (1) dr + > %t )1+ i (1) ™ gk (1) Tk -1 (71)
1

k=1,k#1i t; ti <<t

(i=1,...,n; m=1,2,...).
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Corollary 2.2'. Let ( .7) hold and let there exist t; € {—o0,+00} (i = 1,...,n) such that the

functions sgn(t — t;) (fp” Ydr+ > g”(n)) (i =1,...,n) are non-increasing on R, conditions
i ST<t

(2.15), (2.16), (2.17) and

¢

litrgit?f |:/p”(7') dr + Z gii(n)] =400 for ie{l,...,n} (2.23)
0 o< <t

hold, where C;(t) = &(p,;.q:) (1) sg0(t —t;) (i = 1,...,n), and the numbers hi (i,k =1,...,n) are such

that H = ((1 = 6ik)hir)i xy=- Then conditions of Theorem 2.2" are true.

Corollary 2.3'. Let there exist the point t; € {—o0 —|—oo} (i=1,...,n) and the functions a; : R = R,
Bi: T — R (i =1,...,n) such that sgn(t — t; (fal Ydr + > BT )) (1t =1,...,n) are non-
)

o< <t
decreasing on R and condition (2.16), (2.18)—(2. 22) hold on R, where 9;(t) = &(,a,,8:)(t) sgn(t — t;)

(i=1,...,n), and the numbers nix, ni; <0 (i,k =1,...,n) are such that H = ((1 — 8i1)nik [0l )} =1 -
Then the condition of Theorem 2.2' is true.

Corollary 2.4. Let the conditions of Theorem 2.2, or Corollary 2.2, or Corollary 2.3 be fulfilled. Let,
in addition, condition (2.8) hold. Then for every ¢; € Ry (i € No(ty,...,tn)), system (1.1), (1.2) has
the unique and bounded on R solution satisfying condition (2.6) and it is non-negative.

Corollary 2.4'. Let the conditions of Theorem 2.2', or Corollary 2.2', or Corollary 2.3’ be fulfilled.
Let, in addition, condition (2.8) hold. Then system (1.1), (1.2) has the unique and bounded on R
solution and it is non-negative.

3. PROOF OF THE RESULTS

Proof of Theorem 2.1. Let ¢; € R (i € No(t1,...,t,)) be an arbitrary fixed numbers. Consider the
initial problems

d
d—? = pii(t)y + q:(t) for t € R\T,
y(mt) —y(n—) = gu(n)y(n) +wi(n) (i=1,2,...);
y(t’t) = G,
(i € No(t1,...,tn)). By (2.1), the problem has the unique solution y; € ACV (R, T;R) and, according
to modified variation of constant formulas (see [4]), it has the form of (2.12).
Consider the system of integral equations

zi(t) = yi(t)

{ /% (t, T)pir(T)zr(T) dT + Z Vit 1) (1 + gii(m1)) ™" gin () n (12)

i< <t
forteR(i=1,...,n). (3.1)

Due to the modified variation of constant formulas (see [2]), we conclude that the vector function
(x;)f_ is a solution of system one. Moreover, it is evident that the vector-function (z;); satisfies
condition (2.6).

The solution of the last integral system will be found in ACV (R, T; R"™).

Consider the sequence of vector-functions (x;m )7, (m =0,1,...) defined by

+ Z;ﬁ [/% ()it (Txem—1 () dr + Y 7ilt, 7)1+ gik (7))~ gk (71) T —1(70)

k=1,k t; <<t

t;
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forteR(GE=1,...,n).
In view of conditions (2.2) and (2.3), from (2.12) and (2.13), we get

(yi)ie, € ACV(R, T;R"™). (3.2)
It is clear that (x;)?, € ACV(R,T;R™). Now, if we assume that
(Zim-1)T_; € ACV (R, T;R") (3.3)
for some m, then due (2.2) and (3.2), from (3.2), we get (Tim)i~q € ACV(R,T;R") and ||Zim||co <
lolloo+ > sitllanm-illoo < +00 (i =1,....n)

k=1, k#i
Therefore, condition (3.3) holds for every natural m.
Let us show that the sequence (), (m =1,2,...) converges uniformly on R.
Towards this end, it suffices to show that the functional series

Z |Zim (t) — Tim—1(t)| (i=1,...,n) (3.4)
m=1
converges uniformly on R.
According to (2.2) and (2.3), from (2.11) it follows that

([[Tim = Tim—1lloc)iz1 < SUTim—1 = Tim—2lloc)iz1 (M =2,3,...)

and, therefore,
(lzim = Tim-1lloo)icy < 5™ llyilloc)izy (m=1,2,...).
Due to (2.5) there exist numbers « €]r(S), 1] and § > 0 such that

[S™ Y < Ba™t (m=1,2...).

Hence
||-77im — xim,1||oo < ﬂoam (Z = 1, oy Mm = 1,27 .. .)7
n
where By = fa™" 37 [|yilco-
=1
So,
+oo
D> foa™
m=0

is the convergence major numerical series for the functional series (3.4) on R. From this, due to the
Weierstrass theorem the sequence ()7, (m =0,1,...) converges uniformly on R.
Let

lm @, (t) = 2;(t) for teR (i=1,...,n). (3.5)

m—+00
Then (z;)"; will be a solution of system (3.1). Moreover, it is evident that ||z;|lec < +o0 (i =
1,...,n) and by equality (3.1) and estimates (2.2)—(2.4), we have (z;), € ACV(R,T;R"™). O

Proof of Corollary 2.1. As we have proved above, system (1.1),(1.2) under the conditions of Theo-
rem 2.1, has the bounded solution on R satisfying condition (2.6) and it is obtained as the uniformly
limits R of the sequence of vector-functions (z;m—1)"; € ACV(R,T;R™) (m =0,1,...) whose com-
ponents are defined by (2.11), and y; (i =1,...,n) are defined by (2.12) and (2.13).

In view of (2.8), because ¢; € Ry (i € Ny(t1,...,t,)), it follows from (2.11)—(2.13) that z;m, () = 0
and z;(t) > 0fort eR (i=1,...,n). O

Proof of Theorem 2.2. First, we show that every bounded on R solution (z;)?; of system (1.1),
(1.2), satisfying condition (2.6) will be the solution of the system of integral equations (3.1).

By (2.9), there exist the sequences t;,, (i =1,...,n; m =1,2,...) such that

m——+oo

We assume
tim = t; fOI‘tEN(tl,...,tn) (m:1,2,) (37)
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By the modified variation of constant formula and equations (2.12), (3.7), we have

t

zi(t) = Yim (1) + Z [/'Yi(tyT)pik(T)xk(T)dTJr Z it 1) (1 + gia(n)) ™ gan () (1)

k=1,ksi -4 tim ST1<t
i=1,...,ny m=1,2,...) (3.8)
on R, where
yzm(t) = yz(t) for i € No(tl, C ,tn) (m =1,2,.. ) (39)

t

Yim (£) = i (i )1 (1 Eim) + / it 7)ai(r) dr

tim

+ Z Yi(t, ) (1 + gis (1)) tug(my) fordi € {1,...,n\No(t1,...,tn) (m=1,2,...). (3.10)

tim STI<t
Let i € {1,...,n}\No(t1,...,t,). Then because z; is bounded, by (2.3) and (3.6), from (2.13) and
(3.10), we find
lm  yim(t) = yi(t) for t € R.

m——+o0
On the other hand, due to (2.2), we get
¢

lim |:/'Yi(ta7-)pik(7-)xk(7-)d7'+ > )+ gi(r) " gk (m)ak(7)

m——+oo
tim <7<t

tim

= /’yi(t,T)pik(T).’L‘k(T) dr + Z Yi(t, ) (1 + gis (1)) " gin (7)) xn (1) for t € R.

t; ti<T<t

Therefore, from (3.8), we have

zi(t) = yi(t) + Z [/'Yi(th)pik(T)xk(T)dT+ Z it 1) (1 + g4 (1))~ gin () w (1)
k=Lk#i & ti<m<t

for t € R.

Due to (3.7)—(3.9), the last equality is true for the case where i € Ny(t1,...,tp), as well. So, it is
proved that the vector-function (z;)?_; is the solution of system (3.1).
In the proof of Theorem 2.1, we have shown that system (3.1) has the solution (z;)!_; and

mgriloo |z — Zimlloo =0 (i=1,...,n).
In addition,
|Zim — Tim—1lloo < Boa™ (i=1,...,n; m=1,2,...),

where fy and « €]0, 1] are the numbers independent of m, whence we get

m—+j m+j a
[Zimtj = Timlloo < Y Nwik = zik-1lloo < Bo D>, aF < o —a™
k=m+1 k=m+1
and
«

lzi — Zimlloo < Bo am (j=1,2i=1,...,n; m=1,2,...).

l-«o
So, estimate (2.10) holds for pg = nBya(l — )7L,
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Finally, we have to verify that system (3.1) has the unique solution (x;)" ;. Let (T;)7, €
ACV (R, T;R"™) be an arbitrary solution of the system and let z;(t) = Z;(t) — z;(t) (i = 1,...,n).
Then

n t

zi(t) = Z [ /'Vi(th)Pik(T)zk(T) dr + Z Yi(t, ) (1 + gis (1) L gar(m) 2 (1) | for t € R.

k=1,k+#i ti<m<t

Owing to this fact, in view of (2.2), (||zilleo)ey < S(||2illoo) i1, -6, (In — S)(||2illoo) T2y < Ope S
because S is non-negative, by condition (2.5), we have (||z;|loo)i2q < 0, and ||2i]jec =0 (i = 1,.
Consequently, T;(t) = z;(t) (i =1,...,n).

Proof of Corollary 2.2. Let &(t) = &pungn(t)s vi(t,7) = &@)E () and v;(t) = v(G)(E) (i
1,...,n). Due to condition (2.7), we have v;(¢,t;) >0 (i =1,...,n).

Let ¢ € {1,...,n} be fixed. First, consider the case t > ¢;. Then by (2.15) and equalities (1.5),
(1.6), we find that

|| D\./P

—1
dgidt(t) = —& 1 (t)pu(t) for t € R\T,

GHmt) =& (=) = =& (M) (L + gu(m) gu(n) (1=1,2,...)

and

] [t ollpatlar+ 3 mu,n)n(l+gn<n>>-1gik<n>|\

t; <ty <t

< han&i(t {/5 Tpa(r)dr+ Y & 1+gu(ﬁ))19n(ﬂ)}

t; <t <t
t.

So, condition (2.2) holds. Beside, we have s;; < hix (i,k = 1,...,n) and, therefore, by (2.16),
condition (2.5) holds.

If ¢ € No(t1,...,tn), then due to Remark 1.2 the functions & (i = 1,...,n) are non-increasing.
Hence the functions v;(t,%;) = Y(p,.,g.:)(t, i) (i = 1,...,n) are non-increasing and so, estimate (2.4)
holds for t > t;.

Let now i € {1,...,n}\No(t1,...,tn) be such that t;, = —oo. Due to (2.7), we find that ~;(0,¢) =
exp(l — &;(t)) for ¢ < 0. Therefore, owing to (2.23), we can conclude that

hggg_lf 7:(0,%) = 0.

Consequently, condition (2.9) holds for the case.

Let us verify (2.3). Let i € {1,...,n}, t;, € RU{—00, 400} and t > ¢; be fixed. Then (;(7) = —&(7)
for 7 > t;,¢;(t;) = 0. Then due to the conditions of the theorem, the function ¢; is non-decreasing on
the interval [t;, +00].

Tij=A{reltut] : j<G(r)<G+D} (G=0,... k() +1),
where k;(t) = [(;(¢)] (the integer part) and let
Tij—1 if Tij1 =0,
Tio = ti; Tij =
supTi;—1 if Ty #O (G=1,...,ki(t) +1).
Let us show that
Tijr1 < vi(Ti5) (3=0,...,ki(t)). (3.11)
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Let j € {0,...,k;(¢)} be fixed. If T;; = @, then (3.11) is evident. Let now T;; # . It suffices to

show that
Tij C Qij,
where Q;; = {7 € [t;,t] : G(7) < (i(mj-1+) + 1}. It is easy to verify that
Gi(Tij—1+) = J. (3.12)

Indeed, otherwise there exists § > 0 such that (;(7;;—1+s) < (i(Tio) +J for 0 < s < 6. Next, by the
definition of 7;;_1, we have (;(7i0) + (j — 1) < (i(7j—1—) and, therefore, (j — 1) < (;i(ij-1 +5) < J
for 0 < s < §. But this contradicts the definition of 7;;_1. So, if 7 € T};, then from (3.12) and the
inequality ¢;(7) < (j+1), we get ;(7) < (i(7ij—1+)+1 and hence 7 € @Q;;. Therefore (3.11) is proved.

Due to (3.11), we find

t

uilt) < / expl&(t) — &(r))ai(r) dr

+ Y exp(&(t) = &(m)(1 + gis(m) " ui(m)

ti <<t
i (t)+1 Tij

<ene®) 3 | [ ewGommars X enGEadm) ulm)]. 61

j=1 i1 Tij—1STI<Tij

where
vi(t)E’ / bt o) dr+ 3 mu,n)n(l+gii<n>>—1ui(n>\-

On the other hand,

t

/exp(Ci(T))qi(T)dTJr Yo ep(Gm)(L+ gi(n)  uiln)

Tij—1ST1<Tij

— i | | (G <;T’./._66XP(Q(TI))(1+9iz‘(ﬂ))lui(Tl)}

Tij

<o) [ atnars > _y<1+gﬂ<n>>-1ui<n>}

Tij

<oal)| [ amars X (gt )

Tij1 Tij—1STI<Tij

Similarly, we verify that
t
[ eoGEamdrs 3 ew(Gm) +galm) ()
Tikg (1) Tik; () STI<t
<onGO)| [ amdrt X (gt )]
ik (8) Tik; (t) STI<t
t
<exp(ki(t) +1) [ / qi(T)dr + Z (1+ gii(n))_lui(n)] .

ik () Tik; () STI<L
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Taking into account the last two estimate, by (3.13), we find

Tij

v;(t) < exp(— g exp(j |:/Qi(7')d7'+ > (1+gii(7'l))_1ui(7'l):|

Tiy1 Tij—1STI<Tij

<es(-k0)| a0 [amars T 1+gutn) um)

Tio ST <Ti1

ki (t)+1 Tij
+ exp(j)( / q;(1)dr + Z (1+9ii(Tl))_1ui(Tl))]-
Jj=2 Tij1 Tij—1STI<Tij

Whence, due to (2.17) and (3.11), we have

i(t)+2
> exp(j)
1

ki (t)
vi(t) < 2p; exp(—k;(t))
= 2p; exp(—Fki(t)) exp(ki(t) + 2) exp(1)(exp(1) — 1)~

Consequently,
vi(t) < mp for t >t,, (3.14)
where = 2exp(3)(exp(1)—1)"! and p = >_ p;. So, estimate (2.3) holds on the set (—oo, ¢]. Similarly,
i=1
we show estimate (2.3) on the set [t, +00). In this case we have (;(7) = =& (7) for 7 < t;, (;(t;) =0
and

Tiyy={reltt]: i<Gr)<@G+D} G=0,..., k() +1).
The function ¢; is non-increasing on (—oo, t].
Similarly, as above, we conclude that the estimate
Tij+1 = 0i(Tij) for (7 =0,...,k (1))
holds, where
Tij—1 for Ti;—1 = 0,
Tio = ti, Tijg =
infTi;—1 if Tyj1#0 (G=1,...,k(t)+1).
Similarly, we verify that (3.14) holds. So, the corollary follows from Theorem 2.2. O

Proof of Corollary 2.3. First, as in the proof of Corollary 2.2, due to condition (2.17), we show
that the estimates

sup{‘ /Iwmm sy EDa(Ddr+ D Ngassn &I+ 0iBi(r) ™ z-(n)|‘ ;teR} < 400

ti<T <t
(i=1,...,n). (3.15)
Let ﬁi(t) = f(p”)q“)(t) and ’}/i(t,T) = fz(t)gl_l(T) (Z = 1, .. .,n).

Due condition (2.19), we have 7;(¢,t;) >0 (i =1,...,n).
In view of (2.18) and (2.19), it is not difficult to verify that

t
/pii(T)dT"" Z ln\l—&—gii(n)|
s s<T <t
t

<sgn(t—s)[ /miai(T)dT—l— Z ln|1—|—miﬁi(n)|} (i=1,...,n). (3.16)

s s<T<t
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Let us show that the estimates

' /|p7,k |d7_+ Z 1+gn Tl gzk(Tl)‘

s<T <t
t

n” s s<T <t

hold on R.
From (2.19), (2.20), (2.21), we find

‘ /pik(T)dT+ D> (14 gi(n)  gin(n)

s <t

<77ik/ai(7) dr+ Y (14 n:uB:(n)  nikBi(n)

s s<T<t

= 77Zk|: /niiai(T) d’T + Z (1 + nnﬁz(Tl))lnuﬂi(Tl)} fOf s<t (Z 7& ]ﬁ Z,k = ]., e ,TL).

Mii s s<T<t

So, estimate (3.17) holds for ¢; < t. Similarly, we show (3.17) for ¢ < ¢;, as well.
Moreover, using this way, we conclude that for ¢ € R, we have

‘/Mz ) dr + Z (14 gia(m)) ™ i(Tl)|’

s<T<t
t

gsgn(t—ti)[ /qi(r)dr—i- Z (1+77ii5i(7l))_1ui<77):|

s s<T<t

(t#£k; ,k=1,...,n). (3.18)

Hence, due to (3.15), (3.16) and (3.18), we can conclude that conditions (2.3) and (2.4) hold.
On the other hand, by (1.5), (1.6), (3.16) and (3.17), we get

‘/|’Yi(tv7')|pik(7')|d7'+ > it I+ gii(7)) " gin(71)

ti <<t

t
ik
”exp(/nuaz ) I 1+ nasin)l
0

o<t

[ ( niso; (s s) H 11+ 03 B:(1) | nisevii (7) dr

o<t

+ Z exp< /77”04Z ) H |1+77ii6i(7—j)1(1+77ii6i(7—j))77ii/6i(7—j):|
0

0<T; <™y

t
IT 1t masitol [ exo (= [msaitrrar) [T 1+l
0

o< <t o< <t

1+ niBi(m)|~ ] Zlkfrt>t (i#k; i,k=1,...,n).

0< 7'[<tZ w
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Similarly, we show the estimate for ¢ < t;. So, we have s;x < nix|ni| ™% (i, k = 1,...,n), where s;,
is the left-hand side of estimate (2.2).

Hence, inequality (2.5) follow from (2.16). By (2.21) condition (2.1) holds. So conditions of
Theorem 2.1 hold. The corollary follow from the theorem. U

Theorem 2.2’, Corollaries 2.2" and 2.3" are, respectively, the particular cases of Theorem 2.2, Corol-
laries 2.2 and 2.3 if we assume Ny(t1,...,t,) = & therein.

Corollaries 2.4 and 2.4" follow immediately from Theorems 2.2 and 2.2’ and Corollaries 2.2, 2.3,
and 2.2/, 2.3'.
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