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A REPRESENTATION THEOREM OF A RIEMANN–LEBESGUE INTEGRABLE

FUNCTION ASSOCIATED WITH A VECTOR MEASURE

HEMANTA KALITA1, RAVI P. AGARWAL2 AND EKREM SAVAS3

Abstract. We study several properties of the Banach lattice RL 1(m,X ) of Riemann–Lebesgue in-

tegrable function space associated with a vector measure m. We also introduce weakly RL -integrable
function spaces endowed with a vector measure. A representation of the weakly Riemann–Lebesgue

integral in terms of unconditionally convergent series is given. Finally, we discuss a weakly Riemann–

Lebesgue integral that must coincide with the Bochner integral only if the series is absolutely con-
vergent. In application, the conditional expectation of a weakly RL -integrable function is shown.

1. Introduction

Riemann and Lebesgue integrals admit different extensions, some of them to the case of finitely
additive, non-additive, or multi-valued measures (see [2]). The definition of one of these extensions
by G. Birkhoff [5] makes use of countable sums for vector functions with respect to complete finite
measures. This integral has thereafter undergone considerable study and been extended in [3, 6, 7, 9,
16, 23]. An important resource for the study of vector-valued functions in the integration theory are
the vector measures (see [15]). D. R. Lewis [20] developed a measure-based theory of integration into a
locally convex Hausdorff linear topological space by using a linear functional method. O. Delgado [14]
developed this theory and examined subtle distinctions between vector measures defined on a σ-ring
and σ-algebras in their L1-spaces. She even demonstrated how the space L1(m) of a vector measure
defined on a σ-ring is an order continuous Banach lattice that might not have a weak order unit. She
considered the impact of strong additivity on L1(m), since a countably additive vector measure defined
on a σ-ring may not be strongly additive. See [4, 11, 17, 24] for other related literature on the vector
measure. V. M. Kadets et al. [19] introduced two integrals, called absolute Riemann–Lebesgue (|RL |)
and unconditional Riemann–Lebesgue (RL ), for functions with values in a Banach space, relative to a
countably additive measure. The space of a Bochner-integrable X -valued function is a closed subspace
of RL 1(Ω,X ) (see [18]). In this article, V. M. Kadets et al. discussed various conditions on X , the

space of X -valued Bochner functions is complemented in RL 1(Ω,X ). A. Croitoru et al. [12] offered a
few limit theorems for collections of Riemann–Lebesgue integrable functions. The Fatou theorem and
Lebesgue-type convergence were proved in more detail. The applications of these findings are then
applied to the situation of Riemann–Lebesgue integrable interval-valued multifunctions. Although
(countable) additivity is one of the most important notions in measure theory, it may be useless
in many problems, for example, modeling different real aspects in data mining, computer science,
economy, psychology, game theory, fuzzy logic, decision making, subjective evaluation. An important
area of study is multifunction theory. Interval-valued multi-functions have also been applied to several
novel signal and image processing approaches in a few recent works. In the true sense, digital images
are the product of discretization of reality, or a sampling of a continuous stream (see [8, 10]). Some
inequalities, such as the reverse Minkowski inequality and the reverse Hölder inequality, have been
reproved for Riemann–Lebsegue integrable functions, where the integration under consideration is
obtained by using a non-additive measure by Croitoru et al. in [13]. They extend these inequalities
to the context of a multivalued case, specifically for Riemann–Lebesgue integrable interval-valued
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multifunctions. This leads to the emergence of several inequalities, including those of the Minkowski
and Beckenbach types as well as several extensions of the Hölder inequalities.

The work of A. Fernarndez et al. [17] motivates us to develop weakly RL -integrable functions with
vector measure. The technique of W.J. Ricker [24] helps us to develop our setting in a broad sense.

The article is divided into four section. In Section 2, we recall several definitions and results that
we use in our main section. In Section 3, we give several properties of RL -integrable spaces. In the
same section, we introduce weakly RL -integrable functions associate with a vector measure. Section
4 discusses how to represent the weakly Riemann–Lebesgue integral using unconditionally convergent
series.

2. Preliminaries

Throughout the article, X is a real Banach spaces with topological duals X ∗. BX and BX ∗

denote the closed unit ball of X and X ∗, respectively. We assume Σ is ring of subsets of a non-empty
set Ω and C(Σ) is the σ-algebra of sets locally in Σ. That is, A ∈ C(Σ) if and only if A∩B ∈ Σ ∀ B ∈ Σ
(see [11]). Let (Ω,Σ, µ) be a measure space with finite measure µ. In our article, µ stands for the
Lebesgue measure. We consider m : Σ → X is a countably additive vector measure or simply a vector
measure. Let M (X ) denote the space of all X -valued measurable functions on (Ω, C(Σ)). If X = R,
we simply denote M (R) by MR. We denote the set of all extended real-valued measurable functions
on C(Ω) by M ∗

R . The space of all X -valued Σ-simple functions is denoted by S (Σ,X ). If X = R,
we denote S (Σ,R) by S (Σ). Recall that a pseudometric space is a generalization of a metric space
in which the distance between two distinct points can be zero. Pseudometric spaces were introduced
by Duro Kurepa.

Definition 2.1 ([1]). Let H be a non-empty set. A pseudometric space is a pair (H, d), where d : H×
H → [0,∞), that satisfies the following properties for all x, y, z in H :

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) ∃ α ≥ 1 such that d(x, y) ≤ αd(x, z) + d(z, y).

It is easy to see metric space is pseudometric space but the following counter example shows that
pseudometric space is not necessarily a metric space.

Example. Let H =
{
1, 2, 3

}
. Let us define d(1, 1) = d(2, 2) = d(3, 3) = 0; d(1, 2) = d(2, 1) =

d(2, 3) = d(3, 2) = 1; d(1, 3) = d(3, 1) = 4. Clearly, d satisfies reflexivity and symmetry. Let α = 3,
then we can find for arbitrary x, y, z ∈ H, d(x, y) ≤ αd(x, z) + d(z, x). So, (H, d) is a pseudometric
space, but d(1, 3) = 4 > d(1, 2) + d(2, 3) = 2 shows that (H, d) is not a metric space.

Recalling a given measurable space (Ω,Σ) and a measure

m : Σ → X ,

we have the following associated pseudometric space (Σ, dm), where forA,B ∈ Σ.We define dm(A,B) =
||m||(A∆B). Let λ be a control measure for m. The space (Σ, dm) is homeomorphic to the pseudo-
metric space (Σ, dλ), associated to the measure space (Ω,Σ, λ). A vector measure m defined over Σ is
said to be separable if so is the space (Σ, dm) (see [24]).

Recalling Riemann sum as follows: For a given function f : Ω → X , let P = {Ei}∞i=1 be a partition

of Ω into a countable number of measurable subsets with
∞⋃
i=1

Ei = E, Ei ∩ Ej = ∅ for i ̸= j. The

partition P follows partition Q or P is inscribed into Q denoted by P ≻ Q if P is a finer partition.
Let ∆i = {ti}∞i=1 be the set of sampling points of P, that is ti ∈ Ei, we can define the formal series

S(f,P) =
∞∑
i=1

f(ti)µ(Ei). This series is called the absolute RL integral sum of f with respect to P

and ∆i, provided it is absolutely convergent. Recalling the upper Lebesgue integral of a real valued
function f : Ω → R+ as follows:
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Definition 2.2 ([18, Definition 4]). Let f : Ω → R+ be a function. The upper Lebesgue integral of

f,
∫
Ω
fdµ is defined as∫

Ω

fdµ = inf

{
(L)

∫
Ω

gdµ : g(t) ≥ f(t) ∀t, g is Lebesgue integrable

}
.

Also, (L)
∫
Ω
gdµ is the Lebesgue integral of g. It is also known that

∫
Ω
fdµ = +∞, if f has no

Lebesgue-integrable majorant.

Now, consider the definition of the Riemann–Lebesgue integral as follows:

Definition 2.3 ([19, 23]). A function f : Ω → X is called absolutely (unconditional, respectively)
Riemann–Lebesgue |RL | (RL , respectively) integrable over a measurable set E ⊂ [a, b] if there
exists a point x ∈ X such that for any ϵ > 0, there exists a partition P of E and for any finer
partition Q ≻ P and any set of sampling points ∆i,∥∥S(f,Q)− x

∥∥
X
< ϵ

and the sum S(f,Q) converges absolutely (unconditionally) over E. The vector x (necessarily unique)
is called the Riemann–Lebesgue µ-integral of f on Ω and it is denoted by |RL |

∫
Ω
fdµ ((RL )

∫
Ω
fdµ,

respectively).

Remark 2.1. (i) If f is |RL |-integrals, then it is also RL -integrals.
(ii) If X is finite-dimensional, then |RL |-integrability coincides with RL -integrability.

Suppose that L 1(Ω,Σ, µ,X ) or L 1(Ω,X ) is the space of all functions f : Ω → X such that∫
||f ||dµ < +∞. It is well known that if f : Ω → X is an RL -integrable function, then f ∈ L 1(Ω,X )

(see [18,23]). The norm of the space L 1(Ω,Σ, µ) is known as RL -norm, defined as follows:

||f ||L 1
=

∫
||f ||X dµ.

We denote RL 1(Ω,X ), a space consisting of all those functions that are RL -integrable. RL 1(Ω,X )

is a closed subspace of L 1(Ω,X ) and also a Banach space (see [23]). In addition, a Bochner-integrable

X -valued function space is a closed subspace of RL 1(Ω,X ). The following theorem is known to us:

Theorem 2.1 ([2, Lemma 2]). Let f : [a, b] → X be Riemann–Lebesgue integrable, then f is:

(1) Birkhoff–integrable.
(2) Strongly–Pettis integrable.
(3) Pettis-integrable.

Theorem 2.2 ([19, Theorem 1.9]). Let X be a separable Banach space. Then for X -valued functions,
an unconditional RL -integrability coincides with the Pettis integrability.

We recall some properties of Banach spaces (see also [21,22]).
A partially ordered Banach space X , which is also a vector lattice, is a Banach lattice if ∥x∥ ≤ ∥y∥

for every x, y ∈ X whenever |x| ≤ |y|.
A weak order unit of X is a positive element e ∈ X such that if x ∈ X and x∧ e = 0, then x = 0.
Let X be a Banach lattice and ∅ ≠ A ⊂ B ⊂ X . We say that A is solid in B if for each x, y with

x ∈ B, y ∈ A and |x| ≤ |y|, it is x ∈ A.
Let µ be an extended real-valued measure on Σ. A Banach space X consisting of (classes of

equivalence of) µ-measurable functions is called a Köthe function space with respect to µ if, for every
g ∈ X and for each measurable function f with |f | ≤ |g| µ-almost everywhere, it is f ∈ X and
∥f∥ ≤ ∥g∥, and χA ∈ X for every A ∈ Σ with µ(A) < +∞.
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3. RL 1(m,X ): m is Countable Additive Measure

In this section, we discuss about RL 1(m,X ); m is a countable additive measure. We assume
m : Σ → X a countable additive vector measure. The semi-variation of m is the set function

||m||(A) = sup{|x∗m|(A) : x∗ ∈ BX ∗}

where |x∗m| is the variation of the scalar measure x∗m, A ∈ Σ. A Rybakov control measure for m is
λ = |x∗m| such that λ(A) = 0 if and only if ||m||(A) = 0.

Definition 3.1 ([20, Definition 2.1]). A measurable function f : Ω → R is integrable with respect to
m if

(1) f is x∗m integrable for every x∗ ∈ X ∗ and
(2) for each A ∈ Σ, there exists an element of X , denoted by

∫
A
fdm, such that x∗

∫
A
fdm =∫

A
fdx∗m for every x∗ ∈ X ∗.

In terms of a vector measure m, we define the RL -integrable functions space as follows.

Definition 3.2. Let RL 1(Ω,Σ,m,X ) or RL 1(Ω,X ) be the space of all RL -integrable functions

f : Ω → X such that (RL )
∫
Ω
||f ||X dm < +∞.

Identifying two functions. If the set, where they differ,, has null semi-variation, we obtain a linear
space of classes of functions which, when endowed with the

||f ||m = sup

{
(RL )

∫
Ω

||f ||X d|x∗m| : x∗ ∈ BX ∗

}
,

becomes a Banach space. We denote it by RL 1(m,X ).

Theorem 3.1. The Σ-valued simple functions S (Σ,X ) are dense in RL 1(m,X ).

Proof. Let A ∈ Σ with sup(RL )
∫
A
||g||X d(|x∗m|) < ϵ

2 . Since gχA is Σ-measurable and concentrated
on an element of Σ, there is a Σ-simple function vanishing off A and satisfying

sup
x∈A

||f − g||X <
ϵ

2

[
||m||(A) + 1

]−1

.

Hence the proof is complete. □

Since simple functions are dense in RL 1(m,X ) and the identity is a one-to-one continuous map-

ping of the space of ||m||-essentially bounded functions onto RL 1(m,X ), we can define an equivalent

norm on RL 1(m,X ) as follows:∣∣||f ||∣∣
m

= sup

{∣∣∣∣∣∣∣∣(RL )

∫
A

fdm

∣∣∣∣∣∣∣∣
X

: A ∈ Σ

}
for which we have ∣∣||f ||∣∣

m
≤ ||f ||m ≤ 2

∣∣||f ||∣∣
m
.

Next, we find an important convergent result as follows.

Lemma 3.1. Let {fn} be a sequence in RL 1(m,X ) that converges almost everywhere with respect

to m to a function f and let g ∈ RL 1(m,X ) such that ||fn|| ≤ g for every n. Then f ∈ RL 1(m,X )

and {fn} converges to f in RL 1(m,X ).

Proof. The proof is similar to [4, Theorem 2.8]. □

We define the integral operator m : RL 1(m,X ) → X as

m(f) =

∫
Ω

fdm, (3.1)
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for f ∈ RL 1(m,X ). It is a continuous linear operator with the norm less than or equal to one, which
is absolutely continuous with respect to ||m|| or any control measure λ. If m is a vector measure and

f =
n∑

i=1

αiχAi is a Σ-simple function, where {Ai} ⊂ Σ are pairwise disjoint sets, we can define another

integral operator by

(RL )

∫
Ω

fdm =

n∑
i=1

αim(Ai).

It is an easy exercise to see that this definition can be expanded to all elements of the space
RL 1(m,X ). Next, we prove that RL 1(m,X ) is a continuous Banach lattice.

Theorem 3.2. The Riemann–Lebesgue integrable function space RL 1(m,X ) is an order continuous
Banach lattice.

Proof. By the Rybakov theorem (see also [15, Theorem IX.2.2]), there is x∗ ∈ BX ∗ with ||x∗|| ≤ 1

such that λ = x∗m is a control measure of m. If f, g ∈ RL 1(m,X ), such that |f | ≤ |g| λ-a.e., and
x∗ ∈ BX ∗ with ||x∗|| ≤ 1, then

(RL )

∫
Ω

||f ||X d|x∗m| ≤ (RL )

∫
Ω

||g||X d|x∗m|.

Hence

sup

{
(RL )

∫
Ω

||f ||X d|x∗m| : x∗ ∈ BX ∗

}
≤ sup

{
(RL )

∫
Ω

||g||X d|x∗m| : x∗ ∈ BX ∗

}
.

Consequently, ||f ||m ≤ ||g||m.
For order continuous: Let {fn} and {gn} are sequences in RL 1(m,X ) and fn → f ; gn → g as
n→ ∞. Then ∥∥fn ∧ gn − f ∧ g

∥∥
m

≤
∥∥fn ∧ gn − fn ∧ g

∥∥
m
+

∥∥fn ∧ g − f ∧ g
∥∥
m

≤
∥∥gn − g

∥∥
m
+
∥∥fn − f

∥∥
m
.

Since ||.||m is a lattice norm, the conclusion follows immediately. (See also [22, Proposition 1.2.3 i]). □

Using (3.1), we will prove RL 1(m) is an order continuous Banach function space with weak unit
over (Ω,Σ, λ) as follows.

Theorem 3.3. RL 1(m) is an order continuous Banach function space with weak unit over (Ω,Σ, λ),
where λ is a control measure for m.

Proof. RL 1(m,X ) is a Banach function space over the measure space (Ω,Σ, λ). Let {fn} be an order

bounded increasing sequence in RL 1(m,X ). Let 0 ≤ fn ≤ fn+1 ≤ g, where g ∈ RL 1(m,X ). If

f = sup
n
fn, then for every x∗ ∈ X ∗, {fn} is order bounded and increasing in RL 1(|x∗m|,X ) with

∥fn∥ ≤ g. Since g ∈ RL 1(m,X ), so,∣∣∣∣∣∣∣∣(RL )

∫
A

fdm

∣∣∣∣∣∣∣∣
m

= sup

{∣∣∣∣(RL )

∫
A

||fn||X d|x∗m|
∣∣∣∣ : x∗ ∈ BX ∗

}

≤ sup

{
(RL )

∫
A

||fn||X d|x∗m| : x∗ ∈ BX ∗

}

≤ sup

{
(RL )

∫
A

||g||X d|x∗m| : x∗ ∈ BX ∗

}
(using Lemma 3.1).

Therefore, m(f) ≤ m(g).
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Again, let ϵ > 0. As m(f − f1) is absolutely continuous with respect to λ, there is a δ > 0 such
that λ(A) < δ, =⇒ ||m||(A) < ϵ. Since the sequence {fn} is increasing, we have

||fn − f ||m = sup

{
(RL )

∫
Ω

||fn − f ||X d|x∗m| : x∗ ∈ BX ∗

}

≤ sup

{
(RL )

∫
Ω\A

||fn − f ||X d|x∗m| : x∗ ∈ BX ∗

}

+ sup

{
(RL )

∫
A

||f1 − f ||X d|x∗m| : x∗ ∈ BX ∗

}
≤ ϵ||m||(Ω \A) + ||m||(A)

≤
(
ϵ(1 + ||m||(Ω)

)
for n ≤ n0(ϵ).

Hence fn → f in RL 1(m,X ).

Again, inf
{
f, χΩ

}
= 0. Implying f = 0 a.e., so, RL 1(m,X ) is weak unit of the Banach lattice. □

Thus RL 1(λ,X ), and RL 1(m,X )∗ can be identified with the space of function g in RL 1(λ,X )

such that fg ∈ RL 1(λ,X ), for all f in RL 1(m,X ), where the action of g over RL 1(m,X ) is
given by the integration with respect to λ.

We will now look into the spaces that can be produced as the RL 1 of a vector measure in the
space RL 1(m,X ). In a natural way, there also arises the question whether the space RL 1(m,X )
may be a Hilbert space or a reflexive space. The following theorem gives a complete answer to these
problems, showing that the class of spaces obtained as RL 1 of a vector measure coincides with the
class of order continuous Banach lattices with weak unit.

Theorem 3.4. Let X be an order continuous Banach lattice with weak unit. There exists a vector
measure m, with values in X , such that the space RL 1(m,X ) is order isomorphic and isometric
to X .

Proof. Consider X is an order continuous Banach lattice with weak unit. Then X is an order
isomorphic and isometric to a Banach function space with respect to a probability space (Ω,Σ, λ). Let
us consider

Σ ∋ E 7−→ m(E) = χE ∈ X . (3.2)

Since X is a Banach function space, so expression (3.2) is well defined. Clearly, this is finitely
additive. Let {En} be a sequence of disjoint measurable sets. Assume Fn =

⋃n
i=1Ei for every n and

F =
⋃∞

i=1Ei are measurable. Since the sequence of sets {Fn} are increasing, therefore m(Fn) = χFn

is increasing in X . Also, for every n, Fn ⊂ F, and m(F ) < ∞ in X for m(Fn). Again,
(
m(Fn)

)
is

convergent in X to its supremum m(F ). Thus m is countable additive. Since X is order continuous,
X ∗ coincides with Köthe dual (see [21, Theorem II.b.14]).

Consider X ∗ =
{
g : S (Σ,X ) → R : g is measurable and gf ∈ RL 1(λ,X ) for every f ∈ X

}
,

where the action of these elements is given through integration with λ.
When g ∈ X ∗, Σ ∋ E 7−→ gm(E) = (RL )

∫
E
gdλ ∈ R is scalar integrable with respect to m. It is

easy to see that f ∈ RL 1(m,X ) and (RL )
∫
E
fdm = f.χE for every E ∈ Σ. So, f ∈ X . Now,

||f ||m = sup

{
(RL )

∫
E

||f ||X d|gm| : g ∈ BX ∗

}

= sup

{
(RL )

∫
E

||f ||X ||g||X dλ : g ∈ BX ∗

}
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= sup

{
(RL )

∫
Ω

||fg||X dλ : g ∈ BX ∗

}
= ||f ||X . □

So, there is an isometry between X and RL 1(m,X ).

Corollary. Let X be an order continuous Banach lattice. There exists a countably additive vector
measure m defined over a δ-ring and with values in X , such that the space RL 1(m,X ) is order
isomorphic and isometric to X .

We now study the possibility of obtaining spaces RL 1(m,X ) from measures taking the values in

a certain fixed Banach space. First we will study atoms and separability in RL 1(m,X ).

Proposition 3.1. Let f ∈ RL 1(m,X ). Then f is an atom in RL 1(m,X ) if and only if f is a
multiple of χA, where A ∈ Σ is an atom of m.

Proof. Let f be an atom in RL 1(m,X ). Assume f is non-null, non-constant, then there exists a > 0
such that the sets

E =
{
x : f(x) ≥ a

}
and F =

{
x : 0 < f(x) < a

}
have non-empty semi-variation. Clearly, 0 < f.χE < f. Since f.χE is not a multiple of f, this gives a
contradiction of the atom f in RL 1(m,X ). Hence f is a multiple of χE , where E =

{
x : f(x) > 0

}
.

Suppose E is not an atom of m, then there exists F ⊂ E such that F and E \ F have non-null

semi-variation. This is also a contradiction by f.χF , f being an atom of RL 1(m,X ). Hence, if E is

an atom of m, then χE is an atom in RL 1(m,X ). □

Corollary. RL 1(m,X ) is atomic if and only if m is purely atomic.

Lemma 3.2. The injection RL 1(m,X ) → RL 1(λ,X ) is continuous and has dense image.

Proof. Let f ∈ RL 1(m,X ). Then

||f ||λ = sup

{
(RL )

∫
Ω

||f ||X dλ

}

≤ sup

{
(RL )

∫
Ω

||f ||X d|x∗m| : x∗ ∈ BX ∗

}
≤ ||f ||m.

Hence the proof is complete. □

Theorem 3.5. RL 1(m,X ) is separable if and only if the pseudometric space (Σ, dm) is separable.

Proof. The separability of (Σ, dm) is equivalent to that of the space (Σ, dλ), where λ is a Rybakov
control measure for m. Hence the separability of (Σ, dλ) is equivalent to the separability of the space

RL 1(λ,X ). Let us assume RL 1(m,X ) is separable. By Lemma 3.2, the injection RL 1(m,X ) →
RL 1(λ,X ) is continuous and has dense image. It follows that RL 1(λ,X ) is separable. So, (Σ, dm)
is separable.

Conversely, since Σ-valued simple functions with rational coefficients over sets of sequence {En}
are dense in RL 1(m,X ), so the result follows. □

3.1. Weakly RL -integrable function spaces. In this section, we discuss few important behaviours
of weakly Riemann–Lebesgue integrable functions with respect to a vector measure m.

Definition 3.3. A measurable function f : Ω → R is called weakly RL -integrable with respect to
m if f is RL -integrable with respect to

∣∣〈m,x∗〉∣∣ ∀ x∗ ∈ X ∗.
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A weakly RL integrable function f is said to be RL -integrable with respect to m if for each
E ∈ Σ, there exists an element (necessarily unique) (RL )

∫
E
fdm ∈ X , satisfying〈

(RL )

∫
E

fdm, x∗
〉
= (RL )

∫
E

fd⟨m,x∗⟩, x∗ ∈ X ∗.

We denote a weakly RL -integrable function space by RL 1
w(m,X ). The space RL 1

w(m,X ) of all
(equivalence classes of) weakly RL -integrable functions becomes a Banach space with respect to any
Rybakov control measure for m, with the Fatou property associated with m-a.e., and the norm

||f ||w,m = sup

{
(RL )

∫
Ω

|f |d|
〈
m,x∗

〉
| : x∗ ∈ BX ∗

}
.

For simplicity, now and onwards we will denote |⟨m,x∗⟩| = |x∗m|.

Theorem 3.6.
(
RL 1

w(m,X ), ||.||w,m

)
is a Banach space containing RL 1(m,X ) as a closed linear

subspace.

Proof. Let {fn} be a ||.||w,m-Cauchy sequence in RL 1
w(m,X ). Then {fn} is Cauchy sequence of the

space RL1
(
|x∗m|, X

)
, x∗ ∈ X∗. Let λ = |x∗0m| be a control measure for m. Assume f0 = lim

n
fn in

RL 1(λ,X ). Then for a subsequence {fnj
} in E1 with λ(E1) = 0 such that fnj

(w) → f(w) ∀ w /∈ E1,

where E1 ∈ Σ. Let x∗ ∈ BX ∗ . If fx∗ = lim
n
fn in RL 1

(
|x∗m|,X

)
, then fx∗ = lim

i
fni .We can now have

a subsequence {fnj
} of {fni

} and a set Ex∗ with |x∗m|(Ex∗) = 0 such that fnij
(w) → fx∗(w) ∀ w /∈

Ex∗ . Since |x∗m|(E1 ∪ Ex∗) = 0, so, fnij
(w) → fx∗(w) and fnij

(w) → f0(w). Thus lim
n
fn = fx∗ =

f0 in RL 1
(
|x∗m|,X

)
. So, f0 ∈ RL 1

w(|x∗m|,X ) ∀ x∗ ∈ BX ∗ . Hence f0 ∈ RL 1
w(m,X ) and

lim
n

||f0 − fn||X = 0.

Next, to show that RL 1(m,X ) is a closed subspace of RL 1
w(m,X ), let fn ∈ RL 1(m,X ). If

Un is the indefinite integral of fn and U0 is the indefinite integral of f0, then {Un} is a sequence of
X -valued measures. Also, since

||Un(E)− U0(E)||X ≤ ||fn − f0||X → 0

holds for all E ∈ Σ, consequently, U0 is X -valued. Hence f0 is m-valued. □

Theorem 3.7. The following claims are equivalent:

a. RL 1
w(m,X ) is order continuous.

b. RL 1
w(m,X ) = RL 1(m,X ).

c. RL 1(m,X ) is weakly sequentially complete.

d. RL 1
w(m,X ) is weakly sequentially complete.

Proof. For a. =⇒ b. Let RL 1
w(m,X ) be order continuous and let 0 ≤ f ∈ RL 1

w(m,X ). Let
us assume an increasing sequence {fn} of simple functions such that 0 ≤ fn ≤ fn+1 ≤ · · · ≤ f
and fn → f a.e., since fn is order bounded. The continuity gives fn → f converges in norm.
Again, fn ∈ RL 1(m,X ), and the closeness of RL 1(m,X ) gives fn → f ∈ RL 1(m,X ). So,

RL 1
w(m,X ) ⊆ RL 1(m,X ). Consequently, RL 1

w(m,X ) = RL 1(m,X ).
For b. =⇒ c. Let us assume fn are all non-negative. For any x∗ ∈ BX ∗ , fn is norm bounded,

non-negative and increasing sequence in RL 1
(
|x∗m|,X

)
. So, fn → f in RL 1

(
|x∗m|,X

)
for some

fx∗ ∈ RL 1
(
|x∗m|,X

)
. Let λ = |x∗0m| be control measure for m, and fn → f0 in RL 1(m,X ). By

Theorem 3.6, f0 ∈ RL 1(|x∗m|,X ) ∀ x∗ ∈ BX ∗ and f0 = fx∗ |x∗m| a.e.. Hence fn → f in each of

the space RL 1(|x∗m|,X ). So, f0 ∈ RL 1
w(m,X ). Also, we have RL 1

w(m,X ) = RL 1(m,X ) so,

f0 ∈ RL 1(m,X ) which is order continuous. Hence fn → f0 as a norm convergent.

For c. =⇒ b. Let RL 1(m,X ) be weakly sequentially complete. Assume f ∈ RL 1
w(m,X ) and

f ≥ 0. Also, assume 0 ≤ fn ≤ fn+1 ≤ · · · ≤ fn and fn → f a.e.. Again, {fn} is norm bounded

(||fn||X ≤ ||f ||X for all n) and increasing in RL 1(m,X ). Now, by our assumption of the weak
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sequentially completeness of RL 1(m,X ), fn → f in norm. Hence f is RL -integrable. Since f is

an arbitrary element of RL 1(m,X ), so, RL 1
w(m,X ) = RL 1(m,X ).

b.=⇒ a.; a.=⇒ d. are very obvious.
Finally, d. =⇒ c. follows due to the completeness of RL 1(m,X ). □

4. Representation Theory of the Weakly Riemann–Lebesgue Integral

We will now discuss about a representation of the weakly Riemann–Lebesgue integral using uncon-
ditionally convergent series. We start with the following

Theorem 4.1. Let f : Ω → X be a measurable weakly RL -integrable function. Then f = ϕ + ψ
a.e., where ϕ is a bounded Bochner integrable function and ψ is considered to be at most countably

multi-valued in X . In particular, if ψ =
∞∑
i=1

xi.χEi then

(RL )

∫
E

fdm = (B)

∫
E

ϕdm+

∞∑
i=1

xim(Ei ∩ E),

provided
∞∑
i=1

xim(Ei ∩ E) (4.1)

converges unconditionally for each E ∈ Σ. The series (4.1) converges absolutely if and only if f is
Bochner integrable.

Proof. Assume that {an} is a decreasing sequence of positive numbers such that
∞∑
i=1

ai < ∞. We

construct an open ball B(n, f(x)) with radius an and centre at f(x). Then f(x) ⊂
⋃

x∈Ω

B(n, f(x)).

By the Lindelöf theorem, {xni }∞i=1 ⊂ Ω such that f(Ω) ⊆
∞⋃
i=1

B(n, f(xni )). As ||f − f(xni )||m is a real-

valued function, so, ||f − f(xni )||−1
m [0, an) = An

i ∈ Σ. If En
i = An

i \
( i−1⋃
j=1

An
j

)
, fn =

∞∑
i=1

f(xni )χEi
. Then

||f(x)− fn(x)||m < an on Ω. Hence fn → f uniformly on Ω. Consider ϕ(x) =
∞∑

n=2

(
fn(x)− fn−1(x)

)
.

Then

||ϕ(x)||m ≤
∞∑

n=2

||fn(x)− fn−1(x)||m

≤ 2

∞∑
n=1

an on Ω.

Also, (B)
∫
Ω
||ϕ)||mdm ≤ (2

∞∑
n=1

an)m(Ω). So, ϕ is a bounded Bochner integrable.

If xi = f(xli), l ∈ N and Ei = El
i. Consider ψ =

∞∑
i=1

xi.χEi . Since f = ϕ + ψ, f, ϕ are weakly

RL -integrable, so, ψ is also weakly RL -integrable. Indeed, for every E ∈ Σ, there is an element
xE ∈ X such that x∗(xE) = (B)

∫
E
x∗ψdm, x∗ ∈ BX ∗ . Thus

∞∑
i=1

|x∗(xi)||m|(Ei ∩ E) = (B)

∫
E

|x∗ψ|d|m| <∞. (4.2)

Next, to prove that
∞∑
i=1

xim(Ei ∩ E) (4.3)
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converges unconditionally in X for every E (by [15, Corollary 4] we have to show that (4.3) converges
to an element in X . If A =

⋃
i∈N

Ei, then

x∗(xE∩A) = (B)

∫
E∩A

x∗ψdm

=

∞∑
i=1

x∗(xi)m(E ∩A ∩ Ei)

=
∑
i∈N

x∗(xi)m(E ∩ Ei) <∞ by (4.2).

So, (4.3) is unconditionally convergent. Hence (4.1) is established.
Further, if f is Bochner integrable, then∑

i

||xi||m|m(E ∩ Ei)| ≤
∑
i

||xi||m|m|(Ei)

= (B)

∫
Ω

||f − ϕ||md|m| <∞.

Let F1 > 0 and F2 < 0 be two measurable sets such that F1, F2 form Hahn decomposition of Ω. Then∫
Ω

||ψ||d|m| =
∑
i

||xi||m(Ei ∩ F1)−
∑
i

||xi||m(Ei ∩ F2) <∞.

So, ψ is Bochner integrable. □

Corollary. Assume f : Ω → X is measurable. Then the following hold:

a. f is weakly RL -integrable if and only if f can be expressed as f =
∞∑
i=1

xiχEi for xi ∈ X ,

Ei∈Σ and the series converges absolutely m-a.e.

b.
∞∑
i=1

xim(E ∩Ai) converges unconditionally for E, Ai ∈ Σ.

In an example of Theorem 4.1, we consider the conditional expectation of a weakly RL -integrable
function as follows: Suppose λ is a probability measure on Σ and H is a sub σ-field of Σ. In any sample
space S, consider k : S → X is a weakly measurable and almost separably valued RL -integrable
function. Then it is easy to see that there exists a sequence kn of finitely valued measurable functions
kn(x) → k(x) with probability 1 as n→ ∞;

(RL )

∫
H

∥∥kn(x)− km(x)
∥∥dλ→ 0

as n,m → ∞. So, (RL )
∫
H
kn(x)dλ = (RL )

∫
H
k(x)dλ, λ-a.e.. Let us consider k(.) : H → X be

finitely valued; consider k(x) = ξi ∈ Hi, i = 1, 2, . . . and Hi ∈ H . We define RL -integrable valued
conditional expectation as

EH (k|H )(x) =

k∑
i=1

ξi.E(χHi |H )(x),

where E(χHi
|H )(x) is an ordinary conditional expectation of χHi

relative to H . Thus EH (k) : S →
X is RL -integrable, H -measurable, satisfies

(RL )

∫
H

EH (k)dλ = (RL )

∫
H

kdλ, H ∈ H (4.4)

and is unique λ-a.e.. We can prove (4.4) and its uniqueness in a similar technique of [25, Theorem
2.1]. With the help of Theorem 4.1, we can construct a representation of the conditional expectation
when k is a weakly RL -integrable function as below.
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Theorem 4.2. Let f be a measurable and weakly RL -integrable. If H is a sub σ-field of Σ, then

EH (f) = EH (g) +

∞∑
i=1

xiE
H (χEi) (4.5)

in the sense that x∗EH (g) +
∞∑
i=1

x∗xiE
H (χHi

) is RL -integrable and H -measurable with

(RL )

∫
H

fdλ = (B)

∫
H

EH (g)dλ+

∞∑
i=1

∫
H

EH (xi.χHi)dλ, Hi ∈ H . (4.6)

Proof. Suppose that (4.5) converges unconditionally λH -a.e.. If

f = gi +

∞∑
i=1

x′iE
H (χE′

i
)

is another representation of f in sense of Theorem 4.1, then f = gi +
∞∑
i=1

x′iE
H (χE′

i
) converges

unconditionally λH -a.e..
Equation (4.6) follows from the definition of conditional expectation and Theorem 4.1. □

Conclusion

The RL -integrable function spaces with countable additive measure is discussed in Section 3. An
order continuous Banach lattice of RL 1(m,X ) is discussed along with the separability of RL 1(m,X ).
In the sequel, weakly RL -integrable functions are introduced in the same section. In Theorem 3.7,
we have shown that the weakly RL -integrable function space is an order continuous and weakly
sequentially complete. In the last section, a representation theorem of the weakly RL -integrable
function is discussed in Theorem 4.1.
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