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Dedicated to Professor Alexander Kharazishvili on the occasion of his 75th birthday

Abstract. A survey is given of some results of Professor A. Kharazishvili in the field of convex and

combinatorial geometry.

We begin our presentation with some data concerning scientific biography of prof. A. Kharazishvili.
In 1972, he graduated from I. Javakhishvili Tbilisi State University, Faculty of Mechanics and

Mathematics.
In 1972–1983, he worked at I. Vekua Institute of Applied Mathematics, as a scientific researcher.
Since 1983, he holds the position of Head of Department of Discrete Mathematics at the same

institute.
Since 2006 to the present, A. Kharazishvili is also a Chief Researcher of the Department of Math-

ematical Analysis at A. Razmadze Mathematical Institute.
In 1974, A. Kharazishvili defended his Ph.D thesis in specialty–Geometry and Topology. The title

of his Ph.D thesis is: “On Some Combinatorial Properties of Subsets of Euclidean Spaces”. This
thesis was carried out without a scientific supervisor.

In 1982, he defended his Dr. Sci. thesis in specialty–Mathematical Analysis. The title of his Dr.
Sci. thesis is: “On Invariant Extensions of the Lebesgue Measure”.

In 2009, he became a corresponding member of the Georgian National Academy of Sciences, and
since 2015, he is a member of this academy.

In 2017, he was elected as an Honorary member of Bulgarian Geometrical Society.
Scientific interests of Prof. A. Kharazishvili are rather wide and cover several areas in mathematics:

convex and combinatorial geometry, real analysis and measure theory, set theory and general topology.
A survey of his results concerning the structure of various singular real-valued functions was given

in [108]. Here, we wish to present some (in fact, randomly selected) results of A. Kharazishvili in the
area of combinatorial and convex geometry.

During a long-term period, different geometric topics were (and still remain) in the sphere of his
scientific interests. From the very beginning, these interests were inspired and stimulated by the series
of popular geometry text-books written by professor V. G. Boltyanskii (see, for instance, [10,16]), who
is widely known as an outstanding geometer-topologist and one of the leading specialists in modern
optimization theory. We would like to add to the said above that A. Kharazishvili turned his attention
to various themes and questions of combinatorial geometry when he was a student of Tbilisi State
University. Moreover, being a young student of this university, he was able to infer a solution of
Sylvester’s beautiful problem on collinear points as a consequence of Euler formula for connected
planar graphs. Kharazishvili also proved that the dual version of Sylvester’s problem is valid not
only for a finite family of straight lines in the plane R2, but also for finite families of much more
general curves in R2. Unfortunately, he did not publish his first nontrivial result in combinatorial
geometry. Afterwards, an extensive series of his publications in this area of mathematics followed.
References [51–105] of the present survey reflect his long-term research in convex and combinatorial
geometry.
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1. A. Kharazishvili’s earliest paper [54] gives formulation of the following somewhat unexpected
characterization property of parallelepipeds in the Euclidean space:

A nonempty compact convex set P in the space Rm is an n-dimensional parallelepiped (where
n ≤ m) if and only if there exists a real t ∈ ]0, 1[ such that the sets P ∩ (tP + h) are centrally
symmetric for all vectors h ∈ Rm.

In the proof of this statement the main difficulty lies in establishing the fact that such a P is
necessarily a polyhedron, and then the argument can be continued by using induction on the di-
mension m. The above-mentioned result was cited by the experts in convex geometry (see, e.g.,
[21, 33–35, 37, 120, 142]). In particular, it is interesting to note that, by starting from Kharazishvili’s
result, P. Gruber [33] was able to demonstrate that the intersection of any decreasing family of paral-
lelepipeds in Rm is again a parallelepiped. For simplexes, the analogous statement, proven also some
time earlier gives a solution to one problem posed by A. Kolmogorov. It should be noted that in
the case of simplexes, their certain characterization property in the family of all nonempty compact
convex subsets of Rm leads to the required result (the mentioned characteristic property of simplexes
is due to Rogers and Shephard [133]; it easily follows from one general statement of Kharazishvili [58]
concerning locally conical sets).

In connection with the result obtained in [54], Kharazishvili posed the following problem.
Let K be a class of all nonempty compact convex sets in Rm satisfying the following conditions:
(1) K is invariant with respect to the group of all affine transformations of Rm;
(2) K is upper semicontinuous, i.e., for any decreasing by inclusion sequence {Kn : n ∈ N} of

members of K, the set ∩{Kn : n ∈ N} is also a member of K.
Give a geometric characterization of all such classes K.
As far as we know, the above problem remains still unsolved.

2. The short note by Kharazishvili [53] concerning the illumination problem of multi-dimensional
compact convex bodies deserves to be pointed out. In [53], for m ≥ 4, he gives an example of an
m-dimensional compact convex body in the space Rm which has exactly m + 1 singular boundary
points, but cannot be illuminated by any m+ 1 rays in Rn.

This result gives an answer to a problem posed by Boltyanskii and Gokhberg in [16]. In the same
paper [53], Kharazishvili shows that every compact convex body in R3 having exactly 4 singular
boundary points can be illuminated by 4 rays.

Kharazishvili’s example in R4 may be considered as a counterpart of Boltianskii’s theorem stating
that any compact convex body in Rm with at most m singular boundary points can be illuminated
by using m+ 1 rays in general position.

The note [53] was cited in a number of works (see, e.g., [11–15,17–20,35,120,126,139]).
It should be especially mentioned that for constructing his example in the space R4, Kharazishvili

starts with a 5-point set X in R3 which has the property that every three-element subset of X forms
an acute-angled triangle. The sets with this property are called at-sets (more generally, a subset Z
of the space Rm, where m ≥ 2, is an at-set if any three distinct points of Z are the vertices of an
acute-angled triangle). Note that if Y ⊂ R3 is an arbitrary at-set, then card(Y ) ≤ 5. The question
concerning finding more or less precise estimates of the cardinalities of at-sets in multi-dimensional
Euclidean spaces is of interest for discrete and combinatorial geometry. It was shown in [26] (see
also [2]) that there exist at-sets in Rm whose cardinalities are of exponential order with respect to the
dimension m (this result answers one question posed by L. Danzer and B. Grünbaum). For obtaining
their result, the authors of [26] use probabilistic methods.

In [94] and [99], Kharazishvili gives a deterministic proof of the same result. He applies the method
of induction on m and obtains a nice formula

rm = 2m((3m + 1)/2− 2m),

where rm denotes the total number of those right-angled triangles whose vertices belong to the set
Vm of all vertices of the unit m-cube [0, 1]m. It follows from the above formula that

(2m)!/(3!(2m − 3)!)− 2m((3m + 1)/2− 2m)
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is precisely the total number of those acute-angled triangles whose vertices belong to Vm. Using
appropriate estimates from below for the last number, Kharazishvili concludes that the cardinality of
a maximal at-subset of Vm is of an exponential order with respect to m.

3. In [72], Kharazishvili proved that any finite point set in the space Rm (m ≥ 2), which is not
contained in an affine hyperplane of Rm, determines a sphere-like polyhedral hypersurface, and an
appropriate algorithm to obtain such a hypersurface was described. Moreover, in the same work it is
indicated that the polyhedron bounded by this hypersurface admits a triangulation without adding
new vertices and has maximally simple combinatorial structure. Much later, for the three-space R3,
the analogous question was studied by some other authors. Among them, let us refer to:

F. Hurtado, G. T. Toussaint, J. Trias, On polyhedra induced by point sets in space, Proceedings of
15th Canadian Conference on Computational Geometry, Canada, August 11–13, 2003, pp. 107–110;

P. K. Agarwal, F. Hurtado, G. T. Toussaint, J. Trias, On polyhedra induced by point sets in space,
Discrete Applied Mathematics, v. 156, issue 1, 2008, pp. 42–54.

These authors were not aware of the above-mentioned paper [72]. In addition, it was observed
by A. Kharazishvili that the Erdös length minimizing algorithm for finding a simple polygonal cycle,
determined by a given finite non-collinear set of points in R2, successfully works in the case of points
in general position, but sometimes is not applicable if the property of general position does not hold.

4. The famous problem posed by Erdös and Szekeres in their joint article [27] is formulated as
follows:

Find the least natural number c(n) such that any set X ⊂ R2 of points in general position in R2

with card(X) = c(n) contains n convexly independent points.
Erdös and Szekeres conjectured that c(n) = 2n−2 + 1. Up to now, this conjecture has not been

confirmed, but it also has not been disproved either.
By using the countable version of Ramsey’s theorem, it can be proved that any infinite set of points

in general position in R2 contains an infinite convexly independent subset.
In the article by Kharazishvili [81], the same result is established directly, without appealing to

Ramsey’s theory. Actually, in [81], some algorithm of finding such a subset is described. On the other
hand, it is shown in [81] that for uncountable sets in R2 the analogous result fails to be true, i.e.,
there exists an uncountable set Z ⊂ R2 of points in general position such that no uncountable subset
of Z can be convexly independent. The analogous result also takes place for the space Rm, where
m > 2.

5. In combinatorial geometry of Euclidean space, various point sets with a prescribed property of
all their three-point subsets are extensively studied. For instance, an ot-set (respectively, at-set, rt-set)
in Rm is defined as a point set, all three-element subsets of which form obtuse-angled (respectively,
acute-angled, right-angled) triangles. To indicate one of ot-sets, it suffices to take arbitrarily many
points on the moment curve in Rm defined by the mapping

t → (t, t2, t3, . . . ., tm) (t ∈ [0, 1]).

It is well-known that, for m ≥ 4, this curve produces some remarkable geometric objects, and one of
them is the so-called Carathéodory–Gale polyhedron.

It can easily be seen that in the plane R2 the half-open semicircle is a maximal (with respect to
the inclusion relation) ot-subset of R2, and it is not hard to verify that no finite ot-set in R2 can be
maximal.

In [82], Kharazishvili gives a delicate combinatorial construction of an ot-set D in R2 which is
discrete and, simultaneously, maximal with respect to inclusion. In view of the discreteness of D, this
set is countably infinite.

Similar results concerning maximal ot-sets were established in [82] for the space Rm, where m ≥ 3.
In this connection, it should be remarked that a geometric characterization of all maximal ot-sets in
Rm is still unknown.

The analogous question for rt-sets was considered by Kharazishvili in [61] and it was shown by him
that if a given rt-set is not a rectangle, then it coincides with the set of vertices of some orthogonal
simplex (ortho-scheme). In [62], Kharazishvili considers the Hadwiger problem of polyhedra dissections
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into finitely many orthogonal simplexes and gives its solution for the space R4. These results of
Kharazishvili were cited in [9, 23,44–47,146].

6. In two papers [87] and [96] Kharazishvili returns to Ramsey’s combinatorial theorem and
demonstrates its usefulness in several questions of geometric flavor. In particular, he proves that,
for the space Rm and for a given natural number n, there exists a natural number k(m,n) such that
any set in the space Rm having cardinality greater than k(m,n) contains an ot-subset with cardinality
greater than n.

In the process of proving this result a finite version of Ramsey’s theorem is essentially used. On the
other hand, using infinite version of Ramsey’s theorem, Kharazishvili proves that in a real pre-Hilbert
space H all ot-sets and all rt-sets are separable, so their cardinality is at most continuum (= c).
However, the cardinalities of at-sets in an infinite-dimensional H can be arbitrarily large and, more
precisely, can be equal to card(H).

In this context, it should also be mentioned that for the space R3, Kharazishvili in his paper
[102] considers a very simple geometric statement of Ramsey type concerning uncountable families
of straight lines in this space, and shows that the validity of the statement heavily depends on the
set-theoretical nature of c, i.e., on the regularity or singularity of c.

7. In the article by Kharazishvili [75], the notion of a quasi-polygon in the Euclidean plane R2 was
introduced and examined from the topological and measure-theoretical view-points. By definition,
a quasi-polygon in R2 is any subset of R2, homeomorphic to the unit disc B2 ⊂ R2 and such that
its boundary is representable as the union of a singleton with countably many non-degenerate line
segments. Starting with the existence of a Jordan curve in R2 whose boundary is of strictly positive
two-dimensional Lebesgue measure (see, e.g., [4]; such curves were first constructed by Osgood), it
was shown in [75] that the union of an uncountable family of quasi-polygons may be non-measurable
in the Lebesgue sense. The study of quasi-polygons was continued by Kharazishvili in his works [104]
and [105] (co-author T. Tetunashvili), in connection with combinatorial realizations of abstract families
of sets as families of compact convex sets in R2. In particular, it was proved in the above-mentioned
works that in R2 there exists an uncountable family of convex quasi-polygons which is independent
in the set-theoretical sense. In this context, it makes sense to underline that any independent family
of two-dimensional polygons in R2 (which are not assumed to be convex) is at most countable.

8. In [84], the notion of a k-homogeneous covering of the Euclidean space Rm was introduced and
examined. Let k > 0 be a natural number and let F be a family of geometric figures in Rm. This
family is called a k-homogeneous covering of Rm if each point of Rm belongs to exactly k members
of F .

Let G be a family of subsets of an abstract infinite space E. In [84], a general statement was
established in terms of k and G, which enables one to claim that G contains a subfamily F forming
a k-homogeneous covering of E. This general statement (proved by using the method of transfinite
induction) is then applied to special families of figures in E = Rm. Many interesting examples of such
subfamilies F were given in [84].

To illustrate the general situation, let us consider a more concrete example. It is not hard to show
that, for any even number k > 0, there exists a k-homogeneous covering of the plane R2 with pairwise
congruent circles. This result can be obtained effectively (i.e., within ZF set theory) by presenting
an individual construction of the required k-homogeneous covering of R2 (see, e.g., [88]). For k = 1,
there exists no k-homogeneous covering of R2 with homeomorphic images of S1. But for any odd
k > 1, it can be proved that there exists a k-homogeneous covering of R2 with circles which are all
congruent to S1. The proof is based on the Axiom of Choice and it is unknown whether the existence
of such a covering can be established within the ZF theory.

Also, for the spaceR3, the following nice result takes place: there exists a partition ofR3 into circles
congruent to S1 (cf., [74,79]). The proof of this result again essentially relies on the Axiom of Choice.
Using an analogue of the Osgood curve in R3, Kharazishvili gave an example of a homeomorphic
image C of S1 in R3 such that there exists no partition of R3 into curves congruent to C. In this
connection, he posed the problem of finding a characterization of all those curves L ⊂ R3 which are
homeomorphic to S1 and are divisors of R3 (i.e., R3 admits a partition into curves congruent to L).
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As far as we know, this problem remains unsolved. The works of A. Kharazishvili in this direction
are cited, e.g., in [24,39,43,134,138,151].

9. Many interesting and intriguing geometric problems are formulated in terms of colorings of points
of the Euclidean space (see, for example, [2]). One of such problems was considered by Kharazishvili
in [97]. A three-coloring of the Euclidean plane is defined as any surjective mapping

g : R2 → {1, 2, 3},

where the set {1, 2, 3} plays the role of three distinct colors (say, blue, green, and red). A triangle in
R2 is called rainbow if its vertices carry all three colors.

The following natural question arises: how many rainbow triangles of a prescribed type (e.g.,
right-angled, acute-angled, obtuse-angled, isosceles) are there?

In [97], it was proved that for any three-coloring of the plane there are continuum many rainbow
acute-angled (respectively, right-angled, obtuse-angled, isosceles) triangles. In this connection, it
should be mentioned that the proof of the existence of sufficiently many rainbow acute-angled triangles
is based on the special case of Sperner’s combinatorial lemma.

The same work also shows that for equilateral triangles the answer is negative, namely, one can
constructively define a three-coloring of R2 such that no equilateral triangle in R2 is rainbow.

Since the cardinality of a set is not an object of first-order logic and there are axiomatic systems
of plane geometry within first-order logic, the question of the existence of rainbow triangles of a
prescribed type remains actual in the weakened axiomatic of the plane. In this direction, the work
by V. Pambuccian [128] is noteworthy where the question of the existence of rainbow triangles is
thoroughly examined for the so-called weak geometries of the plane.

A multi-dimensional variant of the above problem is discussed by Kharazishvili in [101] and [103].
In this case, the notion of (m+1)-coloring of the space Rm is introduced analogously, as any surjective
mapping

g : Rm → {1, 2, . . . ,m+ 1}.

The question of the existence of rainbow m-simplexes of a prescribed type is discussed, but it turns
out that for many (m + 1)-colorings, the answer is negative. Taking this circumstance into account
the notion of an admissible (m+ 1)-coloring is introduced in [101, 103] and it is proved that for such
colorings there are continuum many rainbow isosceles m-simplexes. Again, in the process of proving
this fact, Sperner’s lemma is essentially used. It makes sense to remark that a lot of admissible
(m + 1)-colorings of Rm can be constructed constructively. However, there are admissible colorings
which are obtained with the aid of the Axiom of Choice by starting with valuations on the ring of
reals.

10. Some works of Kharazishvili were devoted to the equidecomposability theory of polyhedra
in the Euclidean spaces (see [57, 62, 63, 66, 67, 85, 89]) and to the problems of equidecomposability of
more general subsets of a ground space E endowed with a transformation group G. For example,
he proved in [85] that the decomposition numbers of any Euclidean m-dimensional cube constitute a
co-countable subset of the set N of all natural numbers. More generally, if P is an m-dimensional
right right-angled parallelepiped in Rm, then its decomposition numbers (with respect to the family
of m-cubes) either do not exist or constitute a co-countable subset of N. Kharazishvili also observed
in [85] that, for m ≤ 3, any m-dimensional parallelepiped is primitive (for this notion of a primitive
polyhedron see [85]). At the same time, he proved that, for m ≥ 4, the unit m-dimensional cube is
not primitive.

Among other publications of A. Kharazishvili devoted to geometric topics, let us point out the
works [59,60,68,71,77] on some combinatorial properties of motions (i.e., isometries) of the Euclidean
space Rm, the work [65] in which a solution to Grünbaum’s problem on affine diameters of convex
bodies is given, the papers [87,90] in which non-elementary and set-theoretical methods in elementary
geometry are discussed, the article [92] on approximation of convex plane curves of constant width
by algebraic convex curves of constant width, and the work [95] concerning properties of external
bisectors of triangles.
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We especially would like to indicate several books written by prof. A. Kharazishvili that are
dedicated to various themes in convex and combinatorial geometry and, accordingly, to applications
of geometric methods in other fields of mathematics.

(a) Selected Topics in the Geometry of Euclidean Spaces, Izd. Tbil. Gos. Univ., Tbilisi, 1978 (in
Russian).

(b) Introduction to Combinatorial Geometry, Izd. Tbil. Gos. Univ., Tbilisi, 1985 (in Russian).
(c) Brunn-Minkowski Inequality and its Applications, Izd. Naukova Dumka, Kiev, 1985 (in Russian,

co-author V. V. Buldygin; a revised and expanded version of this book was translated into English,
see (d)).

(d) Geometric Aspects of Probability Theory and Mathematical Statistics, Kluwer Academic Pub-
lishers, Dordrecht, 2000 (co-author V. V. Buldygin).

(e) Elements of Combinatorial Geometry, Part I, The Publishing House of Georgian National Acad-
emy of Sciences, Tbilisi, 2016.

(f) Elements of Combinatorial Geometry, Part II, The Publishing House of Georgian National
Academy of Sciences, Tbilisi, 2020.

The results of A. Kharazishvili listed above were cited in [1–8,11–14] and those which are included
in his books (a)–(f) were cited by various authors (see, for instance, [1, 3, 5–8, 22, 28–32, 36, 38, 40–42,
49,50,106,107,109–132,134–152]).

In conclusion of our survey, we sincerely wish Prof. A. Kharazishvili (who for many years ago was
our scientific supervisor and currently is our colleague and friend) good health, happiness, activity in
his further research work and obtaining many attractive results in mathematics.
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