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ON ADDITIVE FUNCTIONS WITH THE SUPER-STRONG DARBOUX

PROPERTY

ALEXANDER KHARAZISHVILI

Abstract. Some versions of the well-known Darboux property for real-valued additive functions
are considered and their connections with the concepts of relative measurability and absolute non-

measurability of functions are examined.

Let Q denote, as usual, the field of all rational numbers, let R denote the field of all real numbers,
and let c stand for the cardinality of the continuum.

Recall that a function g : R → R has the Darboux property, if for any two distinct real numbers a
and b, the line segment with the end-points g(a) and g(b) is entirely contained in g([a, b]).

As widely known, many authors devoted their research works to this property and investigated it
from various points of view. We mention only few of those works (see [1–5,8, 13]).

We say that a function g : R → R has the strong Darboux property if g(△) = R for every
non-degenerate subinterval △ of R.

We say that a function g : R → R has the super-strong Darboux property if g(P ) = R for every
nonempty perfect subset P of R.

Remark 1. It is not difficult to verify that:
(a) there are additive functions acting from R into Q, which trivially do not have the Darboux

property (such functions are easily obtained by using a Hamel basis of R);
(b) there are additive functions acting from R into itself, which have the Darboux property, but

do not have the strong Darboux property (for example, any nonzero linear function from R into itself
is such a function).

Lemma 1. Let h : R → R be an additive surjective function satisfying the equality h(1) = 0.
Then h has the strong Darboux property.

Proof. Take arbitrarily y ∈ R. Since h is a surjection, there is x ∈ R for which h(x) = y. Let △ be
any non-degenerate subinterval of R. Obviously, there exists a rational number q such that x + q is
in △. So, in view of h(q) = 0, one has

y = h(x) = h(x+ q), y ∈ h(△),

whence the strong Darboux property of h follows.

Denote by M the class of the completions of all those nonzero σ-finite Borel measures on R, which
vanish at the singletons of R.

We say that a function f : R → R is relatively measurable with respect to M if there exists at
least one measure µ ∈ M such that f is µ-measurable.

Accordingly, we shall say that a function f : R → R is absolutely nonmeasurable with respect to
M if there exists no measure µ ∈ M such that f is µ-measurable. □

Lemma 2. There exists an additive function g : R → R satisfying the following two conditions:
(1) g has the strong Darboux property;
(2) g is relatively measurable with respect to the class M.
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Proof. Our argument will be based on one interesting fact of classical point set theory, namely, there
exists a nonempty perfect set P in R which is linearly independent over the field Q (see, for instance,
[10]). Clearly, P can be expanded to some Hamel basis B of R. Without loss of generality, we may
assume that

card(B \ P ) = c, 1 ∈ B \ P.
So, we can write B = {ei : i ∈ I} ∪ {ej : j ∈ J} ∪ {1}, where

{ei : i ∈ I} = P, {ej : j ∈ J} = B \ (P ∪ {1}).
Let ϕ be a bijection of J onto R. We define the values of g on B as follows:

(∀i ∈ I)(g(ei) = ei), (∀j ∈ J)(g(ej) = ϕ(j)), g(1) = 0.

Then we extend this partial function g to an additive function on R (denoted by the same symbol g).
We now assert that the extended g satisfies both conditions (1) and (2). Indeed, (1) is fulfilled in
view of Lemma 1. In order to show the validity of (2), observe that the restriction g|P of g to P is
the identical mapping of P onto itself, hence trivially is continuous. There exists a measure µ ∈ M
which is concentrated on P , i.e., µ(R \P ) = 0. Obviously, g turns out to be a µ-measurable function.
Thus, (2) takes place, which ends the proof. □

To show the existence of additive functions which possess the super-strong Darboux property, a
more delicate argument is necessary.

Let {Pt : t∈T} be some bijective enumeration of all nonempty perfect subsets ofR (so, card(T )= c).

Lemma 3. There is a disjoint family {Et : t ∈ T} of subsets of R such that:
(i) (∀t ∈ T )(Et ⊂ Pt);
(ii) (∀t ∈ T )(card(Et) = c);
(iii) the set ∪{Et : t ∈ T} is linearly independent over the field Q.

Remark 2. In connection with Lemma 3, see also [6, 7]. A more general result can be established.
Let V be an uncountable vector space over Q and let {Ak : k ∈ K} be a family of subsets of V such
that card(K) ≤ card(V ) and the cardinalities of all sets Ak are equal to card(V ). Then there exists
a disjoint family {Ck : k ∈ K} satisfying the following relations:

(∀k ∈ K)(Ck ⊂ Ak & card(Ck) = card(V )),

∪{Ck : k ∈ K} is linearly independent over Q.

In fact, the formulated above result may be treated as an algebraic version of the well-known
Sierpiński’s theorem from general set theory (see [14]).

Theorem 1. There exist real-valued additive functions on R possessing the super-strong Darboux
property.

Any function g : R → R with the super-strong Darboux property satisfies the following conditions:
(1) g is absolutely nonmeasurable with respect to the class M;
(2) if µ ∈ M and X is a µ-nonmeasurable subset of R, then the set g−1(X) is also µ-nonmeasurable.

Proof. Consider again the family {Pt : t ∈ T} of all nonempty perfect subsets of R and the family
{Et : t ∈ T} described in Lemma 3. It is not difficult to define an additive function h : R → R such
that h(Et) = R for each index t ∈ T . Consequently, we get h(P ) = R for every nonempty perfect set
P in R. This circumstance implies that h has the super-strong Darboux property.

Now, let g : R → R be an arbitrary function possessing the super-strong Darboux property and
let µ be any measure from the class M. It is clear that g cannot be µ-measurable (because g is
unbounded on each uncountable compact subset of R). Take any µ-nonmeasurable set X ⊂ R and
suppose to the contrary that the set g−1(X) is µ-measurable. Only two cases are possible here.

1. µ(g−1(X)) > 0.
In this case, the set g−1(X) contains a nonempty perfect subset. So, we get the relations

R = g(g−1(X)) ⊂ X, X = R,

which is impossible, because of the µ-nonmeasurability of X.
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2. µ(g−1(X)) = 0.
In this case, µ(R \ g−1(X)) > 0 and the set R \ g−1(X) contains a nonempty perfect subset. So,

we come to the equality g(R \ g−1(X)) = R, which contradicts the relation X ∩ g(R \ g−1(X)) = ∅.
The contradiction obtained in both above cases completes the proof. □

Remark 3. Note that the analogue of Theorem 1 in terms of the Baire property is also valid (see,
e.g., [8–10] or [12] for extensive information about the Baire property). Actually, every function
g : R → R possessing the super-strong Darboux property does not have the Baire property, and if X
is an arbitrary subset of R lacking the Baire property, then the set g−1(X) does not have the Baire
property either. These facts can be established by using an argument similar to the previous one.

Remark 4. Lemma 2 and Theorem 1 imply at once that there are additive functions acting from R
into itself, which possess the strong Darboux property, but do not possess the super-strong Darboux
property.

Let λ denote the standard Lebesgue measure on R and let λ2 = λ⊗ λ.

Lemma 4. The graph of any function f : R → R with the super-strong Darboux property is λ2-thick
in R2, i.e., the graph of f intersects every λ2-measurable set in R2 having strictly positive measure.

Notice that the assertion of Lemma 4 can be deduced from Mycielski’s theorem on inscribed prod-
ucts of perfect sets (see [11]).

Theorem 2. If f : R → R is an additive function with the super-strong Darboux property, then there
exists a translation quasi-invariant measure ν on R such that:

(1) ν extends λ;
(2) f is ν-measurable.

In contrast to Theorem 1, the above theorem shows that any additive function having the super-
strong Darboux property turns out to be relatively measurable with respect to the class of all those
measures on R which extend λ and are translation quasi-invariant.
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