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A NOTE ON THE BERIKASHVILI FUNDAMENTAL GROUP

GEORGE JANELIDZE

Dedicated to the memory of Nodar Berikashvili

Abstract. We make a comparison between Berikashvili’s group π(M,m) defined with respect to a

family M of path connected subsets of a path connected topological space (and fixed m ∈ M) and the
Galois groupoid of an appropriate local homeomorphism associated with M . In fact, this compares

Berikashvili’s approach to the notion of fundamental group with the categorical-Galois-theoretic
approach.

1. Introduction

I should have seen Nodar Berikashvili’s paper [1] forty years ago, when I started to think about a
new categorical approach to Galois theory, but I first saw that paper only a couple of months ago...

Given a setM of path connected subsets of a path connected topological spaceX and a fixed element
m in M , Berikashvili constructs a certain group π(M,m), and proposes conditions under which it is
nicely related to the fundamental group of X. Berikashvli’s theory here is seemingly similar to the
known ones, but in fact it is very different and interesting. Most importantly, I immediately thought
that there are easily visible conditions under which the group π(M,m) is equivalent to the groupoid
constructed in the following steps:

• Take p : E → B (I changed the letter X by B) to be the canonical map from the coproduct
of all elements of M to B, but assume B to be locally connected, as well.

• Take the kernel pair Eq(p) of p as an internal category in the category LCTop of locally
connected topological spaces, and apply the connected-component-functor I : LCTop → Sets
to get a precategory I(Eq(p)) (recall that a precategory is a kind of a truncated simplicial
set).

• Take the category L(I(Eq(p))) associated to I(Eq(p)) (which is the same as the fundamental
groupoid of I(Eq(p)) considered as a simplicial set).

But, searching for the “easily visible conditions”, I could not find anything better than two independent
conditions found by Berikashvili for a different purpose, each of which turned out to be sufficient. The
aim of this paper is to show how (each of) these conditions make π(M,m) equivalent to L(I(Eq(p))).

Apart from this Introduction, the paper has three sections; the first two of them recall necessary
material from Berikashvili’s paper [1] and from the author’s papers, respectively; the last section is
devoted to the equivalence π(M,m) ∼ L(I(Eq(p))).

2. The Berikashvili Fundamental Group

In this section, we only recall Berikashvili’s construction [1], using mostly his notation. There
are places where, I think, Berikashvili means “path connected” but says just “connected”; in those
cases I’ll write “(path) connected”. Let us also agree that “path connected” means “non-empty path
connected”.

Let X be a fixed path connected topological space, M a fixed set of path connected subsets of X,
and m a fixed element of M . Then:

2020 Mathematics Subject Classification. 57M05, 18E50, 54D05.
Key words and phrases. Fundamental group; Galois groupoid; Path connected space; Locally path connected space;

Connected space; Locally connected space; Precategory.



470 G. JANELIDZE

• A chain is a sequence (m1,m2,m3, . . . ,mn) in M such that mi ∩mi+1 is path connected for
each i = 1, . . . , n− 1, and m1 = mn = m.

• A chain (m1,m2,m3, . . . ,mn) is said to be elementary equivalent to the sequence obtained by
removing mi from it if that sequence is also a chain and mi−1∩mi∩mi+1 is (path) connected.

• The equivalence of chains is defined as the smallest equivalence relation (on their set) contain-
ing the elementary equivalence. The set of equivalence classes of chains is denoted by π(M,m).
It is a group whose multiplication is induced by composing chains via juxtaposition.

• For a fixed y ∈ m, let H(X,M) be the subgroup of the fundamental group π(X, y) generated
by (the equivalent classes of) paths of the form CDC−1, where C begins at y and ends where
D begins, while D is a loop.

Further, Berikashvili observes:

• It is easy to see that the group π(M,m) coincides with the fundamental group π(Nω(M),m),
where Nω(M) is the simplicial complex, in which: the set of vertexes is M ; {m,m′} is a
1-simplex if m ∩m′ is (path) connected; {m,m′,m′′} is a 2-simplex if {m,m′}, {m,m′′} and
{m′,m′′} are 1-simplexes, and m ∩ m′ ∩ m′′ is (path) connected; and there are no higher-
dimensional simplexes.

• It is also easy to see that H(X,M) is a normal subgroup of π(X, y), and that it is trivial
whenever so are all the canonical homomorphisms π(m) → π(X) (m ∈ X).

• Given a chain (m1,m2,m3, . . . ,mk), choose: a sequence (y, x1, x2, . . . , xk, y) of points with
xi ∈ mi∩mi+1; and then a sequence (Q,C12, . . . , Ck−1,k, P ) of paths, in which Ci,i+1 connects
xi and xi+1 inside mi+1, Q connects y with x1 inside m1 = m, and P connects xk with y
inside m = mk. This defines a group homomorphism

π(M,m) → π(X, y)/H(X,M).

And then Berikashvili proves:

Theorem 2.1 (Theorems 1 and 2 of [1]). Suppose all elements of M are open and
⋃

M = X. Then
the homomorphism (1) is an isomorphism whenever any of the following two conditions hold:

(a) each non-empty intersection of two or three elements of M is path connected;
(b) each (path) component of each intersection of two elements of M belongs to M .

Let us omit his Theorem 3, but recall his several observations, made at various places, as:

Remark 2.2. Assuming again that
⋃
M = X and each element of M is open:

(a) Under the assumptions of Theorem 2.1(a), Nω(M) coincides with the 2-skeleton of the nerve
of M and so, Theorem 2.1(a) says that the group π(X, y)/H(X,M) is isomorphic to the
fundamental group of the nerve of M (and Berikashvili suggests: “cf. [8, 9]”).

(b) (Corollary of Theorem 2 in [1]) Let X be not just path connected but also locally path con-
nected and locally simply connected, and let L be the set of components of finite intersections
of elements of M . Then L (replacing M) satisfies the conditions of Theorem 2.1(b). Further,
since X is locally simply connected, we can choose the elements of M to be ‘small enough’ to
make the group H(X,L) trivial. For such L, Theorem 2.1(b) gives π(M,m) ≈ π(X, y).

(c) Everything done above has a simplicial counterpart, whereX is an abstract simplicial complex,
the fundamental group is defined combinatorially, M is a set of closed subcomplexes, and the
role of path connectedness is played by combinatorial connectedness.

Note that Remark 2.2(c) is just a copy (well, almost) of the last sentence of [1]; doing that in detail
would be a material for another article... .

3. Galois Theory of Locally Connected Spaces

In this section, we recall a special case of the categorical form of Fundamental Theorem of Galois
Theory (FTGT, for short) from [3] and [4], which will be done in two steps: first at an abstract-
categorical level, and then for locally connected topological spaces.
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A Galois structure consists of an adjunction (I,H, η, ε) : C → X and classes E ⊆ Mor(C) and
Z ⊆ Mor(X ) such that C and X admit pullbacks along morphisms from E and Z (respectively), E
and Z are pullback stable, I(E) ⊆ Z, and H(Z) ⊆ E .

Assuming such a structure fixed, consider, for any given object B in C, the induced adjunction
(IB , HB , ηB , ϵB) : E(B) → Z(I(B)), in which:

• E(B) is the full subcategory of (C ↓ B) with objects all (A,α) with α ∈ E , and, similarly,
Z(I(B)) is the full subcategory of (X ↓ I(B)) with objects all (X, ζ) with ζ ∈ Z;

• IB : E(B) → Z(I(B)) is defined by IB(A,α) = (I(A), I(α));
• HB : Z(I(B)) → E(B) is defined by IB(X, ζ) = (B ×HI(B) H(X), π1), using the pullback

B ×HI(B) H(X)

π1

��

π2 // H(X)

H(ζ)

��
B

ηB

// HI(B)

(here and below, all pullback projections are denoted by π’s with indices);
• ηB(A,α) = ⟨α, ηA⟩ : (A,α) → (B ×HI(B) HI(A), π1);

• εB(X,ζ) = εXI(π2) : (I(B ×HI(B) H(X)), I(π1)) → (X, ζ).

When all counits of such induced adjunctions are isomorphisms, the Galois structure is called admis-
sible. If it is the case, given a morphism p : E → B in C, the category SplI(E, p) of coverings of B
split over p is defined as the full subcategory of E(B) with objects all (A,α) ∈ E(B) for which the
diagram

E ×B A

π1

��

ηE×BA // H(E ×B A)

H(π1)

��
E

ηE

// HI(E)

is a pullback.
An internal precategory in X is a diagram in X of the form P =

P2

p1 //
m //
p2

// P1

d //

c
// P0eoo

in which de = 1P0
= ce, dp1 = cp2, dm = dp2, and cm = cp1. An internal action of P is a triple

F = (F0, γ, ξ) as in the diagram

P2 ×(dp2,γ) F0

m×1

��

⟨p1,p2⟩×1 // P1 ×(d,c) P1 ×(d,γ) F0
1×ξ // P1 ×(d,γ) F0

ξ

��

F0

⟨eγ,1⟩oo

P1 ×(d,γ) F0

π1

��

ξ // F0

γ

��
P1 c

// P0

which is required to commute; we assume here that all the pullbacks involved do exist. The category
of all internal actions (F0, γ, ξ) of P with γ ∈ Z is denoted by XP ∩ Z.

Amonadic extension (=an effective descent morphisms in the terminology of [6] and related papers)
in C is a morphism p : E → B in C for which the pullback functor p∗ : (C ↓ B) → (C ↓ E) is monadic.

Theorem 3.1 (FTGT, the admissible case). For an admissible Galois structure above and a monadic
extension p : E → B in C, there is a canonical category equivalence SplI(E, p) ∼ X I(Eq(p)) ∩Z, where
Eq(p) is the kernel pair of p considered as an internal category in C.
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Note that, since the functor I is not required to preserve pullbacks, I(Eq(p)) is not an equivalence
relation, but only a precategory in general (internal to X ); in fact, it is what is called in [3] an internal
pregroupoid. But, when X = Sets, and assuming for simplicity that Z is the class of all morphisms
in X , for an arbitrary precategory P and then for P = I(Eq(p)), we have:

• XP is nothing but the category of precategory morphisms P → Sets;
• the forgetful functor from the category of categories to the category of precategories has a left
adjoint, which we denote by L;

• it easily follows that XP is canonically isomorphic to XL(P );
• it is also easy to see that L(I(Eq(p))) is a groupoid, and we call it the Galois groupoid of
(E, p) and denote it by G(E, p).

Thus, from Theorem 3.1, we obtain

Corollary 3.2. Under the assumptions of Theorem 3.1, if Z is the class of all morphisms in X ,

then the category SplI(E, p) is equivalent to the category SetsG(E,p) of actions of the Galois groupoid
G(E, p).

Consider the special case examined in detail in Chapter 6 of [2], where we take:

• C to be the category of locally connected topological spaces;
• X = Sets;
• I to be defined by I(A) = the set of connected components of A;
• accordingly, H carries the sets to themselves equipped with the discrete topology;
• E to be the class of local homeomorphisms of locally connected topological spaces;
• Z to be the class of all morphisms in X , that is, all maps of sets.
• p : E → B to be a surjective local homeomorphism (of locally connected spaces).

In this case, Corollary 3.2 can be reformulated as follows:

Corollary 3.3. The category SplI(E, p) of pairs (A,α), where α : A → B is a continuous map such
that for every connected component C of E the pullback projection C ×B A → C is a trivial covering

map (in the classical sense), is equivalent to the category SetsG(E,p) of actions of the Galois groupoid
G(E, p).

4. Galois-theoretic Interpretation of Berikashvili’s Construction

Putting together the contexts of Sections 2 and 3, let us write B instead ofX (forX from Section 2),
and assume this space to be not only path connected, but also locally path connected. Then, in
particular, for the subsets of B, path connectedness becomes the same as connectedness. Let us also
assume that all elements of M are not only connected, but also open, and that

⋃
M = B.

Let E be the coproduct of elements of M and p : E → B be the canonical map, which is obviously
a surjective local homeomorphism. Consider the precategory I(Eq(p)) =

I(E ×B E ×B E)
p1 //
m //
p2
// I(E ×B E)

d //

c
// I(E)eoo

and observe:

• I(E) = M , since each element of M is connected.
• A morphism n : m1 → m2 in I(Eq(p)), that is, an element n of I(E ×B E) with d(n) = m1

and c(n) = m2, is a connected component of m1 ∩m2.
• A triangle t in I(Eq(p)) with the boundary

m1

n1
""

n // m3

m2

n2

<<
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that is, an element t of I(E ×B E ×B E) with p1(t) = n2, m(t) = n, p2(t) = n1, dp1(t) =
m2 = cp2(t), dm(t) = m1 = dp2(t), and cm(t) = m3 = dp1(t), is a connected component of
m1 ∩m2 ∩m3.

Remark 4.1. Conditions 2.1(a) and 2.1(b) are characterized in terms of I(Eq(p)) as follows:

(a) 2.1(a) is satisfied if and only if I(Eq(p)) is a relation, that is, parallel morphisms in I(Eq(p))
are always equal;

(b) the following conditions are equivalent:
(b1) condition 2.1(b);
(b2) all morphisms in I(Eq(p)) belong to M ;
(b3) all triangles in I(Eq(p)) belong to M .

Theorem 4.2. Under the assumptions above and any of the conditions 2.1(a) and 2.1(b), the Galois
groupoid G(E, p) is a connected groupoid, equivalent to the Berikashvili group π(M,m), for any choice
of m ∈ M .

Proof. We have G(E, p) = L(I(Eq(p))), and we use freely the construction of L described in [4],
since it is just a simplified version of the well-known construction of the fundamental groupoid of a
simplicial set.

We are going to prove that G(E, p) is isomorphic to what we are going to call Berikashvili groupoid
of M and denote it by π(M). Its objects are the elements of M , and its morphisms are equivalent
classes of the chains

(m1,m2,m3, . . . ,mn) : m1 → mn,

exactly as in Berikashvili’s construction, except that m1 = mn is not required. Of course, π(M) is
equivalent to π(M,m) as a category. Our proof requires seven preliminary steps:

Step 1: Construction of a functor
π(M) → G(E, p),

which we denote by P .

A chain (m1,m2,m3, . . . ,mn) : m1 → mn determines a morphism in G(E, p) represented by

m1
m1∩m2 // m2

m2∩m3 // . . .
mn−1∩mn // mn

and, having in mind how we compose the morphisms in π(M) and G(E, p), all we need to show is:
If a triple (m1,m2,m3) has connected m1 ∩m2, m2 ∩m3, m1 ∩m3, and m1 ∩m2 ∩m3, then

(m1
m1∩m2 // m2

m2∩m3 // m3) = (m1
m1∩m3 // m3)

in G(E, p).
However, this follows from the fact that the assumptions on (m1,m2,m3) make m1 ∩ m2 ∩ m3 a

triangle in I(Eq(p)) with the boundary

m1

m1∩m2 ""

m1∩m3 // m3

m2

m2∩m3

<< ,

where mi ∩ mj (i < j in {1, 2, 3}), being connected, can be considered as connected components
of E ×B E, and m1 ∩ m2 ∩ m3, being connected, can be considered as a connected component of
E ×B E ×B E.

That is, P is defined by

P (cls(m1,m2,m3, . . . ,mn) : m1 → mn)

= cls(m1
m1∩m2 // m2

m2∩m3 // . . .
mn−1∩mn // mn).

Step 2. Construction of a precategory morphism

I(Eq(p)) → π(M)
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under condition 2.1(a); we denote this morphism by Q1.
Under condition 2.1(a), a morphism n : m1 → m2 in I(Eq(p)) must have n = m1 ∩m2 connected

and so it makes (m1,m2) a chain. It remains to prove that, for triangle t with the boundary (2),
the chains (m1,m2,m3) and (m1,m3) are equivalent. However, this is the case, since n1 = m1 ∩m2,
n2 = m2 ∩m3, n = m1 ∩m3, and m1 ∩m2 ∩m3 are connected by 2.1(a).

That is, Q1 is defined by

Q1(n : m1 → m2) = cls(m1,m2).

Step 3. Construction of a precategory morphism

I(Eq(p)) → π(M)

under condition 2.1(b); we will denote this morphism by Q2.
Under condition 2.1(b), a morphism n : m1 → m2 in I(Eq(p)) must have n in M , which implies

that (m1, n,m2) is a chain. It remains to prove that, for a triangle t in I(Eq(p)) with the boundary
(2), the chains (m1, n1,m2, n2,m3) and (m1, n,m3) are equivalent. As follows from 2.1(b), t belongs
to M , and since (2) is the boundary of t, t ⊆ n1 ∩ n ∩ n2. This gives us the following equivalences ∼
of chains:

(m1, n1,m2, n2,m3) ∼ (m1, n1, t,m2, n2,m3) ∼ (m1, n1, t,m2, t, n2,m3)

∼ (m1, n1, t, t, n2,m3) ∼ (m1, n1, t, n2,m3) ∼ (m1, n1, t,m3) ∼ (m1, t,m3)

∼ (m1, n, t,m3) ∼ (m1, n, t, n,m3) ∼ (m1, n, n,m3) ∼ (m1, n,m3).

That is, Q2 is defined by

Q2(n : m1 → m2) = cls(m1, n,m2).

Step 4. Under condition 2.1(a), we have PQ1 = F , where F is the canonical morphism

I(Eq(p)) → G(E, p).

We need to show that a morphism in G(E, p) represented by n : m1 → m2 is the same as the one
represented by m1∩m2 : m1 → m2, but n = m1∩m2 by condition 2.1(a), since n must be a connected
component in m1 ∩m2.

Step 5. Under condition 2.1(b), we have PQ2 = F .
We need to show that a morphism in G(E, p) represented by n : m1 → m2 is the same as the one

represented by

m1
n // n

n // m2,

but this follows from the fact that n can be considered as a triangle in I(Eq(p)) with the boundary

m1

n
!!

n // m3

n

n

==

Step 6. Under condition 2.1(a), the unique functor

Q1 : G(E, p) → π(M)

with Q1F = Q1 is surjective.
This is the case, since π(M) is generated by the set of equivalence classes of two-component chains

(m1,m2) and since for such a chain, we have

cls(m1,m2) = Q1(m1 ∩m2 : m1 → m2).

Step 7. Under condition 2.1(b), the unique functor

Q2 : G(E, p) → π(M)

with Q2F = Q2 is surjective.
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This is the case since π(M) is generated by the set of equivalence classes of two-component chains
(m1,m2) and since for such a chain, we have

cls(m1,m2) = cls(m1,m1 ∩m2,m2) = Q2(m1 ∩m2 : m1 → m2).

Now, we are ready to complete our proof. By the results of Steps 6 and 7, it suffices to prove
that PQ1 = 1G(E,p) under condition 2.1(a), and PQ2 = 1G(E,p) under condition 2.1(b). But this

follows from the universal property of F and the results of previous steps that give PQiF = PQi = F
(i = 1, 2). □

Remark 4.3. In addition to Theorem 4.2 let us briefly mention:

(a) It would be natural to modify Berikashvili’s construction of π(M,m) replacing “path con-
nected” with “connected” everywhere. Then Remark 4.1 and Theorem 4.2 could be copied
assuming that B is connected and locally connected instead of assuming it to be path con-
nected and locally path connected.

(b) When, in addition to all our assumptions, B (=X) is locally simply connected, we could choose
M consisting of simply connected (open) subsets of B. In that case, G(E, p) coincides with
the fundamental groupoid of B defined via the Galois theory up to a category equivalence.
According to Theorem 4.2, this agrees with the isomorphism π(M,m) ≈ π(X, y) mentioned
in Remark 2.2.

(c) Suppose: B is path connected, locally path connected and locally simply connected, as above;

either 2.1(a) or 2.1(b) is satisfied; p : E → B is chosen using M as before; and q : B̃ → B is a
universal covering map. Then:
(c1) SplI(B̃, q) is the category of all covering maps with codomain B, and, as follows from

the results of [5], SplI(E, p) is a full reflective subcategory of SplI(B̃, q).

(c2) Let (E′, p′) be the image of (B̃, q) under the reflection

SplI(B̃, q) → SplI(E, p).

Suppose p′ : E′ → B happened to be a regular covering map. Then, suitably choosing
base points, we obtain a surjective homomorphism from the fundamental group of B to
the Galois group of (E′, p′) which can be identified with Berikashvili’s group π(M,m) by
Theorem 4.2. Then Theorem 2.1 tells us that Berikashvili’s H(B,M) (written in Section
2 as H(X,M)) should coincide with the fundamental group of E′. This, together with
some obvious further questions needs to be worked out in detail.

(d) Although Berikashvili mentions the relationship of his construction with simplicial ones (see
the 5th bullet point in Section 2 and Remark 2.2(a)), further comparisons with old and recent
topological, localic, and topos-theoretic Čech-type constructions of fundamental groups would
be interesting: see, e.g., Definition 4 in Section 1 of [7].
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8. A. Weil, Sur les théorèmes de de Rham. (French) Comment. Math. Helv. 26 (1952), 119–145.
9. W.-T. Wu, On a theorem of Leray. Sci. Sinica 10 (1961), 793–805.



476 G. JANELIDZE

(Received 01.05.2024)

Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7700,
South Africa

Email address: george.janelidze@uct.ac.za


