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THE BREADTH OF BERIKASHVILI’S FUNCTOR D

JOHANNES HUEBSCHMANN

To the memory of Nodar Berikashvili

Abstract. We discuss variants of Berikashvili’s functor that arise in differential homological al-

gebra, from simplicial bundles, from ordinary topological bundles and in more general categorical

settings. We prove that under suitable circumstances, the value of Berikasvili’s functor parametrizes
isomorphism classes of bundles in various contexts.

1. Introduction

In [2], N. Berikashvili introduced the functor D in terms of “twisting elements” or “twisting
cochains” in a differential graded algebra. At that time twisting cochains already had a history
in topology and differential homological algebra, see, e.g., [45] (where the terminology is “twisting
morphism”) and the references there to [5] and [7, 8]. With hindsight we see that twisting cochains
make precise a certain piece of structure behind the notion of transgression [7,8]. The original version
of Berikashvili’s functor D assigns to a differential graded algebra A the set D(A) = T (A)/G of orbits
of twisting elements (homogeneous degree −1 members τ of A that satisfy the identity dτ = ττ or
master equation relative to the differential d in A) in A with respect to the group G of inner au-
tomorphisms of A. For a differential graded algebra A, the set D(A) resembles a moduli space of
gauge equivalence classes of flat connections. Such a moduli space is sometimes considered as a first
non-abelian cohomology space. The results in the present paper suggest that, in the situations we
discuss here, the value of Berikashvili’s functor could also be viewed as a first non-abelian cohomology
set. Remark 7.5 renders this observation explicit.

The paper [25] explains some of the significance of Berikashvili’s functor within ordinary differential
homological algebra and how it relates to deformation theory, and [30] develops a small aspect of that
relationship further. Here we discuss variants of Berikashvili’s functor in various contexts.

We begin by reviewing bundles in the category of chain complexes. Applying Berikashvili’s functor
D to the differential graded algebra Hom(C,A) associated to a differential graded coalgebra C and a
differential graded algebra A (endowed with the cup or convolution product) yields the set D(C,A) of
orbits of twisting cochains τ : C → A relative to the group of inner automorphisms of the differential
graded algebra Hom(C,A). We prove (Theorem 3.6) that, for a differential graded coalgebra C and a
differential graded algebra A, the set D(C,A) parametrizes isomorphism classes of bundles (principal
twisted tensor products) having C as base and A as fiber. Thereafter, guided by the idea that, for
a group G, a principal G-bundle admits a characterization in terms of a certain G-valued functor
defined on a certain category, cf. [49], we proceed in a more abstract manner within the appropriate
categorical framework. Theorem 6.8 says that, for a simplicial set B and a simplicial group K,
the value D(B,K) of Berikashvili’s functor on the pair (B,K) parametrizes isomorphism classes of
simplicial principal K-bundles on B. Theorem 6.9 establishes the fact that, for a simplicial set B and
a simplicial group K, the assignment to a twisting function ρ : B → K of the twisting cochain which ρ
determines via the perturbation lemma yields a map from isomorphism classes of simplicial principal
bundles to the isomorphism classes of the associated twisted tensor products. Theorem 7.1 yields the
same kind of parametrization result, but phrased over a category. This recovers principal bundles
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over a simplicial complex (Example 7.2) and over the simplicial category arising from an open cover
of a manifold (Example 7.3) and hence ordinary principal bundles over a manifold endowed with a
partition of unity subordinate to the open cover: A construction in [49] assigns to an open cover U
of a manifold M a (topological or smooth) category MU in such a way that a functor F from MU
to a group G (viewed as a category in the standard way) determines a simplicial principal G-bundle
on the nerve of MU . Theorem 7.4 says that evaluating Berikasvili’s functor D at MU and G yields
a set D(MU , G) which recovers the non-abelian cohomology set H1(BU , G) of equivalence classes of
G-transition functions relative to the open cover BU of M arising as the ‘barycentric subdivision’ BU
of U ; when M admits a partition of unity subordinate to BU , in particular, when M is paracompact,
by a classical result, this cohomology set characterizes isomorphism classes of principal G-bundles
on the manifold M . Section 8 explores Berikashvili’s functor in a general categorical setting. This
relates Berikashvili’s functor to A∞-functors and provides, perhaps, clarification and simplification
for the theory of dg categories. For example, the paper [10] explores dg quotients of dg categories;
in [10, p. 687, p. 689], the terminology is ‘Maurer-Cartan functor’ for the assignment to a coalgebra
and algebra of the family of twisting cochains between the two. Thus there is a huge unexplored
territory in this area.

2. Preliminaries

References for notation and terminology are [3,4,12,13,18–22,25–29,32,33,35,45–48]. The ground
ring R is a commutative ring with 1. We take chain complex to mean differential graded R-module. A
chain complex is not necessarily concentrated in non-negative or non-positive degrees. The differential
of a chain complex is always of degree −1. For a filtered chain complex X, a perturbation of the
differential d of X is a (homogeneous) morphism ∂ of the same degree as d such that ∂ lowers filtration
and (d+ ∂)2 = 0 or, equivalently,

[d, ∂] + ∂∂ = 0. (2.1)

Thus, when ∂ is a perturbation on X, the sum d+ ∂, referred to as the perturbed differential , endows
X with a new differential. When X has a graded coalgebra structure such that (X, d) is a differential
graded coalgebra, and when the perturbed differential d+ ∂ is compatible with the graded coalgebra
structure, we refer to ∂ as a coalgebra perturbation; the notion of algebra perturbation is defined
similarly. Given a differential graded coalgebra C and a coalgebra perturbation ∂ of the differential
d on C, occasionally we denote the new or perturbed differential graded coalgebra by C∂ . Given a
differential graded algebra A and an algebra perturbation ∂ of the differential on A, occasionally we
denote the new or perturbed differential graded algebra likewise by A∂ .

Given two chain complexes X and Y , recall that Hom(X,Y ) inherits the structure of a chain
complex by the operator D defined by

Dϕ = dϕ− (−1)|ϕ|ϕd (2.2)

where ϕ is a homogeneous homomorphism from X to Y and where |ϕ| refers to the degree of ϕ. The
notation D for the Hom-differential and D for Berikashvili’s functor might be slightly confusing but
is, perhaps, unavoidable, for reasons of consistency with notation established in the literature.

A contraction

(M
∇ // N,h)
g

oo (2.3)

of chain complexes [12] consists of
– chain complexes N and M ,
– chain maps g : N →M and ∇ : M → N ,
– a morphism h : N → N of the underlying graded modules of degree 1,

subject to

g∇ = Id, (2.4)

Dh = ∇g −N, (2.5)

gh = 0, h∇ = 0, hh = 0. (2.6)
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It is common to refer to the requirements (2.6) as annihilation properties or side conditions. We say a
contraction (2.3) havingM and N filtered chain complexes and ∇, g, h filtration preserving is filtered .

Remark 2.1. Given M , N , g, ∇, h, subject to (2.4) and (2.5) but not necessarily (2.6), substituting
g− gdh and hdh for g and h, we obtain a contraction in the strict sense, that is, the data satisfy (2.6)
as well.

For later reference, we recall the ordinary perturbation lemma.

Lemma 2.2. Let

(M
∇ // N,h)
g

oo (2.7)

be a filtered contraction. Let ∂ be a perturbation of the differential on N , and let

D =
∑
n≥0

g∂(h∂)n∇ =
∑
n≥0

g(∂h)n∂∇ (2.8)

∇∂ =
∑
n≥0

(h∂)n∇ (2.9)

g∂ =
∑
n≥0

g(∂h)n (2.10)

h∂ =
∑
n≥0

(h∂)nh =
∑
n≥0

h(∂h)n. (2.11)

When the filtrations on M and N are complete, these infinite series converge, the operator D is a
perturbation of the differential on M and, with the notation N∂ and MD for the new chain complexes,

(MD
∇∂ // N∂ , h∂)
g∂

oo (2.12)

constitute a new filtered contraction that is natural in terms of the given data.

Proof. See [6] or [19, 4.3 Lemma Section 4 p. 404]. □

Under the circumstances of Lemma 2.2, we refer to (2.12) as the perturbed contraction.

Remark 2.3. In (2.5), the sign of h is the same as in [19, Section 4 p. 403] and [32, Section 1 p. 247],
opposite to that in [26, 2.2 p. 164] (in (2.2) of that paper, M and N should be exchanged). This
explains the appearance of the minus sign in [26, (9.2)–(9.5), p. 183].

Let (C, η,∆) be a coaugmented differential graded coalgebra and let JC = coker(η) denote its
coaugmentation coideal. Recall the counit ε : C → R and the coaugmentation map η determine a
direct sum decomposition C = R ⊕ JC, and the diagonal ∆ induces a diagonal J∆: JC → JC ⊗ JC.
The ascending sequence

R ⊆ · · · ⊆ FnC ⊆ Fn+1C ⊆ · · · (n ≥ 1) (2.13)

formed by the kernels

FnC = ker(C
pr−→ JC

(J∆)⊗(n+1)

−→ (JC)⊗(n+1)) (n ≥ 0)

yields the coaugmentation filtration {FnC}n≥0 of C, cf., e.g., [22, Section 1 p. 11], well known to turn
C into a filtered coaugmented differential graded coalgebra; thus, in particular, F0C = R. We recall
that C is said to be cocomplete when C = ∪FnC.

Write s for the suspension operator and accordingly s−1 for the desuspension operator. Thus, given
the chain complex X, (sX)j = Xj−1, etc., and the differential d : sX → sX on the suspended object
sX is defined in the standard manner so that ds+ sd = 0.

Consider a simplicial R-module W . We take its Moore complex (Mo(W ), d) to be

Mo(W ) : · · · dp+1−→ Mop(W )
dp−→ · · · d1−→ Mo0(W ) =W0,

Mop(W ) = ∩0≤j<p ker(∂j : Wp →Wp−1), p ≥ 1,

dp = ∂p|Mop(W ), p ≥ 1.

(2.14)
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The canonical injection ι : Mo(W ) →W extends to a contraction

(Mo(W )
ι // W,h
g
oo ) (2.15)

that is natural in terms of the data, the kernel of g coincides with the degeneracy subcomplex D(W ) of
W , and g induces an isomorphism |W | =W/D(W ) → Mo(W ) from the normalized R-chain complex
|W | onto the Moore complex Mo(W ) of W ; see, e.g., [16, Ch. III Theorem 2.1 p. 146]. We identify
|W | with Mo(W ).

3. Bundles in the Category of Chain Complexes

The classical notion of twisting cochain goes back to [5]; this notion arises by abstraction from
properties of the transgression [7, 39, 40]. The defining equation of a twisting cochain also occurs in
the literature as master equation; see [33] and the literature there.

Let C be a differential graded coalgebra and A a differential graded algebra. Write the unit as
η : R → A, the counit as ε : C → R, the multiplication map of A as µ : A⊗ A→ A, and the diagonal
map of C as ∆: C → C ⊗ C. The Hom differential D and cup product

∪ : Hom(C,A)⊗Hom(C,A) −→ Hom(C,A),

α ∪ β : C ∆−→ C ⊗ C
α⊗β−→ A⊗A

µ−→ A, α, β : C → A,

[35, II.1.1 Definition p. 135] turn Hom(C,A) into a differential graded algebra having unit the com-
posite ηε. The cup product has also come to be known as convolution product [44, p. 6]. When C is
coaugmented, with coaugmentation η : R→ C, and A augmented with augmentation ε : A→ R,

Hom(C,A) −→ R, φ 7→ εφη (3.1)

is an augmentation map for Hom(C,A) as a differential graded algebra.
A (C,A)-bundle is a differential graded right A-module left C-comodule N together with an isomor-

phism λ : N → C ⊗A of graded right A-modules and left C-comodules, differentials being neglected,
the right A-module and left C-comodule structures on C ⊗ A being the extended ones [35, II.1.6
p. 137]. For a morphism ϕ : A1 → A2 of differential graded algebras and a morphism ψ : C1 → C2 of
differential graded coalgebras, a (ϕ, ψ)-morphism

(C1 ⊗A1, d1) −→ (C2 ⊗A2, d2) (3.2)

from the (C1, A1)-bundle (C1 ⊗ A1, d1) to the (C2, A2)-bundle (C2 ⊗ A2, d2) is a morphism of chain
complexes which is, furthermore, a morphism of differential graded A1-modules via ϕ : A1 → A2

and of differential graded C2-comodules via ψ : C1 → C2. With the obvious notions of composition
of morphisms and identity, (C,A)-bundles and, more generally, bundles constitute a category. In
particular, isomorphism classes of bundles are well defined.

For an augmented differential graded algebra (A, ε), we say a (C,A)-bundle (C ⊗ A, d) is aug-
mented when C ⊗ ε : (C ⊗A, d) → C is a morphism of differential graded C-comodules. For a coaug-
mented differential graded coalgebra (C, η), we say a (C,A)-bundle (C ⊗ A, d) is coaugmented when
η ⊗ A : A → (C ⊗ A, d) is a morphism of differential graded A-modules, and we say a (C,A)-bundle
(C ⊗A, d) is supplemented when it is both augmented and coaugmented. Now, for a (ϕ, ψ)-morphism
(C1 ⊗A1, d1) → (C2 ⊗A2, d2) of coaugmented bundles, the diagram

A1
ϕ //

η⊗Id

��

A2

η⊗Id

��
(C1 ⊗A1, d1) // (C2 ⊗A2, d2)

(3.3)
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is commutative and, for a (ϕ, ψ)-morphism (C1 ⊗A1, d1) → (C2 ⊗A2, d2) of augmented bundles, the
diagram

(C1 ⊗A1, d1) //

Id⊗ε
��

(C2 ⊗A2, d2)

Id⊗ε
��

C1
ψ

// C2

(3.4)

is commutative. In practice, morphisms of bundles arising from simplicial fiber bundles are augmented;
they are, furthermore, coaugmented after a choice of base point of the base.

We define a homogeneous degree −1 morphism τ : C → A of the underlying graded R-modules to
be a twisting cochain when

Dτ + τ ∪ τ = 0. (3.5)

For a coaugmented differential graded coalgebra (C, η), we say a twisting cochain τ : C → A is
coaugmented when τη = 0 and, for an augmented differential graded algebra (A, ε), we say a twisting
cochain τ : C → A is augmented when ετ = 0. We refer to a twisting cochain that is both coaugmented
and augmented as being supplemented .

Remark 3.1. This definition of a twisting cochain is that in [19, Section 2, p. 401]. The terminology
in [35] is ‘twisting morphism’ for a supplemented twisting cochain, with opposite sign, and that in [24]
and in the updated version [31] thereof is twisting cochain, still with the sign opposite to the present
one. The present sign for a twisting cochain is most convenient for bundles of the kind C ⊗ A (as
opposed to those of the kind A⊗ C).

Let d⊗ denote the tensor product differential. The cap product

∩ : Hom(C,A)⊗ C ⊗A −→ C ⊗A,

φ ∩ · : C ⊗A
∆⊗A−→ C ⊗ C ⊗A

C⊗φ⊗A−→ C ⊗A⊗A
C⊗µ−→ C ⊗A, φ : C → A,

(3.6)

[19, 2.3 Definitions p. 401] yields an action of Hom(C,A) on C⊗A. For a twisting cochain τ : C → A,
let dτ = ∩τ . Then the sum

d⊗ + dτ : C ⊗A→ C ⊗A (3.7)

is a differential on C ⊗A which, relative to the obvious structures, turns C ⊗A into a (C,A)-bundle.
It is common to denote this (C,A)-bundle by C ⊗τ A; we refer to it as an A-principal twisted tensor
product on C. See, e.g., [35] for details. By construction, the A-principal twisted tensor product
C ⊗τ A on C is a (C,A)-bundle in a canonical manner, the right A-module and left C-comodule
structures on C ⊗ A being the extended ones. The terminology in [19] is “principal twisted object”.
The following reproduces [19, 2.2 Proposition p. 400].

Proposition 3.2. For a differential graded algebra A and a differential graded coalgebra C, the as-
signment to a bundle differential D on C ⊗A of the degree −1 morphism

τD : C
Id⊗η−→ C ⊗A

D−→ C ⊗A
ε⊗Id−→ A (3.8)

of the underlying graded objects establishes, in the general, augmented, coaugmented, and supplemented
case, a bijection between twisting cochains from C to A and bundle differentials D on C ⊗ A in such
a way that (C ⊗A,D) = C ⊗τD A. Thus any (C,A)-bundle structure on C ⊗A is of the kind C ⊗τ A,
for some uniquely determined twisting cochain τ : C → A. □

As before, let C be a differential graded coalgebra and A a differential graded algebra. Consider
two twisting cochains τ1, τ2 : C → A. A homogeneous morphism h : C → A of the underlying graded
modules having degree zero is a homotopy of twisting cochains from τ1 to τ2, written h : τ1 ≃ τ2, when

τ2 ∪ h = h ∪ τ1 −Dh. (3.9)

In the augmented case, a homotopy h : τ1 ≃ τ2 of twisting cochains is augmented when εh = ε, in
the coaugmented case, a homotopy h of twisting cochains is coaugmented when hη = η and, in the
supplemented case, a homotopy h of twisting cochains is supplemented when it is both augmented
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and coaugmented. An augmented homotopy h necessarily satisfies the identity ε(Dh) = 0 and a
coaugmented homotopy h satisfies the identity (Dh)η = 0.

For h : τ1 ≃ τ2 : C → A, the resulting identity

(Dh)∩ = (h ∪ τ1) ∩ −(τ2 ∪ h)∩ = h ∩ τ1 ∩ −τ2 ∩ h∩

says that the diagram

C ⊗A

d⊗+τ1∩
��

h∩ // C ⊗A

d⊗+τ2∩
��

C ⊗A
h∩
// C ⊗A

(3.10)

is commutative. Hence h∩ : C ⊗τ1 A→ C ⊗τ2 A is an (Id, Id)-morphism of bundles.

Remark 3.3. In [24] and in the updated version [31] thereof, the defining identity of a homotopy of
twisting cochains k : τ1 ∼= τ2 reads

τ1 ∪ k = k ∪ τ2 +Dk. (3.11)

The following is again straightforward.

Proposition 3.4. For a differential graded algebra A, a differential graded coalgebra C, and two
twisting cochains τ1, τ2 : C → A, the assignment to an (Id, Id)-bundle morphism

Ψ: C ⊗τ1 A→ C ⊗τ2 A (3.12)

of the degree 0 morphism

hΨ : C
Id⊗η−→ C ⊗A

Ψ−→ C ⊗A
ε⊗Id−→ A (3.13)

of the underlying graded objects establishes, in the general, augmented, coaugmented, and supplemented
case, a bijection between homotopies of twisting cochains from τ1 to τ2 and (Id, Id)-bundle morphisms
in such a way that

Ψ = hΨ∩ : C ⊗τ1 A −→ C ⊗τ2 A. (3.14)

Thus any (Id, Id)-bundle morphism from C ⊗τ1 A to C ⊗τ2 A is of the kind

h∩ : C ⊗τ1 A −→ C ⊗τ2 A,

for some uniquely determined homotopy h : τ1 ≃ τ2 of twisting cochains. □

Proposition 3.5. Let A1, A2 be differential graded algebras, C1, C2 differential graded coalgebras,
τ1 : C1 → A1 and τ2 : C2 → A2 twisting cochains, ϕ : A1 → A2 a morphism of augmented differ-
ential graded algebras, χ : C1 → C2 a morphism of coaugmented differential graded coalgebras, and
h : ϕτ1 ≃ τ2χ : C1 → A2. Then the composite

[χ, h, ϕ] : C1 ⊗τ1 A1
Id⊗ϕ−→ C1 ⊗ϕτ1 A2

h∩−→ C1 ⊗τ2χ A2
χ⊗Id−→ C2 ⊗τ2 A2 (3.15)

is a (ϕ, χ)-morphism of bundles, and every (ϕ, χ)-morphism C1 ⊗τ1 A1 → C2 ⊗τ2 A2 of bundles arises
in this manner from a suitable homotopy ϕτ1 ≃ τ2χ : C1 → A2 of twisting cochains. This claim holds
as well in the augmented, cooaugmented, and supplemented case.

Proof. Any (ϕ, χ)-morphism

C1 ⊗τ1 A1 −→ C2 ⊗τ2 A2

factors as

C1 ⊗τ1 A1
Id⊗ϕ−→ C1 ⊗ϕτ1 A2 −→ C1 ⊗τ2χ A2

χ⊗Id−→ C2 ⊗τ2 A2.

By Proposition 3.4, the middle bundle morphism is of the kind

C1 ⊗ϕτ1 A2
h∩−→ C1 ⊗τ2χ A2,

for a unique homotopy ϕτ1 ≃ τ2χ : C1 → A2 of twisting cochains. □
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When a homotopy h : τ1 ≃ τ2, viewed as a homogeneous degree zero member of the algebra
(Hom(C,A),∪), is invertible, (3.9) is equivalent to

τ2 = h ∪ τ1 ∪ h−1 − (Dh) ∪ h−1. (3.16)

As before, let C be a differential graded coalgebra and A a differential graded algebra. Let T (C,A)
denote the set of twisting cochains from C to A. The invertible members φ of Hom(C,A) (invertible
degree zero morphisms of the underlying graded R-modules) form a group G(C,A), and a straightfor-
ward verification shows that the association

G(C,A)×Hom(C,A) −→ Hom(C,A),

(φ, ρ) 7→ φ ∗ ρ = φ ∪ ρ ∪ φ−1 − (Dφ)φ−1 (3.17)

yields an action of G(C,A) on T (C,A).
The assignment to (C,A) of the G(C,A)-orbits D(C,A) = T (C,A)/G(C,A) is Berikashvili’s func-

tor under the present circumstances. In the same vein, in the augmented, coaugmented, and sup-
plemented case, let Taug(C,A), Tcoaug(C,A), Tsupp(C,A), denote the set of, respectively, augmented,
coaugmented, supplemented twisting cochains and let

Gaug(C,A) = {φ; εφ = ε} ⊆ G(C,A), Daug(C,A) = Taug(C,A)/Gaug(C,A),

Gcoaug(C,A) = {φ;φη = η} ⊆ G(C,A), Dcoaug(C,A) = Tcoaug(C,A)/Gcoaug(C,A),

Gsupp(C,A) = {φ; εφ = ε, φη = η} ⊆ G(C,A), Dsupp(C,A) = Tsupp(C,A)/Gsupp(C,A).

Theorem 3.6. For a differential graded coalgebra C and a differential graded algebra A, the assign-
ment to a twisting cochain t : C → A of the A-principal twisted tensor product C ⊗tA on C induces a
bijection between D(C,A), Daug(C,A), Dcoaug(C,A), Dsupp(C,A) and isomorphism classes of, respec-
tively, general, augmented, coaugmented, and supplemented (C,A)-bundles. Thus the value D(C,A)
of Berikashvili’s functor D on (C,A) parametrizes isomorphism classes of (C,A)-bundles.

Proof. Proposition 3.4 implies that homotopic twisting cochains determine isomorphic (C,A)-bundles,
that is, the map from D(C,A) to the set of isomorphism classes of (C,A)-bundles is well defined and
that, furthermore, this map is injective. Proposition 3.2 implies that this map is surjective. □

Proposition 3.7. For a cocomplete coaugmented differential graded coalgebra (C, η) and a differential
graded algebra A, a degree zero morphism h : C → A such that hη = η : R → A is invertible, i.e.,
belongs to Gcoaug(C,A).

Proof. Write h = ηε+ h̃ : C → A such that h̃η = 0. Then h−1 = ηε+
∑
j≥1(−h̃)∪j .

Indeed, for p ≥ 1, the term h̃∪p is zero on Fp−1C whence, restricted to Fp−1C, the infinite sum

ηε+
∑
j≥1(−h̃)∪j has only finitely many non-zero terms. This implies the claim since C is cocomplete,

i.e., C = ∪FjC. □

Thus, for a cocomplete coaugmented coalgebra C and a differential graded algebra A, there is no
need to distinguish between the members of Gcoaug(C,A) and coaugmented homotopies of coaugmented
twisting cochains from C to A, and this is, likewise, true in the supplemented case.

4. Enriched Categories, dg Categories and dg Cocategories

Henceforth we take every object, e.g., category, cocategory, etc. upon which we carry out an
algebraic construction to be small without explicitly saying so. Thus a (directed) graph (precategory,
or quiver) of the kind mentioned above is supposed to be small. However the universe, that is, the
closed monoidal category of graphs (or quivers or precategories), enriched in the closed monoidal
category of chain complexes over R, is not taken to be small. For more details, the reader may
consult, e.g., [17, 38,43].

A small category is an interpretation [50] of the category axioms within set theory, cf. [42]. Thus an
(oriented) graph (O,A, s, t) consists of a set O of objects, a set A of arrows, and two maps s, t : A→ O,
the map s being referred to as source and the map t as target map. The product

A×O A = {(g, f); g, f ∈ A, t(g) = s(f)}
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of A with itself over O is the set of composable arrows. When the set O is fixed, it is common to
refer to the graph (O,A, s, t) as an O-graph [42]. A morphism of graphs and, likewise, a morphism of
O-graphs, is defined in the obvious way. With this notion of morphism, graphs constitute a category
G and O-graphs form a subcategory GO thereof. A graph is discrete when its only arrows are the
identity maps between objects, so that the set of arrows coincides with its set of objects and so that
the source and target maps are necessarily the identity. A set O determines a unique discrete graph
(O,O, Id, Id) in an obvious way and, with a slight abuse of notation, we denote this graph by O as
well and refer to it as the discrete graph O.

A (small) category is a graph (O,A, s, t) together with two maps

Id: O −→ A, c : A×O A −→ A,

referred to as identity and composition, subject to the familiar constraints. The set of arrows A is then
commonly referred to as that of morphisms. Thus, relative to the product over objects, a category is
a monoid in the category of graphs. A cocategory is, likewise, a comonoid in the category of graphs.
The discrete graph O = (O,O, Id, Id) is a category in an obvious manner, the discrete category . A
topological category is a small category having as objects and morphisms topological spaces with
continuous structure maps. A smooth category is, likewise, a small category having as objects and
morphisms smooth manifolds with smooth structure maps.

Let RG denote the category of graphs enriched in the closed monoidal category ModR of R-modules.
An R-graph is an object of the category RG. Given the two R-graphs A and B, a morphism f : A → B
of R-graphs is defined in the obvious way: It consists of a map

Ob(f) : ObA −→ ObB

and, for each ordered pair (x, y) of objects of A, of a morphism

fx,y : A(x, y) −→ B(fx, fy)

of R-modules. We refer to an R-graph having object set O as an RO-graph. Plainly, RO-graphs
constitute a subcategory of RG.

A particular RO-graph R[O] arises from the discrete O-graph determined by O, with source and
target maps the identity map of O; we refer to this R-graph as the discrete RO-graph. With the
obvious notions of composition and identity, R[O] becomes a category, indeed, R[O] acquires a ringoid
structure in an obvious manner and, with the obvious interpretation of the term “module”, a general
RO-graph is then a module over R[O]; frequently we will use the terminology R[O]-module rather
than module over R[O]. Thus R[O]-module and RO-graph are synonymous notions. We can realize
the ringoid R[O] as a functor from O to the category ModR of R-modules.

Likewise, let ChainRG be the closed monoidal category of graphs enriched in the closed monoidal
category ChainR of R-chain complexes. With these preparations out of the way, an R-category is
a unital associative algebra in the closed monoidal category RG of R-graphs; a differential graded
R-category (dg category) is a unital associative algebra in the category ChainRG . We will also refer
to an object of ChainRG having object set O as an R[O]-chain complex .

The discrete R-graph R[O] acquires obvious R-category, R-cocategory and, more generally, dg
category and dg cocategory structures. The dg category A with object set O being unital signifies
that the unit η : R[O] → A is a morphism of dg categories. This unit encodes of course the identities
in A. In the same vein, a (counital) differential graded R-cocategory (dg cocategory) is a counital
coassociative coalgebra in the category ChainRG . The dg cocategory C with object set O being counital
signifies that the counit ε : C → R[O] is a morphism of dg cocategories. A dg category A with object
set O endowed with a morphism ε : A → R[O] of dg categories such that εη is the identity of the dg
category R[O] is defined to be augmented ; likewise a dg cocategory C with object set O endowed with
a morphism η : R[O] → C of dg cocategories such that εη is the identity of the dg cocategory R[O] is
defined to be coaugmented .
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5. The Nerve of a Category

5.1. Preliminaries. Let Ord denote the category of finite ordered sets [p] = (0, 1, . . . , p), p ≥ 0, and
monotone maps. Let C be a category. A simplicial object in C is a contravariant functor from Ord to
C; a cosimplicial object in C is a (covariant) functor from Ord to C. The assignment to [p] (p ≥ 0) of
the standard simplex ∇[p] yields a cosimplicial space ∇.

Let C be a category, not necessarily small. Let X be an object of C. This object defines a “trivially”
simplicial object in C, and we denote this simplicial object by X again. It has Xp = X, for p ≥ 0, and
every arrow the identity.

5.2. The nerve. The nerve NC of a small category C is the simplicial set having the objects as
vertices, the morphisms as edges, the triangular commutative diagrams as 2-simplicies, etc. More
formally, the nerve arises in the following way [49]: Regard an ordered set S as a category with S
as set of objects and with just one morphism from x ∈ S to y ∈ S whenever x ≤ y. Given the
category C, let NC(S) be the set of functors from S to C. As S ranges over the finite ordered sets,
this construction yields the nerve of the category C.

For convenience, here is the standard elementary description of the face and degeneracy operators
on the degree p constituent Np(C) = MorC ×O . . . ×O MorC (p ≥ 1 factors) of the nerve N(C) of C,
with N0(C) = O, and with the notation [x0| . . . |xp−1] ∈ Np(C) for p ≥ 1 for the members of Np(C), in
particular p composable morphisms for p ≥ 2:

∂0[x] = s(x) ∈ O,

∂1[x] = t(x) ∈ O,

s0(y) = [Idy] ∈ MorC(y, y),

∂j [x0| . . . |xp−1] =


[x1| . . . |xp−1], j = 0,

[x0| . . . |xj−1xj | . . . |xp−1], 1 ≤ j ≤ p− 1,

[x0| . . . |xp−2], j = p,

sj [x0| . . . |xp−1] = [x0| . . . |xj−1|Idt(xj−1)|xj | . . . |xp−1], 0 ≤ j ≤ p.

(5.1)

5.3. Bar and cobar constructions. Let A be an augmented small dg category having object set
O. Its nerve NA carried out relative to the operation of taking the tensor product over R[O] (the
appropriate coend) is a simplicial differential graded R[O]-module, that is, a simplicial object in
ChainRG ; cf. [42, IX.6 p. 226 ff.] for the notion of coend. Condensation, that is, totalization and
normalization, yields the differential graded R[O]-module

BA = |NA|, (5.2)

by construction, a differential graded R[O]-graph having, in particular, O as its set of objects. The
ordinary Alexander-Whitney diagonal ∆ turns BA into a dg cocategory having O as its set of objects.
The resulting dg cocategory BA is the reduced normalized bar construction for A. When O consists
of a single element so that A is an ordinary augmented dg algebra, the cocategory BA has a single
object and is the ordinary reduced normalized bar construction for A.

An alternate construction of the reduced normalized bar construction relies on the observation that,
given the set O and the dg category A with object set O, the functor which assigns to a dg R[O]-
module the induced A-module is left adjoint to the forgetful functor, and the adjunction determines
a comonad. The bar construction then arises from the associated standard construction.

In the same vein, let C be a coaugmented small dg cocategory having object set O . The construction
dual to the bar construction yields the dg category ΩC, the reduced normalized cobar construction for
C. When O consists of a single element so that C is an ordinary coaugmented dg coalgebra, ΩC is the
ordinary reduced normalized cobar construction for C. Similarly as before, an alternate construction
relies on the observation that the appropriate adjunction determines a monad. The cobar construction
then arises from the associated dual standard construction.
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5.4. The path object, its nerve, and twisted objects. Let C be a small category. Let X be an
object of C. Let PX be the category having Ob(PX) = X and Mor(PX) = X ×X, with

s, t : X ×X −→ X, s(x1, x2) = x1, t(x1, x2) = x2, x1, x2 ∈ X,

Id : X −→ X ×X, Id(x) = (x, x), x ∈ X,

c : Mor(PX)×X Mor(PX) −→ Mor(PX), c((x1, x2), (x2, x3)) = (x1, x3), x1, x2, x3 ∈ X.

Thus PX has a unique morphism between each pair of members of X. To have a name, we refer to
PX as the path category associated to X.

Let PX = NPX, the nerve of PX. This is the familiar simplical object in C having (PX)p =

X×(p+1), for p ≥ 0, with the standard face and degeneracy maps

∂j(y0, . . . , yp) =


(y1, . . . , yp), j = 0,

(y0, . . . , yj−1, yj+1, . . . , yp), 1 ≤ j ≤ p− 1,

(y0, . . . , yp−1), j = p,

sj(y0, . . . , yp) = (y0, . . . , yj−1, yj , yj , yj+1, . . . , yp), 0 ≤ j ≤ p,

(5.3)

cf., e.g., [3, Section 2 p. 294], also known as the path object associated to X.
The path category PC of C has

Ob(PC) = MorC

Mor(PC) = MorC ×MorC , written as {(y0, y1), y0, y1 ∈ MorC}
s : MorC ×MorC → MorC , s(y0, y1) = y0,

t : MorC ×MorC → MorC , t(y0, y1) = y1,

Id : MorC → MorC ×MorC , Id(y) = (y, y)

c : (MorC ×MorC)×MorC (MorC ×MorC) → MorC , c((y0, y1), (y1, y2)) = (y0, y2).

Then PC = NPC is the simplicial category having Obp(PC) = O×(p+1) and Morp(PC) = Mor
(p+1)
C ,

for p ≥ 0.
For p ≥ 1, let Np(C) ×O MorC denote the set of (p + 1)-tuples [x0|x1| . . . |xp−1]x of composable

morphisms in C and interpret N0(C)×O MorC as MorC in the obvious way. The map

Np(C)×O MorC = Mor×Op
C ×O MorC −→ Mor

×(p+1)
C = Morp(PC)

[x0|x1| . . . |xp−1]x 7→ (y0, . . . , yp)

(y0, . . . , yp) = (x0x1 . . . xp−1x, x1 . . . xp−1x, . . . , xp−1x, x)

(5.4)

is well defined. Setting, for p ≥ 0,

∂j [x0| . . . |xp−1]x =


[x1| . . . |xp−1]x, j = 0,

[x0| . . . |xj−1xj | . . . |xp−1]x, 1 ≤ j ≤ p− 1,

[x0| . . . |xp−2]xp−1x, j = p,

sj [x0| . . . |xp−1]x = [x0| . . . |xj−1|Idt(xj−1)|xj | . . . |xp−1]x, 0 ≤ j ≤ p,

(5.5)

defines a simplicial structure on N(C)×O MorC = (Np(C)×O MorC)p≥0, and the canonical projection

N(C)×O MorC −→ N(C) (5.6)

and the maps (5.4) are compatible with the simplicial structures. We say that N(C)×O MorC is the
principal simplicial twisted object associated to C.

The degeneracy operators of N(C) plainly determine those of N(C)×O MorC , and this is also true
of the face operators apart from the last one. For p ≥ 1, the last face operator ∂p : Np(C) → Np−1(C)
together with the map

ρp : Np(C) −→ MorC ,

ρp[x0| . . . |xp−1] = xp−1,
(5.7)



THE BREADTH OF BERIKASHVILI’S FUNCTOR D 453

determines the last face operator of N(C)×O MorC as

∂ρp : Np(C)×O MorC −→ Np−1(C)×O MorC

∂ρp [x0| . . . |xp−1]x = ∂p[x0| . . . |xp−1]ρp[x0| . . . |xp−1]x.
(5.8)

The sequence ρ1, ρ2, . . . of maps ρp : Np(C) → MorC (p ≥ 1) enjoys the properties

ρ(∂pb)ρ(b) = ρ(∂p−1(b)), b ∈ Np(C), p ≥ 2, (5.9)

ρ(sp(b)) = Idt(ρ(b)) ∈ MorC(t(ρ(b), t(ρ(b)), b ∈ Np(C), p ≥ 1. (5.10)

For a simplicial principal bundle, such a map has come to be known as a twisting function, cf. (6.1)
and (6.2) in Section 6 below and [1,9], [19, p. 406], [36]. For p ≥ 2, the commutative diagram

Np(C)
∆ //

∂next to last

��

Np(C)×Np(C)
(∂last,ρp) // Np−1(C)×O MorC

(ρ,∂last) // MorC ×O MorC

c

��
Np−1(C) ρp−1

// MorC

(5.11)

depicts property (5.9). We refer to ρ as the universal twisting function for C and write the principal
simplicial twisted object N(C)×O MorC associated to C as N(C)×ρ MorC .

5.5. Group case. Let G be a group, discrete, topological, or a Lie group, and consider G as a
category with a single object having each morphism an isomorphism. Below we simultaneously treat
the discrete, topological and smooth cases without further mention. With G substituted for C and for
MorC , consider the universal twisting function ρ : N(G) → G for G; it has constituents ρp : Np(G) → G
(p ≥ 1), and this twisting function determines the total space N(G) ×ρ G of the simplicial principal
(right) G-bundle

N(G)×ρ G→ N(G) (5.12)

(discrete, topological, smooth).
Consider the path category PG of G. Segal [49] writes this category as G. The group G acts

freely on PG from the right, by right translation on Ob(PG) = G and diagonal right translation on
Mor(PG) = G×G. The association

(G×G,G) −→ (G, {e}), (x1, x2, x) 7→ (x1x
−1
2 , e), x1, x2, x ∈ G, (5.13)

determines a smooth functor Π: PG → G inducing an isomorphism (PG)/G → G of categories, a
homeomorphism in the topological case and a diffeomorphism in the smooth case. Taking nerves, we
obtain the simplicial principal right G-bundle

NΠ: N(PG) −→ NG. (5.14)

The (lean) geometric realization of NΠ yields the universal principal G-bundle EG → BG over
the classifying space BG [49], see also [11]. The geometric realization of N(PG) is contractible for
completely formal reasons.

The constituent N0Π: N0(PG) → N0G is the trivial map G→ {e}, viewed as a principal G-bundle
and, for q ≥ 1, the constituent NqΠ: Nq(PG) → NqG is the principal right G-bundle

NqΠ: Gq+1 −→ Gq, (y0, y1, . . . , yq) 7→ (y0y
−1
1 , y1y

−1
2 , . . . , yq−1y

−1
q ). (5.15)

By construction, the group G acts by diagonalwise right translation, that is

Gq+1 ×G −→ Gq+1, (y0, y1, . . . , yq, y) 7→ (y0y, y1y, . . . , yqy). (5.16)

The simplicial morphism (5.4) now takes the form

N(G)×ρ G −→ N(PG), (5.17)

is plainly G-equivariant, and has inverse

N(PG) −→ N(G)×ρ G
(y0, . . . , yp) 7−→ [y0y

−1
1 |y1y−1

2 | . . . |yp−1y
−1
p ]yp, p ≥ 0.

(5.18)
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Thus (5.17) yields an isomorphism of simplicial principal right G-bundles from (5.12) to (5.14).

Remark 5.1. For the bar resolution, it is common to refer to the (p + 1)-tuples written above
as (y0, y1, . . . , yp) ∈ Gp+1 as homogeneous generators and to those of the kind [x0|x1| . . . |xp−1]x as
non-homogeneous generators [41, IV.5 p. 119].

6. Simplicial Principal Bundles

Let B be a simplicial set and K a simplicial group. A twisting function ρ : B → K consists of a
sequence ρ1, ρ2, . . . of maps ρp : Bp → Kp−1 (p ≥ 1) subject to

ρ(∂pb)∂p−1(ρ(b)) = ρ(∂p−1(b)), b ∈ Bp, p ≥ 2, (6.1)

ρ(sp(b)) = e ∈ Kp, b ∈ Bp, p ≥ 1, (6.2)

cf. [1, 9], [19, p. 406], [36]. Similarly as before, the commutative diagram

B
∆ //

∂next to last

��

B ×B
(∂last,ρ) // B ×K

(ρ,∂last) // K ×K

µ

��
B

ρ
// K

(6.3)

depicts property (6.1).

Remark 6.1. The terminology ‘twisting function’ is consistent with the terminology in Subsection 5.5
relative to an ordinary group via the assignment to an ordinary group of its associated trivially
simplicial group.

Let ρ : B → K be a twisting function. The twisted cartesian product B×ρK is the simplicial K-set
having B ×K as underlying graded object and

∂j : Bp ×Kp −→ Bp−1 ×Kp−1, p ≥ 1,

∂j(u, x) =

{
(∂j(u), ∂j(x)), 0 ≤ j < p,

(∂p(u), ρp(u)∂p(x)), j = p,

sj : Bp ×Kp −→ Bp+1 ×Kp+1, p ≥ 0,

sj(u, x) = (sj(u), sj(x)), 0 ≤ j ≤ p,

[1, 9], [19, p. 406], [36]. The twisted cartesian product B ×ρ K is the total space of the resulting
simplicial principal K-bundle prB : B ×ρ K → B. Every simplicial principal (right) K-bundle arises
in this manner [1, 9, 36]; see also Remark 6.13 below.

Proposition 6.2. For a simplicial set B and a simplicial group K, the assignment to a simplicial
principal bundle structure on B ×K of the degree −1 morphism

ρ : B
Id×{e}−→ B ×K

∂last

−→ B ×K
prK−→ K (6.4)

of the underlying graded objects establishes a bijection between twisting functions from B to K and
simplicial principal bundle structures B×K in such a way that B×ρK recovers the simplicial principal
bundle structure. Thus every simplicial principal bundle structure is of the kind B ×ρ K, for some
uniquely determined twisting function ρ : B → K. □

Remark 6.3. As in Subsection 5.5 above, we here give preferred treatment to the last face operator,
as in [21] and [36,37]. This procedure is appropriate for principal bundles with structure group acting
on the total space from the right and simplifies comparison with the bar construction.

The degree zero morphisms Mor0(B,K) of the underlying graded sets from B to K form a group
under pointwise multiplication. Let Mor−1(B,K) denote the degree −1 morphisms of the underlying



THE BREADTH OF BERIKASHVILI’S FUNCTOR D 455

graded sets from B to K. The association

Mor(B,K)×Mor−1(B,K) −→ Mor−1(B,K), (ϑ, ρ) 7→ ϑ ∗ ρ

ϑ ∗ ρ : B ∆ // B ×B ×B
(∂last,ρ,ϑ) // B ×K ×K

(ϑ,Id,∂last) // K ×K ×K
(left,right−1)// K,

(6.5)

in formulas,
(ϑ ∗ ρ)(b) = ϑ(∂p(b))ρ(b)ϑ(∂p(b))

−1, b ∈ Bp, (6.6)

yields an action of Mor(B,K) on Mor−1(B,K).

Lemma 6.4. Let ρ1 : B → K be a twisting function, let ϑ : B → K be a degree zero morphism of the
underlying graded sets, and let ρ2 = ϑ ∗ ρ1 : B → K. Then ρ2 is a twisting function if and only if

∂lastϑ∂ntlast = ∂last∂lastϑ (6.7)

or, equivalently,

∂p−1ϑ(∂p−1(b)) = ∂p−1(∂p(ϑ(b))), b ∈ Bp, p ≥ 1. (6.8)

Proof. Let b ∈ B. Since ρ2 = ϑ ∗ ρ1, by definition,

ρ2(∂pb) = ϑ(∂p−1∂pb)ρ1(∂pb)(∂p−1(ϑ(∂pb)))
−1

∂p−1(ρ2(b)(∂p(ϑb))) = ∂p−1(ϑ(∂pb)ρ1(b)) = [∂p−1(ϑ(∂pb))]∂p−1(ρ1(b))

ρ2(∂pb)∂p−1(ρ2(b))∂p−1(∂p(ϑb)) = ϑ(∂p−1∂pb)ρ1(∂pb)∂p−1(ρ1(b))

= ϑ(∂p−1∂pb)ρ1(∂p−1b).

On the other hand, still by definition,

ρ2(∂p−1b)∂p−1ϑ(∂p−1b) = ϑ(∂p−1(∂pb))ρ1(∂p−1b).

Hence
ρ2(∂pb)∂p−1(ρ2(b)) = ρ2(∂p−1b)

if and only if ∂p−1(∂p(ϑb)) = ∂p−1ϑ(∂p−1b). □

Let T (B,K) ⊆ Mor−1(B,K) denote the set of twisting functions from B toK, and let Mortw(B,K)
⊆ Mor0(B,K) be the subset consisting of those ϑ that are subject to (6.7), necessarily a subgroup.
The following is an immediate consequence of Lemma 6.4.

Proposition 6.5. The action (6.5) restricts to an action of Mortw(B,K) on T (B,K). □

The assignment to a pair (B,K) consisting of a simplicial set B and a simplicial group K of the
Mortw(B,K)-orbits

D(B,K) = T (B,K)/Mortw(B,K) (6.9)

is a functor from the category of pairs of the kind (B,K) to the category of sets. This functor is the
simplicial version of Berikashvili ’s functor.

For a morphism ϕ : K1 → K2 of simplicial groups and a morphism χ : B1 → B2 of simplicial
sets, a (ϕ, χ)-morphism from the simplicial principal K1-bundle E1 → B1 to the simplicial principal
K2-bundle E2 → B2 is a commutative diagram

E1
Ψ //

��

E2

��
B1 χ

// B2

in the category of simplicial sets having Ψ equivariant relative to K1, the K1-action on E2 being via ϕ.
Consider a degree zero morphism ϑ : B → K of the underlying graded sets. Define the map

ϑ∗ : B ×K
(∆,Id)−→ B ×B ×K

(Id,ϑ,Id)−→ B ×K ×K
(Id,µ)−→ B ×K, (6.10)

in formulas
ϑ ∗ (b, x) = (b, ϑ(b)x). (6.11)
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For twisting functions ρ1 and ρ2 from B to K such that ϑ∗ρ1 = ρ2, the map ϑ∗ is an (Id, Id)-morphism

ϑ∗ : B ×ρ1 K −→ B ×ρ2 K (6.12)

of simplicial principal bundles, necessarily an isomorphism. Every (Id, Id)-morphism of simplicial
principal K-bundles from B ×ρ1 K to B ×ρ2 K is necessarily of this kind, cf. [18, 6.2 p. 100] (for left
principal bundles). The following is a consequence of Lemma 6.4.

Proposition 6.6. For a simplicial set B, a simplicial group K, and twisting functions ρ1, ρ2 : B → K,
the assignment to an (Id, Id)-morphism Ψ: B×ρ1 K → B×ρ2 K of simplicial principal bundles of the
morphism

ϑΨ : B
Id×{e}−→ B ×ρ1 K

Ψ−→ B ×ρ2 K
prK−→ K (6.13)

of simplicial sets establishes a bijection between morphisms ϑ : B → K of simplicial sets such that
ϑ ∗ ρ1 = ρ2 and (Id, Id)-morphisms of simplicial principal bundles in such a way that

Ψ = ϑΨ∗ : B ×ρ1 K
Ψ−→ B ×ρ2 K. (6.14)

Thus any (Id, Id)-morphism of simplicial principal bundles from B ×ρ1 K to B ×ρ2 K is of the kind
ϑ∗ : B ×ρ1 K → B ×ρ2 K, for some uniquely determined degree zero morphism ϑ : B → K of the
underlying graded sets subject to (6.7). □

Proposition 6.7. Let K1,K2 be simplicial groups, B1, B2 simplicial sets, ρ1 : B1 → K1, ρ2 : B2 →
K2 twisting functions, ϕ : K1 → K2 a morphism of simplicial groups, χ : B1 → B2 a morphism of
simplicial sets, and ϑ : B1 → K2 a degree zero morphism of the underlying graded sets such that

ϑ ∗ (ϕρ1) = ρ2χ : B1 → K2. (6.15)

Then the composite

[χ, ϑ, ϕ] : B1 ×ρ1 K1
Id×ϕ−→ B1 ×ϕρ1 K2

ϑ∗−→ B1 ×ρ2χ K2
χ×Id−→ B2 ×ρ2 K2 (6.16)

is a (ϕ, χ)-morphism of simplicial principal bundles, and every (ϕ, χ)-morphism of simplicial principal
bundles from B1 ×ρ1 K1 to B2 ×ρ2 K2 arises in this manner from a suitable degree zero morphism
ϑ : B1 → K2 of the underlying graded sets subject to (6.7) and (6.15).

Proof. The argument is similar to that for the proof of Proposition 3.5. We leave the details to the
reader. □

Theorem 6.8. For a simplicial set B and a simplicial group K, the assignment to a twisting function
ρ : B → K of the K-principal twisted cartesian product B×ρK induces a bijection between D(B,K) =
T (B,K)/Mortw(B,K) and isomorphism classes of simplicial principal K-bundles on B. Thus the
value D(B,K) of Berikashvili’s functor D on (B,K) parametrizes isomorphism classes of simplicial
principal K-bundles on B.

Proof. Proposition 6.6 implies that twisting functions in the same Mortw(B,K)-orbit determine iso-
morphic simplicial principal (B,K)-bundles, that is, the map from D(B,K) to the set of isomorphism
classes of simplicial principal K-bundles on B is well defined and that, furthermore, this map is
injective. Proposition 6.2 implies that this map is surjective. □

Recall that |R(B×K)|, |RB| and |RK| denote the normalized chain complexes, each one, endowed
with the Alexander-Whitney diagonal, a differential graded coalgebra, and the latter, furthermore,
an augmented differential graded algebra under the multiplication map which the group structure
induces. Consider the Eilenberg–Zilber contraction

(|RB| ⊗ |RK|
ι // |R(B ×K)|, h
g
oo ) (6.17)

[13, Theorem 2.1 p. 51], written in [19, Section 4 p. 404], with K substituted for F , as

(B ⊗K
∇ // B ×K,Φ
f

oo ). (6.18)
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Let ρ : B → K be twisting function. It determines the perturbation

∂ρ : |R(B ×K)| −→ |R(B ×K)|,
∂ρ(b, x) = (∂p(b), (ρp(b)− 1)∂p(x)), (b, x) ∈ |R(B ×K)|p,

of the differential d on the normalized chain complex |R(B ×K)| of B ×K so that dρ = d + ∂ρ is a
differential on |R(B×K)|, and we write the resulting chain complex as |R(B×ρK)|. The perturbation
lemma yields a perturbation Dρ of the tensor product differential d⊗ on |RB| ⊗ |RK| together with
a contraction

((|RB| ⊗ |RK|, d⊗ +Dρ)
ιρ // |R(B ×ρ K)|, hρ
gρ
oo ), (6.19)

and [19, 4.4 Lemma and 4.5 Lemma, Section 4] assert that (|RB| ⊗ |RK|, d⊗ + Dρ) is a principal
twisted object or, equivalently, a (|RB|, |RK|)-bundle. By Proposition 3.2, the composite

τρ : |RB| Id⊗η−→ |RB| ⊗ |RK| Dρ

−→ |RB| ⊗ |RK| ε⊗Id−→ |RK| (6.20)

is a twisting cochain, the differential d⊗ +Dρ is the twisted differential dτ
ρ

= d⊗ + τρ∩, see also [19,
p. 410], and the contraction (6.19) takes the form

(|RB| ⊗τρ |RK|
ιρ // |R(B ×ρ K)|, hρ
gρ
oo ). (6.21)

By (2.8),

Dρ =
∑
n≥1

Dρ
n, D

ρ
j = g∂ρ(h∂ρ)j−1ι = g(∂ρh)j∂ρι, j ≥ 1.

Thus, with the notation

τρj : |RB| Id⊗η−→ |RB| ⊗ |RK|
Dρ

j−→ |RB| ⊗ |RK| ε⊗Id−→ |RK|, j ≥ 1,

the twisting cochain τρ takes the form

τρ =
∑
j≥1

τρj . (6.22)

We now recall the “Serre filtrations”: A member (b, x) of B ×K has filtration ≤ p when b is the
degeneration of a member of Bp, and

Fp(|RB| ⊗ |RK|) =
∑

0≤i≤p

|RB|i ⊗ |RK|.

In terms of the Moore complexes, with the notation pr : R(B ×ρ K) → RB for the projection,

Fp|RB| = FpMo(RB) =
∑
j≤p

Moj(RB)

FpMo(R(B ×ρ K)) = pr−1 FpMo(RB).

Theorem 6.9. For a simplicial set B and a simplicial group K, the assignment to a twisting function
ρ : B → K of the twisting cochain τρ : |RB| → |RK| induces a map

T (B,K) −→ Taug(|RB|, |RK|) (6.23)

that is natural in the data in the following sense: Let ρ1 : B → K be a twisting function, let ϑ : B → K
be a morphism of simplicial sets subject to (6.7), and let ρ2 = ϑ ∗ ρ1, necessarily a twisting function.
Then ϑ induces an augmented homotopy

hϑ : τρ1 ≃ τρ2 : |RB| −→ |RK|

of twisting cochains such that hϑ∩ : |RB| ⊗τ1 |RK| → |RB| ⊗τ2 |RK| is an (Id, Id)-isomorphism of
augmented (|RB|, |RK|)-bundles. Hence the map (6.23) passes to a map

D(B,K) −→ Daug(|RB|, |RK|) (6.24)
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and hence to a map from isomorphism classes of simplicial principal K-bundles on B to the isomor-
phism classes of augmented (|RB|, |RK|)-bundles.

Proof. The first claim is immediate.
Consider a twisting function ρ1 : B → K, let ϑ : B → K be a morphism of simplicial sets subject

to (6.7), and let ρ2 = ϑ ∗ ρ1, necessarily a twisting function. To simplify the notation, let τ1 = τρ1 ,
τ2 = τρ2 , ι1 = ιρ1 , ι2 = ιρ2 , g1 = gρ1 , g2 = gρ2 , and let

Ψϑ = g2|R(ϑ∗)|ι1 : |RB| ⊗τ1 |RK| −→ |RB| ⊗τ2 |RK|,

necessarily a chain map. Since g2ι2 = |RB| ⊗τ2 |RK|, this map renders the diagram

|RB| ⊗τ1 |RK|

Ψϑ

��

ι1 // |R(B ×ρ1 K)|

|R(ϑ∗)|
��

|RB| ⊗τ2 |RK|
ι2
// |R(B ×ρ2 K)|

commutative.
With K ×K substituted for K, the Eilenberg-Zilber contraction (6.17) reads

(|RB| ⊗ |RK| ⊗ |RK|
ιK×K// |R(B ×K ×K)|, hK×K
gK×K

oo ) (6.25)

and, applying the perturbation lemma yields, for k = 1, 2, the perturbed contraction

((|RB| ⊗τk |RK|)⊗ |RK|
ι̃k // |R((B ×ρk K)×K)|, h̃k
g̃k

oo ). (6.26)

In the same vein, with B ×B substituted for B, the Eilenberg-Zilber contraction (6.17) reads

(|RB| ⊗ |RB| ⊗ |RK|
ιB×B // |R(B ×B ×K)|, hB×B
gB×B

oo ) (6.27)

and, applying the perturbation lemma yields, for k = 1, 2, the perturbed contraction

(|RB| ⊗ (|RB| ⊗τk |RK|)
ιk // |R(B × (B ×ρk K)|, hk
gk

oo ). (6.28)

Since ϑ∗ is an (Id, Id)-(iso)morphism of simplicial principal bundles, the naturality of the constructions
implies that Ψϑ is an (Id, Id)-(iso)morphism of augmented (|RB|, |RK|)-bundles. Indeed, the diagram

|RB| ⊗τ1 |RK|)⊗ |RK|

Ψϑ⊗|RK|

��

µ
))

ι̃1 // |R((B ×ρ1 K)×K)|

|R((ϑ∗)×K)|

��

|Rµ|uu
|RB| ⊗τ1 |RK|

Ψϑ

��

ι1 // |R(B ×ρ1 K)|

|R(ϑ∗)|
��

|RB| ⊗τ2 |RK|
ι2
// |R(B ×ρ2 K)|

|RB| ⊗τ2 |RK|)⊗ |RK|
µ

55

ι̃2

// |R((B ×ρ2 K)×K)|
|Rµ|

ii
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is commutative, and so is the diagram

|RB| ⊗ (|RB| ⊗τ1 |RK|)

|RB|⊗Ψϑ

��

ι1 // |R(B × (B ×ρ1 K))|

|R(B×(ϑ∗))|

��

|RB| ⊗τ1 |RK|

∆

ii

Ψϑ

��

ι1 // |R(B ×ρ1 K)|

|R∆|

55

|R(ϑ∗)|
��

|RB| ⊗τ2 |RK|
ι2
//

∆

uu

|R(B ×ρ2 K)|

∆

))
|RB| ⊗ (|RB| ⊗τ2 |RK|)

ι2
// |R(B × (B ×ρ2 K))|.

Since Ψϑ is an (Id, Id)-morphism of augmented (|RB|, |RK|)-bundles, by Proposition 3.4, we conclude
that the composite

hϑ : |RB| |RB|⊗η−→ |RB| ⊗ |RK| Ψϑ

−→ |RB| ⊗ |RK| ε⊗|RK|−→ |RK|

is an augmented homotopy

hϑ : τρ1 ≃ τρ2 : |RB| −→ |RK|
of twisting cochains such that Ψϑ = hϑ∩ : |RB| ⊗τ1 |RK| → |RB| ⊗τ2 |RK|. □

Remark 6.10. The question emerges under which circumstances the map from isomorphism classes
of simplicial principal K-bundles on B to the isomorphism classes of augmented (|RB|, |RK|)-bundles
in Theorem 6.9 is an injection, surjection, or bijection.

Corollary 6.11. Let χ : B1 → B2 be a morphism of simplicial sets, ϕ : K1 → K2 a morphism of
simplicial groups, ρ1 : B1 → K1 and ρ2 : B2 → K1 twisting functions. Then a degree zero morphism
ϑ : B1 → K2 of the underlying graded sets subject to (6.7) and (6.15) induces an augmented homotopy

hϑ : ϕτρ1 ≃ τρ2χ : |RB1| −→ |RK2|

of twisting cochains such that, with the notation in (3.15), (6.16), and (6.21), the diagram

|RB1| ⊗τρ1 |RK1|

[|Rχ|,hϑ,|Rϕ|]
��

ιρ1 // |R(B1 ×ρ1 K1)|

|R[χ,ϑ,ϕ]|
��

|RB2| ⊗τρ2 |RK2| ιρ2
// |R(B2 ×ρ2 K2)|

is commutative. □

Finally we consider simplicial principal bundles having structure group an ordinary group G, taken
as a trivially simplicial group. In this case, for a simplicial set, the defining properties (6.1) and (6.2)
of a twisting function ρ : B → G come down to (5.9) and (5.10), with B substituted for NC and G for
MorC and, G being viewed as an ordinary group, we use the notation Ttriv(B,G) for the set of maps
ρ : B → G subject to (5.9) and (5.10), that is, for the set of twisting functions from B to G when G
is taken as an ordinary group. A straightforward verification establishes the following.

Complement 6.12. For a simplicial set B and a group G, taken as a trivially simplicial group, the
restriction T (B,G) → Ttriv(B,G) is a bijection and, furthermore, a member ϑ of Mortw(B,G) satisfies
the identity

ϑ(b) = ϑ(∂0 . . . ∂p−2∂p−1(b)), b ∈ Bp, p ≥ 1.

Hence the restriction

Mortw(B,G) −→ Map(B0, G) (6.29)
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is an isomorphism of groups and, in terms of the induced action of Map(B0, G) on Ttriv(B,G),

D(B,G) = Ttriv(B,G)/Map(B0, G). □ (6.30)

Remark 6.13. Let K be a simplicial group. Recall that the W -construction yields the universal
simplicial K-principal bundle [12, §17]: For n ≥ 0,

(WK)n = K0 × · · · ×Kn, (6.31)

with face and degeneracy operators given by the formulas

∂0(x0, . . . , xn) = (∂0x1, . . . , ∂0xn)

∂j(x0, . . . , xn) = (x0, . . . , xj−2, xj−1∂jxj , ∂jxj+1, . . . , ∂jxn), 1 ≤ j ≤ n

sj(x0, . . . , xn) = (x0, . . . , xj−1, e, sjxj , sjxj+1, . . . , sjxn), 0 ≤ j ≤ n;

(6.32)

further, (WK)0 = {e} and, for n ≥ 1

(WK)n = K0 × · · · ×Kn−1, (6.33)

with face and degeneracy operators given by the formulas

∂0(x0, . . . , xn−1) = (∂0x1, . . . , ∂0xn−1),

∂j(x0, . . . , xn−1) = (x0, . . . , xj−2, xj−1∂jxj , ∂jxj+1, . . . , ∂jxn−1),

1 ≤ j ≤ n− 1,

∂n(x0, . . . , xn−1) = (x0, . . . , xn−2),

s0(e) = e ∈ K0,

sj(x0, . . . , xn−1) = (x0, . . . , xj−1, e, sjxj , sjxj+1, . . . , sjxn−1),

0 ≤ j ≤ n.

(6.34)

The formulas (6.32) and (6.34) are consistent with those in [21, A.14] for a simplicial algebra; they
differ from those in [9] (pp. 136 and 161) where the constructions are carried out with structure group
acting from the left . The maps

ρn = prKn−1
: (WK)n = K0 × · · · ×Kn−1 → Kn−1, n ≥ 1, (6.35)

assemble to a twisting function ρ : WK → K, and the canonical map (WK) ×ρ K → WK is an
isomorphism of right K-simplicial sets. Any simplicial principal K-bundle P → B admits a classifying
map B →WK and can hence be written as a twisted Cartesian product of the base B with K. For a
modern account of theW -construction, with structure group acting from the left, see [16, §V.4 p. 269].

7. Principal Bundles on the Nerve of a Category

Let G be a group (discrete, topological, Lie, according to the case considered), viewed as a category
with a single object, and let F : C → G be a functor. Thus F assigns to every object of C the identity
element of G and to every morphism f : x0 → x1 of C a group element F (f) ∈ G such that, whenever
f1 : x0 → x1 and f2 : x1 → x2,

F (f1f2) = F (f1)F (f2).

Since F is a functor, this assignment extends to a morphism

NF : NC −→ NG

of simplicial objects. The pullback diagram

PC,F

ΠF

��

FG // PG

Π

��
C

F
// G

(7.1)
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of categories characterizes the pullback category PC,F . By construction, the group G acts freely from
the right on PC,F , and the canonical functor PC,F /G→ C is an isomorphism of categories. Hence the
nerve construction yields the simplicial principal right G-bundle

NΠF : N(PC,F ) −→ NC. (7.2)

The composite ρ(NF ) : NC → G of the induced morphism NF : NC → NG of simplicial sets with the
universal twisting function ρ : N(G) → G, see Subsection 5.5, yields the twisting function NC → G
which recovers the simplicial right G-set N(PC,F ), the total object of (7.2), as the twisted cartesian
product NC ×ρ(NF ) G in such a way that the bundle projection map NΠF : NC ×ρ(NF ) G → NC
amounts to the canonical projection to NC.

The group Map(ObC , G) of maps from ObC to G with pointwise multiplication acts on the set
Funct(C, G) of functors form C to G via natural transformations of functors: Consider two functors
F1, F2 : C → G and a map Φ: ObC → G such that, for two objects x and y of C and a morphism f
from x to y, the diagram

F1(x)
F1(f) //

Φ(x)

��

F1(y)

Φ(y)

��
F2(x)

F2(f)
// F2(y)

(7.3)

is commutative. Then F2 = Φ(F1) is the result of the action by Φ ∈ Map(ObC , G) on F1.
The assignment to a pair (C, G) consisting of a category C and a group G of the Map(ObC , G)-orbits

D(C, G) = Funct(C, G)/Map(ObC , G) (7.4)

is a functor from the category of pairs of the kind (C, G) to the category of sets. This functor is the
present version of Berikashvili ’s functor.

Theorem 7.1. For a category C and a group G, the assignment to a functor F : C → G of the simplicial
principal bundle NΠF , see (7.2), induces an injection from D(C, G) to the set of isomorphism classes
of simplicial principal G-bundles on NC. Thus the value D(C, G) of Berikashvili’s functor D on (C, G)
parametrizes the isomorphism classes of simplicial principal G-bundles on NC of the kind NΠF , for
some functor F : C → G.

Proof. Consider two functors F1, F2 : C → G and a map Φ: ObC → G such that F2 = Φ(F1). By
Complement 6.12, the map Φ determines a unique map ϑ : NC → G subject to (6.7), and

ϑ∗ : NC ×ρ(NF1) G −→ NC ×ρ(NF2) G (7.5)

yields an isomorphism of simplicial principal G-bundles on NC. By Proposition 6.6, every isomorphism
NΠF1

→ NΠF2
of simplicial principal G-bundles over the identity of NC arises in this manner. □

Example 7.2. Let B be a simplicial complex or, more generally, simplicial set, and let CB be the
category whose set of objects ObB is the set S of simplices in B, with one morphism from x ∈ S to
y ∈ S whenever x ≤ y, that is, whenever x is a face of y. As a simplicial set, the nerve NCB of CB is
the barycentric subdivision of B. Thus a functor F : CB → G assigns to every simplex of B, that is, to
every vertex of the barycentric subdivision NCB of B, the identity element of G, and to every oriented
edge (1-simplex) x0 ⊆ x1 of NCB a group element F (x0 ⊆ x1) ∈ G such that, whenever x0 ⊆ x1 and
x1 ⊆ x2,

F (x0 ⊆ x2) = F (x0 ⊆ x1)F (x1 ⊆ x2).

Since F is a functor, this assignment extends to a morphism

NF : NCB −→ NG

of simplicial objects. Since, as a simplicial set, the nerve NCB of CB is the barycentric subdivision
of B, by Theorem 7.1, applying Berikashvili’s functor to (CB , G) yields a set D(CB , G) parametrizing
the isomorphism classes of simplicial principal G-bundles on the barycentric subdivision NCB of B of
the kind NΠF , for some functor F : CB → G.
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The lean geometric realization ||NCB || of the nerve NCB of CB is homeomorphic to the lean geomet-
ric realization ||B|| of B. When B is a simplicial complex the homeomorphism is actually natural. The
proof where B is a general simplicial set is in [14] together with the observation that the homeomor-
phism cannot be taken to be natural (“Korollar” p. 508). Given the functor F : CB → G, geometric
realization yields the principal G-bundle

||NΠF || : ||N(PCB ,F )|| −→ ||NCB ||. (7.6)

Hence the value D(CB , G) of Berikashvili’s functor on (CB , G) parametrizes isomorphism classes of
principal G-bundles of the kind (7.6) on the geometric realization of the barycentric subdivision of B.

Example 7.3. LetM be a (topological, smooth, analytic, algebraic, according to the case considered)
manifold and U = {Uλ}λ∈Λ an open cover of M . Consider U as a partially ordered set, with order
relation by inclusion. Let CU be the associated category. It has ObCU = U and, for two members U
and V of U with U ⊆ V a morphism from U to V .

For a subset σ of Λ, let Uσ = ∩α∈σUα. The family {Uσ} of the non-empty Uσ as σ ranges over
finite subsets of Λ forms an open cover of M as well, and we denote this open cover by BU . Here we
use the letter B as a mnemonic for ‘barycentric subdivision’, see below. For τ ⊆ σ ⊆ Λ, necessarily
Uσ ⊆ Uτ . The associated category CBU has ObCBU = BU and, for two objects Uσ and Uτ of BU with
τ ⊆ σ ⊆ Λ, a morphism from Uσ to Uτ .

Following [49, §4], we assign to CBU a (topological, smooth, analytic, algebraic, according to the
case considered) category MU as follows (the notation in [49, §4] is X for M and XU for MU ):
Let Ob(MU ) =

∐
σ∈Λ Uσ, the disjoint union of the non-empty Uσ, for finite subsets σ of Λ. Thus

the objects of MU are pairs (x, Uσ) with x ∈ Uσ, for finite subsets σ of Λ. Define a morphism
(x, Uσ) → (y, Uτ ) of MU to be an inclusion i : Uσ → Uτ with i(x) = y, for τ ⊆ σ. Hence, for two
finite subsets σ0 ⊆ σ1 of Λ, a morphism (x1, Uσ1

) → (x0, Uσ0
) of MU is the inclusion i : Uσ1

→ Uσ0

with i(x1) = x0. For an ascending sequence σ0 ⊆ σ1 ⊆ σ2 and two morphisms (x2, Uσ2) → (x1, Uσ1)
and (x1, Uσ1) → (x0, Uσ0) of MU , the composite of (x2, Uσ2) → (x1, Uσ1) and (x1, Uσ1) → (x0, Uσ0) is
the morphism

c((x2, Uσ2
) → (x1, Uσ1

), (x1, Uσ1
) → (x0, Uσ0

)) = (x2, Uσ2
) → (x1, Uσ1

) → (x0, Uσ0
). (7.7)

Thus the disjoint union
∐

[σ0⊆σ1]
Uσ1

of the non-empty Uσ1
over the inclusions σ0 ⊆ σ1 ⊆ Λ of finite

subsets of Λ parametrizes the space Mor(MU ) of MU . Consider an inclusion σ0 ⊆ σ1 ⊆ Λ of finite
subsets of Λ and let Uσ0⊆σ1 denote the constituent of Mor(MU ) which that inclusion parametrizes.
The following arrows characterize the so far missing pieces of structure that turn MU into a category:

s : Uσ0⊆σ1 = Uσ1

incl−→ Uσ0 ,

t : Uσ0⊆σ1 = Uσ1

=−→ Uσ1 ,

Id : Uσ0

=−→ Uσ0⊆σ0
.

The nerve N(MU ) of MU is the simplicial manifold having, for p ≥ 0,

N(MU )p =
∐

[σ0⊆...⊆σp]

Uσp
(7.8)

the disjoint union of the non-empty Uσp
, parametrized by ascending sequences

σ0 ⊆ · · · ⊆ σp ⊆ Λ (7.9)

of finite subsets of Λ. By construction, for an ascending sequence of subsets of Λ of the kind (7.9),
necessarily

Uσp = ∩0≤j≤pUσj . (7.10)

The face and degeneracy operators are the corresponding inclusions. See also [Section 2 p. 237] [11].
As a simplicial manifold, the nerve NMU of MU is the barycentric subdivision of the ordinary nerve
NU of U .

A functor F : MU → G determines the corresponding simplicial principal G-bundle (7.2), viz.

NΠF : N(PMU ,F ) −→ NMU , (7.11)
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on NMU . Thus, by Theorem 7.1, the value D(MU , G) of Berikashvili’s functor on (MU , G) para-
metrizes the isomorphism classes of simplicial principal G-bundles on NMU of the kind NΠF , for
some functor F : MU → G.

View the manifoldM as a trivially simplicial manifoldM . Then the canonical projection MU →M
is a morphism of simplicial manifolds. A partition of unity of M subordinate to BU induces a section
ι : M → ||NMU ||, and ι and the projection ||NMU || →M constitute a deformation retraction. Thus,
when M is topological or smooth and paracompact, the value of Berikashvili’s functor on (MU , G)
parametrizes certain isomorphism classes of principal G-bundles on M ; if, furthermore, every object
of MU is contractible, every simplicial principal bundle on NMU arises from a functor from MU to
G, and the value D(MU , G) of Berikashvili’s functor on (MU , G) parametrizes isomorphism classes
of principal G-bundles on M . Below we make this observation more precise.

For a functor F : MU → G, by construction, applying geometric realization to (7.11) yields the
ordinary principal G-bundle

||NΠF || : ||N(PMU ,F )|| −→ ||NMU ||, (7.12)

and the classifying map
||NF || : ||NMU || −→ ||NG|| (7.13)

thereof arises as the geometric realization of the morphism NF : NMU → NG of simplicial objects
which the functor F induces. Thus, within the present framework, the functor F determines the
associated bundle and classifying map for free. The composite with the section ι : M → ||NMU ||
arising from a partition of unity of M subordinate to BU then yields the classifying map for the
resulting G-bundle on M for free. If every member of U is contractible, every principal G-bundle on
M arises in this way.

Consider the special case where the open cover U ofM has a single member, i.e.,M itself. The nerve
NU of U is the trivially simplicial space associated to M (having, for p ≥ 0, as degree p constituent a
copy of M and every arrow the identity). The category MU is the smooth category having M as its
space of objects and the nerve NMU of MU is, likewise, the trivially simplicial space associated to
M . (The barycentric subdivision of a point is still a point.) A functor F : MU → G assigns to each
object x ∈M of MU the identity e of M and to the single morphism IdM of MU the identity element
of G. Hence the resulting G-bundle on M is trivial.

The observation in [49, §4] that G-transition functions relative to the open cover BU of M amount
to a functor F : MU → G reconciles the present characterization of a principal G-bundle in terms of
an open cover with the more classical one.

To put flesh on the bones of the last remark, recall a system of G-valued transition functions on
M relative to the open cover U consists of a family of maps gλ,µ : Uλ ∩ Uµ → G (λ, µ ∈ Λ) subject to
(T1) below:

(T1) For λ, µ, ν ∈ Λ, the diagram

(Uλ ∩ Uµ ∩ Uν)× (Uλ ∩ Uµ ∩ Uν)
(gλ,µ,gµ,ν)// G×G

µ // G

Uλ ∩ Uµ ∩ Uν

∆

OO

gλ,ν

22 (7.14)

is commutative; see, e.g., [34, 2.4 Definition Section 5.2 p. 63].
A system {gλ,µ : Uλ ∩ Uµ → G} of G-valued transition functions on M relative to U necessarily

satisfies (T2) and (T3) below [34, Section 5.2 p. 63]:

(T2) For λ ∈ Λ, the map gλ,λ : Uλ → G factors as

gλ,λ : Uλ → {e} → G. (7.15)

(T3) For λ, µ ∈ Λ, the maps gλ,µ, gµ,λ : Uλ ∩ Uµ → G coincide.

Two systems {gλ,µ : Uλ∩Uµ → G} and {g′λ,µ : Uλ∩Uµ → G} of G-valued transition functions onM

relative to U are equivalent [34, 2.6 Definition Section 5.2 p. 63] provided there exist maps rλ : Uλ → G
(λ ∈ Λ) satisfying the relations (E) below:
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(E) For λ, µ ∈ Λ and y ∈ Uλ ∩ Uµ,

g′λ,µ(y) = rλ(y)
−1gλ,µ(y)rµ(y). (7.16)

This relation is an equivalence relation among systems of G-transition functions on U . The equivalence
classes form the first non-abelian cohomology set H1(U , G) of U with coefficients in G; see, e.g., [23, I.3
p. 40].

Relative to the open cover BU of M , consider a system of G-valued transition functions. Such a
system takes the form {gσ0⊆σ1

: Uσ0⊆σ1
→ G}σ0⊆σ1

, as σ0 ⊆ σ1 ranges over injections of finite subsets
of Λ. The constraints (T1) – (T3) say that this system of transition functions defines the functor

F : MU −→ G

F : Ob(MU ) −→ {e} ⊆ G

F |Uσ0⊆σ1
= gσ0⊆σ1 : Uσ0⊆σ1 −→ G,

(7.17)

and every such functor determines a system of G-valued transition functions. Hence:

Theorem 7.4. The assignment to a system of G-transition functions on BU of the G-valued functor
F on MU which the assignment (7.17) characterizes induces a bijection

H1(BU , G) −→ D(MU , G) (7.18)

onto the set D(MU , G) (Berikashvili’s functor evaluated on (MU , G)), and this bijection is natural in
the data. □

Suppose that M is smooth and that M admits a partition of unity subordinate to the open cover
BU of M . When M is paracompact, such a partition of unity is available. A classical result says
that two principal G-bundles on M arising from the same open cover are isomorphic if and only if
the corresponding systems of G-transition functions are equivalent, cf. [34, 2.7 Theorem Section 5.2
p. 63]. Thus, when each member of the open cover U of M is contractible, the value D(MU , G) of
Berikashvili’s functor on the pair (MU , G) parametrizes isomorphism classes of principal G-bundles
on M .

Remark 7.5. Theorem 7.4 suggests one could view the value D(C,A) of Berikasvili’s functor in
Section 3 on the pair (C,A), the value D(B,K) of that functor in Section 6 on the pair (B,K), and
the value D(C, G) of that functor on the pair (C, G) in the present Section as a kind of first non-abelian
cohomology set. This is consistent with the interpretation of a moduli space of flat connections as a
first non-abelian cohomology space.

8. Twisting Cochains and Berikashvili’s Functor in a Categorical Setting

Let C be a coaugmented dg R-cocategory, with object set OC and coaugmentation η : R[OC ] → C,
and let A be an augmented dg R-category, with object set OA and augmentation ε : A → R[OA]. A
twisting cochain is a degree −1 morphism t : C → A of graded R-graphs, subject to the requirements

Dt = t ∪ t, εt = 0, tη = 0. (8.1)

We will now unravel the meaning of this definition. In particular, when OC and OA consist of a single
element, this notion of twisting cochain comes down to the standard one.

We return to the general case. The values of the diagonal ∆ characterizing the cocategory structure
of C lie in the appropriate tensor square of C with itself in the category of differential graded R[OC ]-
modules. This tensor square is the appropriate coend C ⊗R[OC ] C, that is, C ⊗R[OC ] C is the differential
graded R[OC ]-module having the same set of objects OC as C and, given the pair (x, y) of objects, the
R-chain complex (C ⊗R[OC ] C)(x, y) of arrows from x to y is the sum⊕

z∈OC

C(x, z)⊗ C(z, y),

the tensor product for each object z being the ordinary tensor product of R-chain complexes.
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A homogeneous morphism α : C → A of graded R-graphs of a fixed degree k ∈ Z consists of (i) a
set map

α : OC = Ob(C) −→ Ob(A) = OA

together with (ii), for each (ordered) pair (x, y) of objects of C, a morphism

αx,y : C(x, y) −→ A(α(x), α(y))

of graded R-modules of degree k; we will denote the degree of such a homogeneous morphism α by
|α|. Given two homogeneous morphisms α, β : C → A of graded R-graphs which coincide on objects,
that is,

α = β : Ob(C) −→ Ob(A), (8.2)

their cup product α ∪ β is the homogeneous morphism α ∪ β : C → A of graded R-graphs of degree
|α| + |β| which, on objects, is given by (8.2) and which, for any (ordered) pair (x, y) of objects of C,
is given as the composite of the following three morphisms:

C(x, y) ∆−−−−→
⊕

z∈OC
C(x, z)⊗ C(z, y)

⊕
z∈OC

C(x, z)⊗ C(z, y) αx,z⊗αz,x−−−−−−−→
⊕

z∈OC
A(α(x), α(z))⊗A(α(z), α(y))

⊕
z∈OC

A(α(x), α(z))⊗A(α(z), α(y))
c−−−−→ A(α(x), α(y))

(8.3)

This composition is well defined since, given f ∈ C(x, y), the value

∆(f) ∈
⊕
z∈OC

C(x, z)⊗ C(z, y)

has at most finitely many non-zero components whence, even though the lower-most arrow in (8.3)
is, perhaps, not well defined when OC is infinite, the evaluation relative to the composition c is well
defined.

With these preparations out of the way, a twisting cochain t : C → A consists of a set map

t : Ob(C) −→ Ob(A)

together with, for each (ordered) pair (x, y) of objects of C, a morphism

αx,y : C(x, y) −→ A(α(x), α(y))

of graded R-modules of degree −1; and t is required to satisfy the identities (8.1).
The following is an immediate generalization of the corresponding facts for differential graded

algebras and coalgebras:

Proposition 8.1. Let C be a coaugmented dg R-cocategory and A an augmented dg R-category. A
twisting cochain t : C → A induces a morphism

t : C −→ BA (8.4)

of coaugmented dg cocategories and a morphism

t : ΩC −→ A (8.5)

of augmented dg categories.

In this proposition, the notation t is slightly abused. Under these circumstances, we will refer to
either t as the adjoint of t.

Under the present circumstances, Berikashvili’s functor is still defined: As before, let C be a coaug-
mented dg R-cocategory, with object set OC and with coaugmentation η : R[OC ] → C, and let A be
an augmented dg R-category, with object set OA and augmentation ε : A → R[OA]. Let

φ : OC −→ OA
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be a fixed map and let Aφ be the graded R-module of homogeneous morphisms C → A of graded
R-graphs which, on objects, are given by φ. The standard Hom-differential D turns Aφ into an R-
chain complex and the cup product turns Aφ into a differential graded algebra, with unit given by
the composite

C ε−−−−→ R[OC ]
Rφ−−−−→ R[OA]

η−−−−→ A.
Denote the set of twisting cochains in Aφ by T (Aφ). Next let G be the group of invertible elements
of A0

φ, and define the action

G× T (Aφ) −→ T (Aφ), (x, y) 7→ x ∗ y, x ∈ G, y ∈ T (Aφ),

of G on T (Aφ), by means of the formula

x ∗ y = xyx−1 + (Dx)x−1. (8.6)

This is well defined, that is, given x ∈ G and y ∈ T (Aφ), the value x ∗ y satisfies the requirements
(8.1) as well. This is readily seen by a straightforward calculation relying on the formulas

(Dx)x−1 + xDx−1 = 0, (Dx−1)x+ x−1Dx = 0

which, in turn, follow from xx−1 = 1. We denote the set of orbits (T (Aφ))/G by D(Aφ). The
assignment to (C,A, φ) of

D(C,A, φ) = D(Aφ) (8.7)

is a functor from the category of triples of the kind (C,A, φ) to the category of sets. This functor is the
present version of Berikashvili ’s functor. The set D(C,A, φ), i.e., Berikashvili’s functor D, evaluated
at (C,A, φ), still resembles a moduli space of gauge equivalence classes of connections.

All the previous examples for Berikashvili’s functor can be subsumed under this general version
of Berikashvili’s functor. For example, return to the circumstances of Example 7.2. Let RCB be the
corresponding category enriched in the category of R-modules. Then N(RCB) amounts to the induced
simplicial R[O]-module RNCB , and the dg cocategory

BRCB = |NRCB | = |RNCB | (8.8)

(where as before | · | refers to the normalized chain complex functor) recovers the ordinary dg coalgebra
of normalized R-chains on the simplicial set NCB (the barycentric subdivision of B) in the following
way: The R-chain complex which underlies the dg coalgebra |NCB | (arising from the normalized
R-chains on NCB) is the direct sum

|NCB | =
⊕
x,y∈O

|RNCB |(x, y),

and the Alexander-Whitney diagonal

∆: |NCB | −→ |NCB | ⊗ |NCB |

is induced by the cocategory diagonal of BRCB . Given an ordinary augmented dg algebra A, viewed
as an augmented dg category with a single object, a twisting cochain

t : BRCB −→ A

in the sense of the present discussion comes down to an ordinary twisting cochain |NCB | → A,
defined on the ordinary coaugmented dg R-coalgebra |NCB | of normalized R-chains on the barycentric
subdivision NCB of B.

The general version of Berikashvili’s functor deserves further study. To this end, the appropriate
framework is, perhaps, that of A∞-categories due to Kontsevich and Fukaya: An A∞-category is
an “A∞-algebra with more than one object”. More precisely: A unital A∞-category (over R) is a
unital A∞-algebra in the closed monoidal category ChainRG (category of graphs enriched in the closed
monoidal category ChainR of R-chain complexes) [15]; thus, a unital A∞-category (over R) with object
set O is a unital A∞-algebra in the category of R[O]-chain complexes. Further, given two augmented
dg categories A1 and A2, an A∞-functor from A1 to A2 see, e.g., [10, p. 688] and the literature there,
is a twisting cochain from A1 to A2 or, equivalently, an ordinary (dg) functor from ΩBA1 to A2.
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Also, the general version of Berikashvili’s functor is, perhaps, relevant for the results and observations
in [51] and [52].
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