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ON RANGE OF AN ELEMENTARY OPERATOR

YOUSSEF BOUHAFSI1, MOHAMED ECH-CHAD2, MOHAMED MISSOURI2 AND KARIM AZHOUM2

Abstract. Let L(H) denote the algebra of all bounded linear operators on a complex infinite dimen-
sional Hilbert space H into itself. Given A,B,C,D ∈ L(H), the elementary operator ∆(A,C),(B,D) ∈
L(L(H)) is defined by ∆(A,C),(B,D)(X) = AXB − CXD. In the present paper, we give necessary

and sufficient conditions that (i) the range of the elementary operator ∆(A,C),(B,D) is dense in the

weak and the ultraweak operator topologies, (ii) the norm closure of the range of ∆(A,C),(B,D) con-

tains the ideal of compact operators. We initiate the study on the class of operators such that the
norm closure of the range of ∆(A,C),(B,D) is closed under taking adjoints. We establish some basic

properties concerning these operators.

1. Introduction

Let H be a separable infinite-dimensional complex Hilbert space and let L(H) denote the algebra
of all bounded linear operators on H into itself.

The generalized derivation operator δA,B associated with (A,B), defined on L(H) by

δA,B(X) = AX −XB,

was initially systematically studied by M. Rosenblum [23]. The properties of such operators have been
well studied (see, for example, [3, 25,26]).

If A = B, then δA,A = δA : L(H) −→ L(H) defined by

δA(X) = AX −XA,

is called the inner derivation induced by A. The ranges and kernels of derivations have been studied
intensively (see [4, 5, 12,14,19,20]).

The elementary operator ∆A,B associated with (A,B) is defined on L(H) by

∆A,B(X) = AXB −X.

If A = B, we write simply ∆A for ∆A,A. The properties of elementary operators, their spectrum
[15,16], norm [21,22,24] and ranges [1,2,6,13,16–18] have been studied intensively, but many problems
remain still open [16]. In particular, L. Fialkow [16] and Z. Genkai [18] studied the problem of
characterizing operators A,B ∈ L(H) for which R(△A,B), the range of △A,B , is dense in L(H) in the
norm topology. Given A,B,C,D ∈ L(H), we define the elementary operator △(A,C),(B,D) as

△(A,C),(B,D) : L(H) −→ L(H)

X 7−→ AXB − CXD.

In [28] J. P. Williams obtained the necessary and sufficient conditions that the range R(δA) is dense
in the weak and ultra-weak operator topologies, the norm closure of the range contains the ideal K of
compact operators on H. The extension of these results to ∆A,B has been carried out by Bouali and
Bouhafsi [7].

Our aim in this paper is a modest one. In Section 2, we provide a characterization of the case,
where the range R(△(A,C),(B,D)) is weakly and ultra-weakly dense in L(H). Complementary results
related to the range of the elementary operator △(A,C),(B,D) are also given.

The D-symmetric operators ( A is D-symmetric if R(δA) is self-adjoint, where R(δA) is the closure
of the range R(δA) of δA in the norm topology ) were studied by J. H. Anderson, J. W. Bunce,
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J. A. Deddens and J. P. Williams [1], S. Bouali and J. Charles [8,9], S. Bouali and M. Ech-chad [10,11]
and J. G. Stampfli [26].

We consider the class of quadruplets (A,B,C,D) such that R(△(A,C),(B,D)) is self-adjoint and call
such quadruplet D-symmetric. In this paper we extend the results of the D-symmetric operators to
D-symmetric quadruplets.

In Section 3, we give some properties and characterizations which concern the D-symmetric quadru-
plets. We prove that if (A,B,C,D) is D-symmetric, then BTA = DTC implies BT ∗A = DT ∗C for
all T ∈ C1(H). In order to generalize these results, we initiate the study of a more general class of
quadruplets (A,B,C,D) that have the following property: BTA = DTC implies BT ∗A = DT ∗C
for all T ∈ C1(H). We give a characterization and some basic properties concerning this class of
operators.

Notation and definitions

(1) Let L(H) be the algebra of all bounded linear operators acting on a complex separable Hilbert
space H, let K(H) denote the ideal of all compact operators on H, and let B(H) be the class of all
finite rank operators. Finally, let C(H) = L(H)/K(H) denote the Calkin algebra. For A ∈ L(H), let
[A] denote the coset of A in the Calkin algebra C(H).

(2) For T , a linear operator acting on the Banach space X, we denote by T ∗, ker(T ) and R(T ),

respectively, the adjoint, the kernel and the range of T . Also, we denote by R(T ), R(T )
w
and R(T )

w∗

,
respectively, the closure of the range of T with respect to the norm topology, the weak topology and
the ultra-weak topology.

(3) Let C1(H) be the ideal of trace class operators. The ideal C1(H) admits a complex valued
function tr(T ) which has the characteristic properties of the trace of matrices. The trace function is
defined by

tr(T ) =
∑
n

< Ten, en >,

where (en) is any complete orthonormal system in H.
(4) As a Banach space, C1(H) may be identified with the conjugate space of the ideal K(H) of

compact operators by means of the linear isometry T 7−→ fT , where fT (X) = tr(XT ). Moreover, H
is the dual of C1(H). The ultra-weak continuous linear functionals on L(H) are those of the form fT
for some T ∈ C1(H), and the weak continuous linear functionals on L(H) are those of the form fT ,
where T ∈ B(H).

(5) If φ is a linear functional on L(H), then φ∗, the adjoint of φ, is defined by φ∗(X) = φ(X∗) for
all X ∈ L(H).

(6) Recall that for x, y ∈ H, the operator x ⊗ y ∈ L(H) is defined by (x ⊗ y)z =< z, y > x for all
z ∈ H.

(7) For any subspace S of L(H), we denote the polar of S by

S◦ = {f ∈ L(H)
′ | f(X) = 0 for all X ∈ S }.

2. The Range of the Elementary Operator △(A,B),(C,D)

Lemma 2.1. Let S1 and S2 be two subspaces of L(H). Then S◦
1 ⊂ S◦

2 if and only if S2 ⊂ S1.

Proof. This is an easy consequence of the bipolar theorem. □

Theorem 2.2. Let A,B,C,D ∈ L(H). Then

R(△(A,C),(B,D))
◦ ≃ R(△(A,C),(B,D))

◦ ∩ K(H)◦ ⊕ ker(△(B,D),(A,C)) ∩ C1(H).

Proof. Let f = f0+ fT be the canonical decomposition of continuous linear functional f ∈ L(H)′ into
a trace form part and a functional vanishing on K(H) [28, p. 276]. Then we have f ∈ R(△(A,C),(B,D))

◦
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if and only if f0, fT ∈ R(△(A,C),(B,D))
◦, and we have fT ∈ R(△(A,C),(B,D))

◦ if and only T ∈
ker(△(B,D),(A,C)) ∩ C1(H). Indeed, let x, y ∈ H, then we have

f(A(x⊗ y)B) = fT (A(x⊗ y)B)

= tr(TAx⊗B∗y)

=< TAx,B∗y >

and

f(C(x⊗ y)D) = fT (C(x⊗ y)D)

= tr(TCx⊗D∗y)

=< TCx,D∗y >

It follows that

< TAx,B∗y >=< TCx,D∗y >,

for all x, y ∈ H and hence

fT (AXB) = fT (CXD),

for all finite rank operator X. Since the class of finite rank operators is dense in L(H) relative to the
ultra-weak operator topology, it follows that fT ∈ R(△(A,C),(B,D))

◦. This implies that

f0 = f − fT ∈ R(△(A,C),(B,D))
◦.

Conversely, the preceding computation shows that BTA = DTC and T ∈ C1(H), then fT ∈
R(△(A,C),(B,D))

◦. The proof is complete. □

Corollary 2.3. Let A,B,C,D ∈ L(H). Then the following statements are equivalent:

(1) R(△(A,C),(B,D))
w∗

= L(H).

(2) K(H) ⊂ R(△(A,C),(B,D)).
(3) ker(△(B,D),(A,C)) ∩ C1(H) = {0}.

Proof. The negation of (1) and (3) is equivalent to the fact that there exists a nonzero ultraweakly
continuous linear form fT such that fT ∈ R(△(A,C),(B,D))

◦. By Theorem 2.2, this occurs if and only
if R(△(A,C),(B,D))

◦ ̸⊂ K(H)◦. It follows from Lemma 2.1 that the last condition is equivalent to

K(H) ̸⊂ R(△(A,C),(B,D)) . □

Corollary 2.4. Let A,B,C,D ∈ L(H), then

R(△(A,C),(B,D)) ∩ K(H) = R(△(A,C),(B,D))
w∗

∩ K(H).

Proof. Setting S := R(△(A,C),(B,D)), we have trivially S ∩ K(H) ⊂ S
w∗

∩ K(H), where

S ∩ K(H) = ∩{ker(f) ∩ K(H) | f ∈ L(H)′, f(S) = 0}

and

S
w∗

∩ K(H) = ∩{ker(fT ) ∩ K(H) | T ∈ C1(H), fT (S) = 0}.

To establish a converse inclusion, we consider any K ∈ S
w∗

∩K(H) and f ∈ L(H)′ such that f(S) = 0
and prove that f(K) = 0. By Theorem 2.2, the canonical decomposition f = f0 + fT satisfies
fT (S) = f0(S) = 0. Since K ∈ K(H), we have f0(K) = 0. On the other hand,

K ∈ S
w∗

∩ K(H) = ∩{ker(fT ) ∩ K(H) : T ∈ C1(H), fT (S) = 0},

which entails fT (K) = 0. Thus, indeed, f(K) = f0(K) + fT (K) = 0. □

Theorem 2.5. Let A,B,C,D ∈ L(H). Then

(1) every finite rank operator in R(△(A,C),(B,D))
w
∩ ker(△(A∗,C∗),(B∗,D∗)) vanishes;

(2) every trace class operator in R(△(A,C),(B,D))
w∗

∩ ker(△(A∗,C∗),(B∗,D∗)) vanishes.
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Proof. (1) Let T be a finite rank operator in R(△(A,C),(B,D))
w
∩ ker(△(A∗,C∗),(B∗,D∗)), then T ∗ ∈

ker(△(B,D),(A,C)) ∩ B(H). It follows that fT∗ vanishes on the range of △(A,C),(B,D). In particular,
fT∗(T ) = tr(T ∗T ) = 0, that is, T ∗T = 0, thus T = 0.
(2) It suffices to replace B(H) with C1(H) in the above proof. □

Theorem 2.6. Let A,B,C,D ∈ L(H). Then:

(1) R(△(A,C),(B,D))
w
= L(H) if and only if ker(△(B,D),(A,C)) ∩ B(H) = {0};

(2) R(△(A,C),(B,D))
w∗

= L(H) if and only if ker(△(B,D),(A,C)) ∩ C1(H) = {0}.

Proof. (1) Suppose that R(△(A,C),(B,D))
w
= L(H) and T ∈ ker(△(B,D),(A,C))∩B(H). It follows that

T ∗ ∈ R(△(A,C),(B,D))
w
∩ ker(△(A∗,C∗),(B∗,D∗)), hence T = 0 by Theorem 2.5.

Conversely, assume that there exists T ∈ L(H)\R(△(A,C),(B,D))
w
. It follows that there is an

operator S ∈ B(H) such that tr(ST ) ̸= 0 and tr(SX) = 0 for each X ∈ R(△(A,C),(B,D)). Hence, we
obtain that S ∈ ker(△(B,D),(A,C)) ∩ B(H) and S ̸= 0.

(2) It suffices to replace B(H) by C1(H) in the preceding proof. □

Remark 2.7. If A,B,C,D ∈ L(H) such that C and D are invertible and

∥ A ∥∥ B ∥∥ C−1 ∥∥ D−1 ∥< 1,

then Corollary 2.3 and Theorem 2.6 show that

R(△(A,C),(B,D))
w
= R(△(A,C),(B,D))

w∗

= L(H).

Theorem 2.8. Let A,B,C,D ∈ L(H). Then:

(1) R(△(A2,C2),(B2,D2))
w
⊂ R(△(A1,C1),(B1,D1))

w
if and only if

ker(△(B1,D1),(A1,C1)) ∩ B(H) ⊂ ker(△(B2,D2),(A2,C2)) ∩ B(H);

(2) R(△(A2,C2),(B2,D2))
w∗

⊂ R(△(A1,C1),(B1,D1))
w∗

if and only if
ker(△(B1,D1),(A1,C1)) ∩ C1(H) ⊂ ker(△(B2,D2),(A2,C2)) ∩ C1(H).

Proof. (1) Assume that ker(△(B1,D1),(A1,C1)) ∩ B(H) ⊂ ker(△(B2,D2),(A2,C2)) ∩ B(H). Let fT be a
weakly continuous linear form that vanishes on R(△(A1,C1),(B1,D1)). Then it is easy to see that

fT (A1XB1 − C1XD1) = tr[T (A1XB1 − C1XD1)]

= tr[(B1TA1 −D1TC1)X)]

= 0

for all X ∈ L(H), hence B1TA1 = D1TC1 and

T ∈ ker(△(B1,D1),(A1,C1)) ∩ B(H) ⊂ ker(△(B2,D2),(A2,C2)) ∩ B(H).

Observe that

fT (A2XB2 − C2XD2) = tr[T (A2XB2 − C2XD2)]

= 0,

thus fT annihilates R(△(A2,C2),(B2,D2)). It follows that R(△(A2,C2),(B2,D2))
w
⊂R(△(A1,C1),(B1,D1))

w
.

For the converse implication we reverse the above argument.
(2) It suffices to replace B(H) by C1(H) in the preceding proof. □

3. D-symmetric Quadruplets

Definition 3.1. Let A,B,C,D ∈ L(H). We say that the quadruplet (A,B,C,D) is D-symmetric if

R(△(A,C),(B,D)) = R(△(B∗,D∗),(A∗,C∗)).



ON RANGE OF AN ELEMENTARY OPERATOR 377

Remark 3.2. (1) Let A,B,C,D ∈ L(H). The quadruplet (A,B,C,D) is D-symmetric if and only

if R(△(A,C),(B,D)) is a self-adjoint subspace of L(H). Equivalently, R(△(A,C),(B,D))
◦, the annihilator

of R(△(A,C),(B,D)), is a self-adjoint subspace of L(H)
′
in the sense that f ∈ R(△(A,C),(B,D))

◦ implies
f∗ ∈ R(△(A,C),(B,D))

◦.
(2) If (A,B,C,D) is D-symmetric, then (B∗, A∗, D∗, C∗) is D-symmetric.
(3) For all A, B ∈ L(H), (A,B,B∗, A∗) is D-symmetric.
(4) If U and V are self-adjoint operators, then (U,U, V, V ) is D-symmetric.

Theorem 3.3. For A,B,C,D ∈ L(H), the following statements are equivalent:
(1) (A,B,C,D) is D-symmetric.
(2) (i) ([A] , [B] , [C] , [D]) is D-symmetric, and

(ii) BTA = DTC implies BT ∗A = DT ∗C for all T ∈ C1(H).

Proof. (1) ⇒ (2). Suppose that (A,B,C,D) is D-symmetric.
(i) Let ψ ∈ R(△([A],[B]),([C],[D]))

◦. We define a bounded linear functional f on L(H) by

f(X) = ψ([X]).

It is clear that f ∈ R(△(A,C),(B,D))
◦ if and only if ψ ∈ R(△([A],[B]),([C],[D]))

◦. Since (A,B,C,D)
is D-symmetric, it follows from the above Remark that f∗ ∈ R(△(A,C),(B,D))

◦ and, consequently,
ψ∗ ∈ R(△([A],[B]),([C],[D]))

◦. Then ([A] , [B] , [C] , [D]) is D-symmetric.
(ii) If BTA = DTC and T ∈ C1(H), then Theorem 2.2 implies that fT ∈ R(△(A,C),(B,D))

◦. Since
(A,B,C,D) is D-symmetric, it follows that

(fT )
∗ = fT∗ ∈ R(△(A,C),(B,D))

◦,

whence we get BT ∗A = DT ∗C.
(2) ⇒ (1). Let f ∈ R(△(A,C),(B,D))

◦ We can write f = f0 + fT , where f0 ∈ R(△(A,C),(B,D))
◦ ∩

K(H)◦ and T ∈ ker(△(B,D),(A,C)) ∩ C1(H). Using (ii), one obtains BT ∗A = DT ∗C, that is,
fT∗ ∈ R(△(A,C),(B,D))

◦. It remains to show that f∗0 ∈ R(△(A,C),(B,D))
◦. Let φ be the linear functional

on the Calkin algebra defined by
φ ([X]) = f0(X).

Since f0 vanishes on K(H), it follows that φ is well defined. From (i), (([A] , [B]), ([C] , [D]) is
D-symmetric, hence φ ∈ R(△([A],[B]),([C],[D]))

◦ implies that φ∗ ∈ R(△([A],[B]),([C],[D]))
◦, that is,

f∗0 ∈ R(△(A,C),(B,D))
◦. Thus we have shown that

f∗ = f∗0 + fT∗ ∈ R(△(A,C),(B,D))
◦,

consequently, (A,B,C,D) is D-symmetric. □

Definition 3.4. Let A,B,C,D ∈ L(H). We say that the (A,B,C,D) is P-symmetric if BTA = DTC
implies BT ∗A = DT ∗C for all T ∈ C1(H).

Theorem 3.5. Let A,B,C,D ∈ L(H). (A,B,C,D) is P-symmetric if and only if R(△(A,C),(B,D))
w∗

is self-adjoint.

Proof. Let L(H)′w
∗

be the space of ultra-weakly continuous linear functionals on L(H).

R(△(A,C),(B,D))
w∗

is self-adjoint if and only if R(△(A,C),(B,D))
◦ ∩ L(H)′w

∗
is self-adjoint. It follows

from Theorem 2.2 that

R(△(A,C),(B,D))
◦ ∩ L(H)′w

∗ ∼= ker(△(B,D),(A,C)) ∩ C1(H).

The ultra-weak topology is generated by all fT with T ∈ C1(H) and so, R(△(A,C),(B,D))
◦ is the

intersection
∩{ker fT | fT (AXB − CXD) = 0 for all X ∈ L(H)}.

Since
fT (AXB − CXD) = tr(T (AXB − CXD) = tr((BTA−DTC)X),

this intersection is
ker(△(B,D),(A,C)) ∩ C1(H).
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If (A,B,C,D) is P-symmetric, then

ker(△(B,D),(A,C)) ∩ C1(H) = ker(△(A∗,C∗),(B∗,D∗)) ∩ C1(H),

and so, the ultra-weak closure of R(△(A,C),(B,D)) is self-adjoint.

Conversely, if R(△(A,C),(B,D))
w∗

is self-adjoint, then the set of T ∈ C1(H) for which fT vanishes
on R(△(A,C),(B,D)) must be self-adjoint, Y ∈ R(△(A,C),(B,D)) implies

0 = fT (Y
∗) = tr(TY ∗) = tr(TY ∗).

Hence

ker(△(B,D),(A,C)) ∩ C1(H) = ker(△(A∗,C∗),(B∗,D∗)) ∩ C1(H).

Thus (A,B,C,D) is P-symmetric. □

Remark 3.6.
(1) If (A,B,C,D) is P-symmetric, then (B∗, A∗, D∗, C∗) is P-symmetric.
(2) For all A, B ∈ L(H), (A,B,B∗, A∗) is P-symmetric.
(3) If A,B,C,D ∈ L(H) such that C and D are invertible and

∥ A ∥∥ B ∥∥ C−1 ∥∥ D−1 ∥< 1,

then (A,B,C,D) is P-symmetric.
Indeed, suppose that there exists T ∈ C1(H) \ {0} such that BTA = DTC. Then

D−1BTAC−1 = T.

It follows that ∥ A ∥∥ B ∥∥ C−1 ∥∥ D−1 ∥≥ 1. This implies that (A,B,C,D) is P-symmetric if
∥ A ∥∥ B ∥∥ C−1 ∥∥ D−1 ∥< 1.

Theorem 3.7. Let {M,N} be a commuting pair of normal operators. Then (M,M,N,N) is P-
symmetric.

Proof. Using Corollary 1 [27], we can show that

∥MXM −NXN∥C2
= ∥M∗XM∗ −N∗XN∗∥C2

for all X ∈ L(H) and {M,N}, a commuting pair of normal operators, with C2, is the Hilbert-Schmidt
class. □

Theorem 3.8. Let A,B,C,D ∈ L(H). If there exist α, β, γ, λ ∈ C with γ ̸= λ and nonzero vectors
f, g ∈ H such that:

(1) Bf = αf , Df = αf , A∗f = C∗f ̸= 0 and

(2)A∗g = βg, C∗g = βg, B∗g = γg, D∗g = λg,

Then (A,B,C,D) is not P-symmetric.

Proof. (A,B,C,D) is P-symmetric if and only if R(△(A,C),(B,D))
w∗

is self-adjoint. Under the pre-

ceding hypothesis, we must show that R(△(A,C),(B,D))
w∗

̸= R(△(B∗,D∗),(A∗,C∗))
w∗

. We consider the
operator T = g ⊗A∗f . It is easily seen that

< (AXB − CXD)f, g >= 0

for all X ∈ L(H). On the other hand, one obtains that

< (B∗TA∗ −D∗TC∗)f, g >= (γ − λ) ∥ A∗f ∥2∥ g ∥2 .

If B∗TA∗ −D∗TC∗ ∈ R(△(A,C),(B,D))
w∗

, then there exists a net (Xα)α in L(H) such that

AXαB − CXαD −→ B∗TA∗ −D∗TC∗.

This implies that

0 =< (AXαB − CXαD)f, g >−→< (B∗TA∗ −D∗TC∗)f, g >= (γ − λ) ∥ A∗f ∥2∥ g ∥2 .
It follows that (γ − λ) ∥ A∗f ∥2∥ g ∥2= 0 wich is absurd. □
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