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THE TAUTNESS PROPERTY FOR HOMOLOGY THEORIES

ANZOR BERIDZE AND LEONARD MDZINARISHVILI

Dedicated to the memory of Academician Nodar Berikashvili

Abstract. The tautness for a cohomology theory is formulated and studied by various authors.

However, the analogous property is not considered for a homology theory. In this paper, we will

define and study this very property for the Massey homology theory. Moreover, we will prove that the
Kolmogoroff and Massey homologies are isomorphic on the category of locally compact, paracompact

spaces and proper maps. Therefore, we will obtain the same result for the Kolmogoroff homology

theory.

1. Introduction

Let A be a closed subspace of a topological space X and {U} be a system of neighborhoods U of A,
directed by inclusion. Then for each cohomology theory h∗ there is a natural homomorphism

i∗ : lim
−→

h∗(U) −→ h∗(A). (∗)

It is said that A is tautly embedded in the space X if the homomorphism i∗ is an isomorphism [15,
§6.1]. The Alexander–Spanier cohomology on the category of paracompact Hausdorff spaces and
continuous maps [15, Theorem 2 §6.6] and the Massey cohomology H∗c on the category of locally
compact Hausdorff spaces and proper maps [10, Theorem 6.4, §6.4] are the examples of cohomologies
for which any closed subspace A is tautly embedded in X. It is natural to ask whether an analogous
property holds for the exact homology theory, as well. Therefore, our aim is to investigate a natural
homomorphism

i∗ : h∗(A) −→ lim
←−

h∗(U) (∗∗)

for the homology theory. In this paper, it is proved that for the Massey homology HM
∗ , there exists

an infinite exact sequence on the category of locally compact Hausdorff spaces X, which includes the
homomophism i∗. In particular, we have the following main

Theorem 2.2. The system {N} of closed neighborhoods N of closed subspace A of a locally compact
Hausdorff space X, directed by an inclusion, induces the following exact sequence:

· · · −→ lim
←−

(2k+1)HM
n+k+1(N) −→ · · · −→ lim

←−
(3)HM

n+2(N) −→ lim
←−

(1)HM
n+1(N) −→

−→ HM
n (A,G)

in−→ lim
←−

HM
n (N) −→ lim

←−
(2)HM

n+1(N) −→ · · · −→ lim
←−

(2k)HM
n+k(N) −→ · · · ,

where HM
∗ (N) = HM

∗ (N,G) is the Massey homology [10, §4.6] of closed neighborhood N with a
coefficient in an abelian group G.

It is natural to study the same property for other exact homology theories [3,8,14,16]. Consequently,
in the second part of the paper, it is proved that the Kolmogoroff [8, 11] and Massey [10] homologies
are isomorphic on the category of locally compact, paracompact spaces and proper maps. Using the
obtained result, we will show that for the Kolmogoroff [8], Milnor [14] and Steenrod [16] homology
theories the following properties hold:
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Corollary 3.5. a) If X is a locally compact, paracompact Hausdorff space, then for the system
{N} of closed neighborhoods N of a closed subspace A of X, there is an infinite exact sequence

· · · −→ lim
←−

(2k+1)HK
n+k+1(N) −→ · · · −→ lim

←−
(3)HK

n+2(N) −→ lim
←−

(1)HK
n+1(N) −→ HK

n (A,G) −→
in−→ lim
←−

HK
n (N) −→ lim

←−
(2)HK

n+1(N) −→ · · · −→ lim
←−

(2k)HK
n+k(N) −→ · · · ,

where HK
∗ (N) = HK

∗ (N,G) is the Kolmogoroff homology.
b) If X is a compact Hausdorff space, then for the system {N} of closed neighborhoods N of a

closed subspace A of X, there is an infinite exact sequence

· · · −→ lim
←−

(2k+1)HMi
n+k+1(N) −→ · · · −→ lim

←−
(3)HM

n+2(N) −→ lim
←−

(1)HMi
n+1(N) −→ HMi

n (A) −→
in−→ lim
←−

HMi
n (N) −→ lim

←−
(2)HMi

n+1(N) −→ · · · −→ lim
←−

(2k)HMi
n+k(N) −→ · · · ,

where HMi
∗ (N) = HMi

∗ (N,G) is the Milnor homology [14].

Corollary 3.6. a) If X is a locally compact Hausdorff space with the second countable axiom, then
for each countable system {Ni} of closed neighborhoods of a closed subspace A of X, there is a short
exact sequence

0 −→ lim
←−

(1)HM
n+1(Ni) −→ HM

n (A,G) −→ lim
←−

HM
n (Ni) −→ 0,

where HM
∗ is the Massey homology [10].

b) If X is a locally compact, paracompact Hausdorff space with the second countable axiom, then
for each countable system {Ni} of closed neighborhoods of a closed subspace A of X, there is a short
exact sequence

0 −→ lim
←−

(1)HK
n+1(Ni) −→ HK

n (A,G) −→ lim
←−

HK
n (Ni) −→ 0,

where HK
∗ is the Kolmogoroff homology [8].

c) If X is a compact Hausdorff space with the second countable axiom, then for each countable
system {Ni} of closed neighborhoods of a closed subspace A of X, there is a short exact sequence

0 −→ lim
←−

(1)HMi
n+1(Ni) −→ HMi

n (A,G) −→ lim
←−

HMi
n (Ni) −→ 0,

where HMi
∗ is the Milnor homology [14].

d) If X is a compact metric space, then for each countable system {Ni} of closed neighborhoods of
a closed subspace A of X there is a short exact sequence

0 −→ lim
←−

(1)Hst
n+1(Ni) −→ Hst

n (A,G) −→ lim
←−

Hst
n (Ni) −→ 0,

where Hst
∗ is the Steenrod homology [16].

2. Tautness

In the book [10, §1.1], W. Massey defined the cochain complex C∗c (X,G) for any locally compact
Hausdorff spaces X and any abelian group G. By Theorem 4.1 [10, §4.4], for each locally compact
Hausdorff space X and each integer n, the cochain group Cn

c (X,Z) with integer coefficient is a free
abelian group. The chain complex C∗(X,G) = Hom(C∗c (X), G) is completely defined by the cochain
complex C∗c (X) with the coefficient group Z of integers and therefore, by Theorem 4.1 [10, §4.4] and
Theorem 4.1 (Universal Coefficients) [9, §III.4], there is an exact sequence [10, Corollary 4.18, §4.8]

0 −→ Ext(Hn+1
c (X), G) −→ HM

n (X,G) −→ Hom(Hn
c (X), G) −→ 0, (2.1)

where HM
n (X,G) is the Massey homology group and Hn+1

c (X,G) is the Massey cohomology group,
respectively [10, §4.6], i.e., HM

n (X,G) = Hn(Hom(C∗c (X), G)) and Hn+1
c (X) = Hn(C

∗
c (X,Z). More-

over, this sequence is split. However, the splitting is natural only with respect to the coefficient
homomorphisms.

Let X be a locally compact space and A be a closed subspace of X. In this case, for each closed
neighborhood N of A, there is a homomorphism iN : hn(N) → hn(A). If N1 ⊂ N2, then there is a
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homomorphism iN1,N2
: hn(N2) → hn(N1). Therefore, there is the direct system {hn(N)} of abelian

groups and homomorphisms {iN1,N2
}. Consequently, there exists a natural homomorphism

in : lim
−→

hn(N) −→ hn(A).

If h∗ = H∗c is the Massey cohomology [10, §4.6], then (see Theorem 6.4 [10, §6.4]) there is an isomor-
phism

in : lim
−→

Hn
c (N,G)

∼−→ Hn
c (A,G). (2.2)

In this case, a subspace A is said to be taut with respect to the cohomology theory H∗c (−, G).
Let h∗ be a homology theory on the category of some topological spaces. Let A be a closed subspace

of X. In this case, for a neighborhood N of A, there is a homomorphism iN : hn(A) → hn(N). If
N1 ⊂ N2, then there is a homomorphism iN1,N2

: hn(N1) → hn(N2). Therefore, there is the inverse
system {hn(N)} of abelian groups and homomorphisms {iN1,N2

}. Consequently, there exists a natural
homomorphism

in : hn(A) −→ lim
←−

hn(N).

Definition 2.1. A closed subspace A of a space X is said to be tautly embedded in X, if for some
set N of neighborhoods there exists a long exact sequence

· · · −→ lim
←−

(2k+1)hn+k+1(N) −→ · · · −→ lim
←−

(3)hn+2(N) −→ lim
←−

(1)hn+1(N) −→

−→ hn(A,G)
in−→ lim
←−

hn(N) −→ lim
←−

(2)hn+1(N) −→ · · · −→ lim
←−

(2k)hn+k(N) −→ · · · ,

which contains the homomorphism hn(A)
in−→ lim
←−

hn(N).

LetHM
n (X,G) = Hn(Hom(C∗c (X), G)) be the Massey homology group of locally compact Hausdorff

spaces. Let A be a closed subspace of X and N be the set of all closed neighborhoods of A. Then
each homomorphism iN1,N2

: N1 → N2 is a proper map (a map is proper if it is continuous and if an
inverse image of any compact subspace is compact) and induces a homomorphism iN1,N2

: HM
n (N1) →

HM
n (N2), which defines the homomorphism

i∗ : H
M
n (A,G) −→ lim

←−
HM

n (N,G).

Since the short exact sequence (2.1) is natural, there is a commutative diagram

0 // Ext(Hn+1
c (A), G) //

ρ′

��

HM
n (A,G) //

in

��

Hom(Hn
c (A), G) //

ρ′′

��

0

0 // lim
←−

Ext(Hn+1
c (N), G) // lim

←−
HM

n (N,G) // lim
←−

Hom(Hn
c (N), G) //

−→ lim
←−

(1) Ext(Hn+1
c (N), G) −→ lim

←−
(1)HM

n (N,G) −→ lim
←−

(1) Hom(Hn
c (N), G) −→ · · · (2.3)

with exact arrows.
Using isomorphism (2.2) and the properties of functors Hom(−, G) and lim

−→
, there is an isomorphism

Hom(Hn
c (A), G) ≈ Hom(lim

−→
Hn

c (N), G) ≈ lim
←−

Hom(Hn
c (N), G). (2.4)

Therefore, a homomorphism ρ′′ is an isomorphism.
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Using the isomorphism (2.4) and the commutative diagram (2.3), we obtain the following commu-
tative diagram:

0

��

0

��
Ker ρ′

∼ //

��

Ker in

��
0 // Ext(Hn+1

c (A), G) //

ρ′

��

HM
n (A,G) //

in

��

Hom(Hn
c (A), G) //

≃
��

0

0 // lim
←−

Ext(Hn+1
c (N), G) //

��

lim
←−

HM
n (N,G) //

��

lim
←−

Hom(Hn
c (N), G) // 0

Coker ρ′
∼ //

��

Coker in

��
0 0.

(2.5)

By Lemma 1 [13], if a complex C∗ is free, then there is an exact sequence

0 −→ Hom(Bn−1, G) −→ Zn −→ Hom(Hn, G) −→ 0,

where Bn−1 = Im ∂n, ∂ : Cn → Cn−1 and Zn = Ker δn+1, δn+1 : Cn → Cn+1, where C∗ =
Hom(C∗, G). In our case, we have a dual version. In particular, the cochain complex C∗c (−) is free
and hence there is an exact sequence

0 −→ Hom(Bn+1
c (−), G) −→ Zn −→ Hom(Hn

c (−), G) −→ 0,

where Zn = Ker ∂n, ∂n : Cn → Cn−1 and Bn+1
c = Im δn, δn : Cn

c → Cn+1
c , where C∗ = Hom(C∗c , G).

Consequently, using [13, Lemma 2], for each A ⊂ N, there is a commutative diagram with exact arrows

0 // Hom(Bn+1
c (N), G) //

��

Zn
//

��

Hom(Hn
c (N), G) // 0

0 // Ext(Hn+1
c (N), G) // Hn(N,G) // Hom(Hn

c (N), G) // 0 .

(2.6)

Theorem 2.1. Let {C∗c (N)} be a direct system of free chain complexes C∗c (N) of closed neighborhoods
N of a closed subspace A of locally compact Hausdorff spaces X and let G be an abelian group. In
this case, for each n ∈ Z and i ≥ 1, there is a short exact sequence

0 −→ lim
←−

(i) Ext(Hn+1
c (N), G) −→ lim

←−
(i)HM

n (N,G) −→ lim
←−

(i) Hom(H∗c (N), G) −→ 0, (2.7)

which splits for i ≥ 2.

Proof. Using the split sequence (2.1) and commutative diagram (2.6), we obtain the following com-
mutative diagram with the exact arrows

· · · // lim
←−

(i) Hom(Bn+1
c (N), G) //

��

lim
←−

(i)Zn
//

��

lim
←−

(i) Hom(Hn
c (N), G) // · · ·

· · · // lim
←−

(i) Ext(Hn+1
c (N), G) // lim

←−
(i)HM

n (N,G) // lim
←−

(i) Hom(Hn
c (N), G) // · · · .

(2.8)
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In the paper [6], it is shown that for each direct system {Aα} of abelian groups Aα, there exists a
short exact sequence

0 −→ lim
←−

(1) Hom(Aα, G) −→ Ext(lim
−→

Aα, G) −→ lim
←−

Ext(Aα, G) −→

−→ lim
←−

(2) Hom(Aα, G) −→ 0, (2.9)

and for each i ≥ 1, there is an isomorphism

lim
←−

(i) Ext(Aα, G) ≈ lim
←−

(i+2) Hom(Aα, G). (2.10)

Consider a direct system {Bn+1
c (N)} of free groups Bn+1

c (N). In this case, by the exact sequence
(2.9) and the isomorphism (2.10), we have

lim
←−

(i) Hom(Bn+1
c (N), G) = 0 for i ≥ 2. (2.11)

By diagram (2.8) and equality (2.11), we have

a) an isomorphism lim
←−

(i)Zn ≈ lim
←−

(i) Hom(Hn
c (N), G) for each i ≥ 2;

b) an epimorphism lim
←−

(i)HM
n (N,G) −→ lim

←−
(i) Hom(Hn

c (N), G) for each i ≥ 1;

c) a monomorphism lim
←−

(i) Ext(Hn+1
c (N), G) −→ lim

←−
(i)HM

n (N,G) for each i ≥ 2;

d) the trivial homomorphism lim
←−

(i) Hom(Hn
c (N), G) −→ lim

←−
(i+1) Ext(Hn+1

c (N), G) for each

i ≥ 1.

By b) and c), for each i ≥ 2, we have a short exact sequence

0 −→ lim
←−

(i) Ext(Hn+1
c (N), G) −→ lim

←−
(i)HM

n (N,G) −→ lim
←−

(i) Hom(Hn
c (N), G) −→ 0. (2.12)

On the other hand, by a), for each i ≥ 2, we can define a homomorphism

lim
←−

(i) Hom(Hn
c (N), G)

∼−→ lim
←−

(i)Zn −→ lim
←−

(i) Hom(Hn
c (N), G).

It is clear that the composition

lim
←−

(i) Hom(Hn
c (N), G)

∼−→ lim
←−

(i)Zn −→ lim
←−

(i)HM
n (N,G) −→ lim

←−
(i) Hom(Hn

c (N), G)

is the identity map. Therefore, for each i ≥ 2, the sequence (2.12) splits. □

Theorem 2.2. The system {N} of closed neighborhoods N of closed subspace A of a locally compact
Hausdorff space X, directed by an inclusion, induces the following exact sequence

· · · −→ lim
←−

(2k+1)HM
n+k+1(N) −→ · · · −→ lim

←−
(3)HM

n+2(N) −→ lim
←−

(1)HM
n+1(N) −→

−→ HM
n (A)

in−→ lim
←−

HM
n (N) −→ lim

←−
(2)HM

n+1(N) −→ · · · −→ lim
←−

(2k)HM
n+k(N) −→ · · · ,

where HM
∗ (−) = HM

∗ (−, G) is the Massey homology with a coefficient abelian group G.

Proof. By diagram (2.5) and the property d) from Theorem 2.1, we have the following exact sequence:

0 −→ lim
←−

Ext(Hn+1
c (N), G) −→ lim

←−
HM

n (N,G) −→ lim
←−

Hom(Hn
c (N), G) −→

−→ lim
←−

(1) Ext(Hn+1
c (N), G) −→ lim

←−
(1)HM

n (N,G) −→ lim
←−

(1) Hom(Hn
c (N), G) −→ 0.

By isomorphism (2.4) and exact commutative diagram (2.3), we will obtain the following exact se-
quence:

0 −→ lim
←−

(1) Ext(Hn+1
c (N), G) −→ lim

←−
(1)HM

n (N) −→ lim
←−

(1) Hom(Hn
c (N), G) −→ 0, (2.13)

where by Theorem 2.1, the sequence (2.13) splits for each i ≥ 2.
Note that by (5) and (9), there is an exact sequence

0 −→ lim
←−

(1) Hom(Hn+1
c (N), G) −→ HM

n (A,G) −→ lim
←−

HM
n (N,G) −→

−→ lim
←−

(2) Hom(Hn+1
c (N), G) −→ 0. (2.14)
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By the exact sequences (2.7), (2.13) and (2.14), for i ≥ 1, isomorphism (2.10) and Theorem 2.1 we
have the exact sequence

...

��
0 // lim

←−
(3) Ext(Hn+3

c (N), G) // lim
←−

(3)HM
n+2(N) //

��

lim
←−

(3) Hom(Hn+2
c (N), G) //

≃
��

0

0 lim
←−

(1) Hom(Hn+1
c (N), G)oo lim

←−
(1)HM

n+1(N)oo

��

lim
←−

(1) Ext(Hn+2
c (N), G)oo 0oo

0 // lim
←−

(1) Hom(Hn+1
c (N), G) // HM

n (A,G)

��
lim
←−

HM
n (N,G) //

��

lim
←−

(2) Hom(Hn+1
c (N), G) // 0

0 lim
←−

(2) Ext(Hn+2
c (N), G)oo

≃
��

lim
←−

(2)HM
n+1(N)oo

��

lim
←−

(2) Hom(Hn+1
c (N), G)oo 0oo

0 // lim
←−

(4) Hom(Hn+2
c (N), G) // lim

←−
(4)HM

n+2(N) //

��

lim
←−

(4) Ext(Hn+3
c (N), G) // 0

...

The theorem is proved. □

3. The Kolmogoroff Homology

Our aim is to study the tautness property for other exact homology theories [3, 8, 14, 16]. Among
them, one of the main places is taken by the Kolmogoroff homology, which was defined as early as in
1936 [8,12]. A. N. Kolmogoroff defined homology on the category of locally compact Hausdorff spaces
and proper maps with a compact coefficient group [8, 12]. Using the homology defined by all finite
partitions, G. S. Chogoshvili in his paper [3] proved that the Kolmogoroff homology and Alexandroff-
Čech homology groups are isomorphic on the category of compact Hausdorff spaces for a compact
coefficient group [12]. Since the Steenrod and Alexandroff-Čech homologies are isomorphic on the
category of compact metric spaces for a compact coefficient group [16], we have the isomorphisms

HK
∗ (X,G)

1
≈ Hch

∗ (X, p,G)
2
≈ Hch

∗ (X, sp,G)
3
≈ Ȟ∗(X,G)

4
≈ Hst

∗ (X,G), (3.1)

where HK
∗ (−, G) is the Kolmogoroff [8, 12], Hch

∗ (−, p,G) is the Chogoshvili projective
[3, 12], Hch

∗ (−, sp,G) is the Chogoshvili spectral [3, 12], Ȟ∗(−, G) is the Alexandroff-Čech [4] and
Hst
∗ (−, G) is the Steenrod [16] homology theory. Later, the Kolmogoroff and Chogoshvili homology

theories were generalized and defined even for a discrete coefficient groups [12]. However, there are
no isomorphisms 2 and 4 as in (3.1) [12]. Consequently, there was a natural interest in finding the
connection between the Kolmogoroff and Steenrod homology groups for any discrete groups. Using the
Uniqueness Theorem given by Milnor [14], it is proved in [11] that on the category of compact metric
spaces the Kolmogoroff and the Steenrod homologies are isomorphic even for any discrete coefficient
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groups [12]. Therefore, to study the tautness properties for an exact homology theory, it is crucial to
find a connection between the Kolmogoroff and Massey homology theories.

By Theorem 2.8 [10, §2.2], if X is a locally compact Hausdorff oncompact space and Ẋ is its

one-point Alexandroff compactification, then the inclusion µ : X → Ẋ induces an isomorphism

µ∗ : Hq
c (X,G)

∼−→ Hq
c (Ẋ, ∗, G). (3.2)

Corollary 3.1. The inclusion ρ : X → (Ẋ, ∗), where Ẋ is the one-point Alexandroff compactification
of a locally compact Hausdorff space X, indices an isomorphism

ρ∗ : H
M
∗ (X,G)

∼−→ HM
∗ (Ẋ, ∗, G). (3.3)

Proof. The inclusion ρ : X → (Ẋ, ∗) induces a commutative diagram with the exact sequences

0 // Ext(Hn+1
c (X), G) //

ρ′

��

HM
n (X,G) //

ρn

��

Hom(Hn
c (X), G) //

ρ′′

��

0

0 // Ext(Hn+1
c (Ẋ, ∗), G) // HM

n (Ẋ, ∗, G) // Hom(Hn
c (Ẋ, ∗), G) // 0 .

By isomorphism (3.2), the homomorphisms ρ′ and ρ′′ are the isomorphisms, as well. Therefore, by
the Lemma of Five Homomorphisms, we obtain the required statement. □

Now, we will define the Kolmogoroff homology theory and, using the isomorphism (3.3), we will
find its connection with the Massey homology theory.

Let X be a locally compact Hausdorff space. A subset A of space X is called bounded if Ā is
compact [4, Definition 6.1, §X.6].

Definition 3.1. Let X be a locally compact space, EX be the set of all bounded subsets Ei of X,
and let G be an abelian group. Denote by En+1

X = EX × EX × · · · × EX - a direct product of EX .

An n-dimensional Kolmogoroff chain of the space X is called a function fn : En+1
X → G satisfying the

following conditions:

K1) If Ei = E′i ∪ E′′i and E′i ∩ E′′i = ∅, then

fn(E0, . . . , Ei, . . . , En) = fn(E0, . . . , E
′
i, . . . , En) + fn(E0, . . . , E

′′
i , . . . , En);

K2) fn will not change under even permutation and changes just the sign under odd permutation
of argument; fn = 0, if two arguments are the same;

K3) If E0 ∩ · · · ∩ En = ∅, then fn(E0, . . . , En) = 0.

The sum f ′n + f ′′n of two f ′n, f
′′
n functions is defined by the following equation:

(f ′n + f ′′n )(E0, . . . , En) = f ′n(E0, . . . , En) + f ′′n (E0, . . . , En).

It is clear that the set of all n-dimensional functions fn is an abelian group, which is denoted by
Kn(X,G). The boundary operator ∆ : Kn(X,G) → Kn−1(X,G) is defined by the equation

∆fn(E0, . . . , En−1) = fn(U,E0, . . . , En−1),

where U is an open bounded subset which includes
n−1⋃
i=1

Ei. Since the space X is locally compact, such

U exists and the boundary operator ∆ does not depend on the choice of U .
The homology of the chain complexK∗(X,G) = {Kn(X,G),∆} is called the Kolmogoroff homology

of a locally compact space X and it is denoted by HK
∗ (X,G).

Definition 3.2. A locally finite system of bounded subspaces ei of space X, which are pairwise
non-intersecting and their sum gives the whole space X = ∪ei, is called a regular partition.

Lemma 3.1. For each locally compact, paracompact space X there exits a regular partition.
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Proof. Since X is a locally compact space, for each point x ∈ X, there exists a bounded neighborhood
Ux. Since the spaceX is paracompact as well, an open covering {Ux}x∈X has a locally finite refinement
{Oλ}, which is contained in bounded subspaces Oλ. If we write the elements of the covering {Oλ} as
a transfinite sequence O1, O2, . . . , Oλ, . . . , then we construct a regular covering in the following way:
O1, O2 \O1, . . . , Oλ \

⋃
i<λ

Oi, where Oi runs through all the ordinal numbers preceding λ. □

Denote by S = {Sα} the system of all regular partitions Sα of a space X.

Lemma 3.2. Each compact subspace F of a locally compact space has a nonempty intersection only
with a finite number of closures eαi ∈ Sα.

Proof. Since Sα is a locally finite system, for each point x ∈ F , there exists a neighborhood Ux, which
has a nonempty intersection only with finitely many elements eαi ∈ Sα. From the collection {Ux}x∈F
of the neighborhoods a finite subsystem can be chosen whose union covers the space F . Since for each
open subspace U and subspace B there is an equivalence U ∩ B ̸= ∅ ⇔ U ∩ B ̸= ∅, we obtain the
validity of the lemma. □

Denote by Nα the nerve of a regular partition Sα ∈ S, which consists of simplexes σn = (eα0 , . . . , e
α
n),

for which ∩eαi ̸= ∅. By Lemma 3.2, the nerve Nα is locally finite [3, 12].

If Sα < Sβ , i.e., Sβ is a refinement of Sα and if for each vertex eβj ∈ Nβ we take the uniquely

defined vertex eαi ∈ Nα, which contains eβj , then we obtain a simplicial map πβα : Nβ → Nα. By

Lemma 3.2, the map πβα will be locally finite [4], i.e., an inverse image of each simplex contains only
finitely many numbers of simplexes.

If we take for each Sα ∈ S the group of infinite chains Cinf
n (Nα, G) of the nerve Nα and homomor-

phisms π∗βα : Cinf
n (Nβ , G) → Cinf

n (Nα, G), induced by simplicial maps πβα, then we obtain an inverse

system {Cinf
n (Nα, G), π∗βα}, the inverse limit group of which is denoted by

Cinf
n (X,G) = lim

←−
{Cinf

n (Nα, G), π∗βα}.

The boundary operator ∂ : Cinf
n (X,G) → Cinf

n−1(X,G) is defined by the boundary operators ∂α :

Cinf
n (Nα, G) → Cinf

n−1(Nα, G), which commute with homomorphisms π∗βα. The homology group of the

obtained complex Cinf
∗ (X,G) is called the Chogoshvili projection homology group and denoted by

Hch
∗ (X, p,G).

Definition 3.3. Let A = {Ai} and B = {Bj} be finite systems of sets such that B = {Bj} consists
of pairwise non-intersecting sets. We say that a system B is a mosaic of the system A if for each
Bj ∈ B, there exists Ai ∈ A such that Bj ⊂ Ai and Ai =

⋃
j

Bij , where Bij ∈ B.

Lemma 3.3. For each finite system A = {Ai}, i = 0, . . . , n of sets Ai, there exists a mosaic.

Proof. The system consisting of the subspaces
n⋂

i=0

Ai,
n⋂

t=1
At\

⋃
i∗ ̸=it

Ai∗ , where i1, . . . , ip – p are different

indices from the system i = 0, . . . , n, 1 ≤ p ≤ n and i∗ obtains all the value in the same system, except
i1, . . . , ip, is a mosaic. □

Lemma 3.4. If f̃n is a function on the directed system e0, . . . , en, mutually non-intersecting bounded
subspaces ei of locally compact space X, which satisfies the conditions K1)–K3), then it can be extended
to the function fn ∈ Kn(X,G).

Proof. By Lemma 3.3, for each directed system E0, . . . , En of bounded subspaces Ei, there exists a

mosaic {eij} such that Ei = ∪eij . Therefore, the function fn(E0, . . . , En) =
∑

0j ,...,nj

f̃n(e0j , . . . , enj )

does not depend on the choice of mosaic. Indeed, let {e′ij} be another mosaic of the system E0, . . . , En

and f ′n(E0, . . . , En) =
∑

0j ,...,nj

f̃n(e
′
0j , . . . , en′

j
). It is clear that the intersection {eij} ∧ {e′ij} = {e′′ij} is
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a mosaic not only for {Ei}, but for each mosaic. Therefore, we have

fn(E0, . . . , En) =
∑

f̃n(e0j , . . . , enj ) =
∑

f̃n(e
′′
0j , . . . , e

′′
nj
)

=
∑

f̃n(e
′
0j , . . . , e

′
nj
) = f ′n(e0, . . . , en).

Thus, the defined function fn, satisfies the conditions K1)–K3) and so, fn ∈ Kn(X,G). □

Theorem 3.1. Let X be a locally compact, paracompact Hausdorff space. Then the Kolmogoroff
homology HK

∗ (X,G) is isomorphic to the Chogoshvili projection homology Hch
∗ (X, p,G).

Proof. We will prove much stronger statement. In particular, there is an isomorphism of chain com-

plexes K∗(X,G) and Cinf
∗ (X,G),

K∗(X,G) ≈ Cinf
∗ (X,G). (3.4)

For each Sα ∈ S, define a homomorphism ξα : K∗(X,G) → Cinf
∗ (Nα, G) by the formula ξαfn(e

α
0 ,

. . . , eαn) = fn(e
α
0 , . . . , e

α
n), where fn ∈ Kn(X,G), (eα0 , . . . , e

α
n) ∈ Nα. Therefore,

ξα∆fn(e
α
0 , . . . , e

α
n−1) = ∆fn(e

α
0 , . . . , e

α
n−1) = fn(U, e

α
0 , . . . , e

α
n−1).

By Lemma 3.2 and the property of the uniqueness of a function fn (property K1)), we have

fn(U, e
α
0 , . . . , e

α
n−1) = fn(∪eαit , e

α
0 , . . . , e

α
n−1) =

∑
it

fn(e
α
it , e

α
0 , . . . , e

α
n−1).

Therefore
ξα∆fn(e

α
0 , . . . , e

α
n−1) =

∑
it

fn(e
α
it , e

α
0 , . . . , e

α
n−1) = ∂αfn(e

α
0 , . . . , e

α
n−1),

i.e., ξα∆ = ∂αξα.
A homomorphism ξα induces an isomorphism

ξ : K∗(X,G) −→ Cinf
∗ (X,G).

Let cn = {cα,n} ∈ Cinf
n (X,G) and E0, . . . , En be a system of mutually non-intersecting bounded

subspaces. If we add to this system the subspace X \
⋃
i

Ei, then we obtain a finite partition D of

space X. Let Sα ∈ S, then D ∧ Sα = Sα′ ∈ S for each Ei = ∪eα′

ij
, where eα

′

ij
∈ Sα′ .

Let f̃n be a function of the system E0, . . . , En which is defined by

f̃n(E0, . . . , En) =
∑

0i,...,nj

cα′,n(e
α′

0j , . . . , e
α′

nj
),

where 0j , . . . , nj get all values, where (eα
′

0j , . . . , e
α′

nj
) denotes a simplex in Nα′ . It is easy to show that

such defined function f̃n does not depend on the choice of Sα and it satisfies the properties K1)–

K3). By Lemma 3.4, a function f̃n can be extended to a function fn ∈ Kn(X,G). If we define a
homomorphism

η : Cinf
∗ (X,G) −→ K∗(X,G)

by η(cn) = fn, then it will be inverse of the homomorphism ξ. □

Theorem 3.2. Let {Gα, pβα}α∈Λ be a direct system of free abelian groups Gα, which satisfies the
following conditions:

1) For each group Gα, there exists a base B = {gα1 , gα2 , . . . , gατ , . . . };
2) For each pair α < β, α, β ∈ Λ, a set of indices {1, 2, . . . , τ(β), . . . } of elements of a base Bβ

can be decomposed with non-intersecting finite subspaces Iαβ1 , Iαβ2 , . . . , Iαβτ(α) such that

pαβ(g
α
i ) =


∑

j∈Iαβ
i

gβj , if Iαβi ̸= ∅,

0, if Iαβi = ∅,

for i = 1, 2, . . . , τ(α), . . . .

Then the limit of the direct system {Gα, pαβ}α∈Λ is a free group.
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Proof. Denote by Bα the set of all finite subspaces αt of a base Bα of a group Gα and by Gαt
a

subgroup of group Gα, generated by all elements αt ∈ Bα. It is possible to prove that such a group
Gα is the direct limit group of the direct system of subgroups Gαt

.
Let Λ be a set {(α, t) | αt ∈ Bα}. It is considered that (α′, t′) > (α, t), if α′ > α and pαα′Gαt

⊂ Gα′
t′
.

It is clear that Λ is a directed set and if we take Gα,t = Gαt for each pair (α, t) ∈ Λ, we obtain a
direct system {G(α,t), pαβ} which satisfies the condition of Theorem 3 [7]. Therefore, the direct limit
of the given system is a free abelian group.

Let G∞ = lim
−→

Gα and G∗∞ = lim
−→

G(α,t). Define a homomorphism φ : G∗∞ → G∞. Since (α′, t′) >

(α, t), we have the following commutative diagram:

Gα,t

ρα,t //

pαα′

��

Gα

pα

""
pαα′

��

G∞

Gα′,t′ ρα′,t′
// Gα′

pα′

<<

A homomorphism φ is induced by φα,t = pαρα,t.
a) φ is an epimorphism. Let x ∈ G∞ and xα ∈ Gα be their representatives. Since Gα = lim

−→
Gα,t,

there is a representative xα,t ∈ Gα,t of an element xα. It is clear that a class x∗ ∈ G∗∞, whose
representative is xα,t, satisfies the properties φ(x∗) = x.

b) φ is a monomorphism. Let φ(x∗) = 0. Since pαρα,t(xα,t) = 0, where xα,t is a representative of
an element x∗, there is β > α such that pαβ(ρα,t(xα,t)) = 0. Let Gβ,t′ be the subgroup of a group

Gβ generated by all gβj ∈ Bβ such that pαβ(g
α
i ) =

∑
gβj , when gαi runs through the base Gα,t. Since

ρβ′,t′pαβ(xα,t) = pαβρα,t(xα,t) = 0 and ρβ,t′ are monomorphisms, pαβ(xα,t) = 0 and so, x∗ = 0. □

Remark 3.1. Theorem 3.2 is a generalization of Theorem 3 [7] proven in the case where the base Bα

is finite.

Theorem 3.3. Let X be a locally compact, paracompact Hausdorff space, then there exists the uni-
versal coefficient formula for the Kolmogoroff homology group

0 −→ Ext(Ȟn+1(Ẋ, ∗), G) −→ HK
n (X,G) −→ Hom(Ȟn(Ẋ, ∗), G) −→ 0.

Proof. It is easy to see that the direct system {Cn
f (Nα), π

αβ
∗ } of the groups Cn

f (Nα) of cochains with
an integer coefficient group of nerves Nα, where Sα ∈ S, satisfies the condition of Theorem 3.2.

Therefore, the direct limit Cn
f (X) = lim

−→
(Cn

f (Nα), π
αβ
∗ ) is a free group. By Theorem 4.1 [9, §III.4], for

the homology group Hn(Hom(C∗f (X), G)), there exists the Universal Coefficient Formula

0 −→ Ext(Hn+1
f (X), G) −→ Hn(Hom(C∗f (X), G)) −→ Hom(Hn

f (X), G) −→ 0. (3.5)

Since Hom(C∗f (X), G) ≈ Cinf
∗ (X,G), by isomorphism (3.4) and Theorem 3.1, there exists an isomor-

phism
H∗(Hom(C∗f (X), G)) ≈ Hch

∗ (X,G) ≈ HK
∗ (X,G). (3.6)

On the other hand, by Theorem 2.1.1 [3] and Theorem 6.9 [4, §X.6], we obtain the isomorphisms

H∗f (X,G) ≈ H∗△(X,G) ≈ Ȟ∗(Ẋ, ∗, G), (3.7)

where H∗△ is the Alexandroff homology with proper subcomplexes. Using the exact sequence (3.5),

by isomorphisms (3.6) and (3.7), we obtain the required statement. □

Corollary 3.2. An inclusion ρ : X → (Ẋ, ∗), where Ẋ is the one-point Alexandroff compactification
of locally compact, paracompact Hausdorff space X, induces an isomorphism

HK
∗ (X,G) ≈ HK

∗ (Ẋ, ∗, G).
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Corollary 3.3. Since the Kolmogoroff and the Massey homology theories satisfy the condition of
uniqueness, in particular, the Universal Coefficient Formula [2, Theorem 4.4], [1, Theorem 1.5], they
are isomorphisms on the category of compact spaces.

Corollary 3.4. By Corollaries 3.1 and 3.2, the Kolmogoroff and Massey homologies of locally compact,
paracompact Hausdorff spaces are isomorphic to the Kolmogoroff and Massey homologies of a compact
space, which is the one-point Alexadroff compactification of the given space. Therefore, by Corollary
3.3, there is an isomorphism

HK
∗ (X,G) ≈ HM

∗ (X,G)

on the category of locally compact, paracompact Hausdorff spaces and proper maps.

Corollary 3.5. a) If X is a locally compact, paracompact Hausdorff space, then for the system {N}
of closed neighborhoods N of a closed subspace A of X, there is an infinite exact sequence

· · · −→ lim
←−

(2k+1)HK
n+k+1(N) −→ · · · −→ lim

←−
(3)HK

n+2(N) −→ lim
←−

(1)HK
n+1(N) −→ HK

n (A,G) −→
in−→ lim
←−

HK
n (N) −→ lim

←−
(2)HK

n+1(N) −→ · · · −→ lim
←−

(2k)HK
n+k(N) −→ · · · ,

where HK
∗ (N) = HK

∗ (N,G) is the Kolmogoroff homology.
b) If X is a compact Hausdorff space, then for the system {N} of closed neighborhoods N of a

closed subspace A of X, there is an infinite exact sequence

· · · −→ lim
←−

(2k+1)HMi
n+k+1(N) −→ · · · −→ lim

←−
(3)HM

n+2(N) −→ lim
←−

(1)HMi
n+1(N) −→ HMi

n (A) −→
in−→ lim
←−

HMi
n (N) −→ lim

←−
(2)HMi

n+1(N) −→ · · · −→ lim
←−

(2k)HMi
n+k(N) −→ · · · ,

where HMi
∗ (N) = HMi

∗ (N,G) is the Milnor homology [14].

As it is known [6], for each countable inverse system {Ak} of abelian groupsAk, there is lim←−
(i){Ak} =

0 for i ≥ 2. By virtue of this fact, Theorem 2.2 and Corollary 3.5, we have

Corollary 3.6. a) If X is a locally compact Hausdorff space with the second countable axiom, then
for each countable system {Ni} of closed neighborhoods of a closed subspace A of X, there is a short
exact sequence

0 −→ lim
←−

(1)HM
n+1(Ni) −→ HM

n (A,G) −→ lim
←−

HM
n (Ni) −→ 0,

where HM
∗ is the Massey homology [10].

b) If X is a locally compact, paracompact Hausdorff space with the second countable axiom, then
for each countable system {Ni} of closed neighborhoods of a closed subspace A of X, there is a short
exact sequence

0 −→ lim
←−

(1)HK
n+1(Ni) −→ HK

n (A,G) −→ lim
←−

HK
n (Ni) −→ 0,

where HK
∗ is the Kolmogoroff homology [8].

c) If X is a compact Hausdorff space with the second countable axiom, then for each countable
system {Ni} of closed neighborhoods of a closed subspace A of X, there is a short exact sequence

0 −→ lim
←−

(1)HMi
n+1(Ni) −→ HMi

n (A,G) −→ lim
←−

HMi
n (Ni) −→ 0,

where HMi
∗ is the Milnor homology [14].

d) If X is a compact metric space, then for each countable system {Ni} of a closed neighborhoods
of closed subspace A of X, there is a short exact sequence

0 −→ lim
←−

(1)Hst
n+1(Ni) −→ Hst

n (A,G) −→ lim
←−

Hst
n (Ni) −→ 0,

where Hst
∗ is the Steenrod homology [16].
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