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Dedicated to the memory of Nodar Berikashvili

Abstract. A Gerstenhaber–Schack (G-S) bialgebra consists of a graded Hopf algebra H together
with multilinear operations ωn

m ∈ {Hom−1(H⊗m, H⊗n) : m+ n = 4}, whose sum is the degree −1

component of a 2-cocycle in the G-S complex of H. A G-S extension of a graded Hopf algebra H is

a G-S bialgebra containing H. G-S extensions of H are classified up to isomorphism by the degree
−1 component of the G-S cohomology group H2

GS(H;H). We exhibit a space X and a non-trivial

topologically induced G-S bialgebra structure on H∗ (ΩX;Z2) .

1. Introduction

A Gerstenhaber–Schack (G-S) bialgebra consists of a graded Hopf algebra (gHa) H together with
multilinear operations ωn

m ∈ {Hom−1(H⊗m, H⊗n) : m + n = 4}, whose sum is the degree −1 com-
ponent of a 2-cocycle in the G-S complex of H (antipodes are not assumed). A G-S extension of a
gHa H is a G-S bialgebra containing H. G-S extensions of H are classified up to isomorphism by the
degree −1 component of the G-S cohomology group H2

GS(H;H).
Let X be a Z2-formal space. The bar construction BA := BH∗(X;Z2) with standard differential

and cofree coproduct ∆BA is a differential graded (dg) coalgebra model for the singular cochains
S∗ (ΩX;Z2) . A homotopy Gerstenhaber algebra (hGa) structure on H∗(X;Z2) lifts to BA and the
induced product is Hopf compatible with ∆BA. Furthermore, under the right conditions, the dgHa
structure on BA lifts to H := H∗(BA) so that H is a gHa model for H∗ (ΩX;Z2) .

When H is free, there is a cocycle-selecting homomorphism g : H → BA and an A∞-bialgebra
structure ω on H induced by transferring the dgHa structure on BA to H along g. Since H has zero
differential, ω specializes to a G-S bialgebra by forgetting all operations {ωn

m : m + n > 4} and all
A∞-bialgebra structure relations encoded by the biassociahedra {KKn

m : m+ n > 5} (see Definitions
1 and 3).

The article is organized as follows: Section 2 reviews the definition of an A∞-bialgebra and defines
Ak-bialgebras for 3 ≤ k < ∞. Section 3 reviews the definition of an A∞-bialgebra morphism and
defines morphisms of Ak-bialgebras for 3 ≤ k <∞. Section 4 reviews the G-S complex of a dgHa and
presents our main result:

Theorem 1. Given a gHa (H,µ,∆) and multilinear operations ω := {ω1
3 , ω

2
2 , ω

3
1} ⊂ Hom−1(H⊗m,

H⊗n), let z := ω1
3 + ω2

2 + ω3
1 . Then

1. (H,µ,∆, ω) is a G-S extension if and only if z is the degree −1 component of a 2-cocycle in
the G-S complex of H.

2. G-S extensions ω and ω′ are equivalent if and only if cls(z − z′) = 0.

Section 5 reviews the Transfer Theorem and the relevant special case of its proof (the Transfer Al-
gorithm), reviews the definition of a hGa, and exhibits a space X with a non-trivial topologically
induced G-S bialgebra structure on H∗(BA) ≈ H∗ (ΩX;Z2).
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2. Biassociahedra and Ak-bialgebras

In his 1963 seminal papers “Homotopy associativity of H-spaces I, II” [9], Jim Stasheff constructed
the associahedra K := {Kn}n≥2 and used them to define An-algebras for 2 ≤ n ≤ ∞. In [7] and [8],
S. Saneblidze and the current author constructed the biassociahedra KK := {KKn

m}m+n≥3 and used
them to define A∞-bialgebras; Ak-bialgebras for 3 ≤ k <∞ are defined in Definition 1 below.

The biassociahedron KKn
m is a contractible (m+ n− 3)-dimensional polytope, and KKn

1
∼= KK1

n

is Stasheff’s associahedron Kn. The 2-cell and edges of KK2
3 pictured in Figure 1 are labeled by

upward-directed graphs, each representing some composition of ω-operations. In dimensions ≤ 3, the
biassociahedra KK constructed in [8] agree with the polytopes under the same name and symbol
constructed by M. Markl in [5].

Figure 1. The biassociahedron KK2
3 .

Let R be a commutative ring with unity, let (A, d) be a dg R-module (dgm) with |d| = +1 and
denote the tensor module of A by TA. The differential ∇ on Hom∗ (TA, TA) induced by d is defined
for f ∈ Homp(A⊗m, A⊗n) by

∇f := d(n)f − (−1)pf d(m),

where d(k) :=
∑k−1

s=0 1
⊗s⊗ d⊗1⊗k−s−1 is the linear extension of d to A⊗k. Denote the chain complex

of cellular chains on a polytope P by (CC∗ (P ) , ∂) and the top-dimensional cell of KKn
m by θnm.

Definition 1. Let 3 ≤ k ≤ ∞. An Ak-bialgebra consists of a dgm (A, d) together with multilinear
operations

ω = {ωn
m ∈ Hom3−m−n

(
A⊗m, A⊗n

)
: m+ n ≥ 3},

where m+ n ≤ k when k <∞, and structure maps

α = {αn
m : (CC∗ (KKm,n) , ∂)→

(
Hom3−m−n

(
A⊗m, A⊗n

)
,∇

)
},

where αn
m is a chain map of matrads such that αn

m(θnm) = ωn
m. The KK

n
m structure relation is

∇ωn
m = (∇ ◦ αn

m)θnm = (αn
m ◦ ∂)θnm.

An Ak-bialgebra A is strict if ∇ωn
m = 0 for all m and n.

Stasheff’s An-algebras are An+1-bialgebras with ω
j
i = 0 for all j > 1. Just as the operadic structure

of K encodes the structure relations in An-algebras, the matradic structure of KK encodes the
structure relations in Ak-bialgebras.



GERSTENHABER–SCHACK BIALGEBRAS 517

For notational simplicity denote µ := ω1
2 and ∆ := ω2

1 . Let σm,n denote the canonical permutation

of tensor factors (A1 ⊗ · · · ⊗Am)
⊗n 7→ A⊗n

1 ⊗· · ·⊗A⊗n
m . The KKn

m structure relations with m+n ≤ 4
are

∇µ = 0 ⇔ d is a derivation
∇∆ = 0 ⇔ d is a coderivation

∇ω1
3 = µ (µ⊗ 1− 1⊗ µ) ⇔ µ is homotopy associative

∇ω2
2 = (µ⊗ µ)σ2,2 (∆⊗∆)−∆µ ⇔ µ and ∆ are homotopy compatible
∇ω3

1 = (1⊗∆−∆⊗ 1)∆ ⇔ ∆ is homotopy coassociative.

(2.1)

The KKn
m structure relations with m+ n = 5 are displayed in (4.1).

While strict A4-bialgebras are gHa’s by the relations in (2.1), the operations ωn
m withm+n = 4, are

unconstrained. A “Gerstenhaber–Schack bialgebra” is an A4-bialgebra with zero differential together
with appropriately constrained operations ωn

m with m+ n = 4 (see Definition 3).

3. Bimultiplihedra and Morphisms of Ak-Bialgebras

In [9], J. Stasheff also introduced the multiplihedra J := {Jn}n≥1 and used them to define mor-
phisms of An-algebras for 2 ≤ n ≤ ∞. In [8], S. Saneblidze and the current author introduced the
bimultiplihedra JJ := {JJn

m}m+n≥2 and used them to define morphisms of A∞-bialgebras; mor-
phisms of Ak-bialgebras are defined in Definition 2 below. The bimultiplihedron JJn

m is a contractible
(m+ n− 2)-dimensional polytope, and JJn

1
∼= JJ1

n is Stasheff’s multiplihedron Jn.
Given dgm’s (A, dA) and (B, dB) , let ∇ denote the induced differential on Hom(TA, TB), and

denote the top-dimensional cell of JJn
m by fnm.

Definition 2. Let (A, dA, ωA) and (B, dB , ωB) be Ak-bialgebras. A morphism from A to B consists
of multilinear maps

G = {gnm ∈ Hom2−m−n(A⊗m, B⊗n) : m+ n ≥ 2},
where m+ n ≤ k when k <∞, and structure maps

β = {βn
m : (CC∗ (JJ

n
m) , ∂)→

(
Hom2−m−n(A⊗m, B⊗n),∇

)
},

where βn
m is a chain map of relative matrads such that βn

m (fnm) = gnm. The JJn
m-structure relation

is
∇gnm = (∇ ◦ β)fnm = (β ◦ ∂)fnm.

Denote a morphism G from A to B by G : A ⇒ B. A morphism Φ = {ϕnm} : A ⇒ B is an
isomorphism if ϕ11 : A→ B is an isomorphism of dgm’s.

Stasheff’s morphisms of An-algebras are morphisms of An+1-bialgebras with g
j
i = 0 for all j > 1.

Just as the relative operadic structure of J encodes the structure relations in a morphism of
An-algebras, the relative matradic structure of JJ encodes the structure relations in a morphism
of Ak-bialgebras.

Remark 1. If Φ = {ϕnm} : A⇒ A is an isomorphism, let g = (ϕ11)
−1 and define ψn

m := g⊗nϕnm; then
Ψ = {ψn

m} : A⇒ A is an isomorphism with ψ1
1 = 1A. Thus, when Φ : A⇒ A is an isomorphism, we

always assume that ϕ11 = 1A.

To accommodate subscripts let ωn,m := ωn
m, and for notational simplicity let µX := ω1,2

X and

∆Y := ω2,1
Y . The JJn

m structure relations with 2 ≤ m+ n ≤ 4 are

∇g11 = 0 ⇔ g := g11 is a chain map

∇g12 = gµA − µB (g ⊗ g) ⇔ g is homotopy multiplicative

∇g21 = ∆Bg − (g ⊗ g)∆A ⇔ g is homotopy comultiplicative

∇g13 = gω1,3
A − µB

(
g ⊗ g12 − g12 ⊗ g

)
+ g12 (µA ⊗ 1− 1⊗ µA) − ω1,3

B g⊗3

∇g22 = (g ⊗ g)ω2,2
A − (µB ⊗ µB)σ2,2(∆Bg ⊗ g21 + g21 ⊗ (g ⊗ g)∆A) + g21µA

−
(
µB(g ⊗ g)⊗ g12 + g12 ⊗ gµA

)
σ2,2(∆A ⊗∆A) + ∆Bg

1
2 − ω

2,2
B (g ⊗ g)
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∇g31 = g⊗3ω3,1
A +

(
g ⊗ g21 − g21 ⊗ g

)
∆A + (1⊗∆B −∆B ⊗ 1) g21 − ω

3,1
B g.

4. The G-S Complex of a DG Hopf Algebra

Let (H, d, µ,∆) be a dgHa with |d| = +1 (when |d| = −1 the construction is completely dual). For
m ≥ 1, define left and right H-comodule actions λm, ρm : H⊗m → H⊗m+1 by

λ1 = ρ1 := ∆

λm :=
(
µ (µ⊗ 1) · · ·

(
µ⊗ 1⊗m−2

)
⊗ 1⊗m

)
σ2,m∆⊗m

ρm :=
(
1⊗m ⊗ µ (1⊗ µ) · · ·

(
1⊗m−2 ⊗ µ

) )
σ2,m∆⊗m.

For n ≥ 1, define left and right H-module actions λn, ρn : H⊗n+1 → H⊗n by

λ1 = ρ1 := µ

λn := µ⊗nσn,2

( (
∆⊗ 1⊗n−2

)
· · · (∆⊗ 1)∆⊗ 1⊗n

)
ρn := µ⊗nσn,2

(
1⊗n ⊗

(
1⊗n−2 ⊗∆

)
· · · (1⊗∆)∆

)
.

Then H⊗m := (H⊗m, λm, ρm) is an H-bicomodule, H⊗n :=
(
H⊗n, λn−1, ρn−1

)
is an H-bimodule

(when n = 1 the bimodule actions are undefined and H⊗1 := H), and {Homp(H⊗m, H⊗n) : p ∈ Z
and m,n ≥ 1} is a trigraded H-bidimodule.

The linear extension d(k) :=
∑k−1

s=0 1
⊗s⊗ d⊗1⊗k−s−1 and the (co)bar differentials (forgetting shift

of dimensions)

∂(m) :=

m−1∑
s=0

(−1)s 1⊗s ⊗ µ⊗ 1⊗m−s−1 and δ(n) :=

n−1∑
s=0

(−1)s 1⊗s ⊗∆⊗ 1⊗n−s−1

induce strictly commuting differentials ∇, ∂, and δ on {Homp(H⊗m, H⊗n)}, which act on an element
f of tridegree (p,m, n) by

∇f := d(n)f − (−1)p fd(m)

∂f := λn (1⊗ f)− f∂(m) − (−1)m ρn (f ⊗ 1)

δf := (1⊗ f)λm − δ(n)f − (−1)n (f ⊗ 1) ρm.

Note that∇ : (p,m, n) 7→ (p+ 1,m, n) , ∂ : (p,m, n) 7→ (p,m+ 1, n) , and δ : (p,m, n) 7→ (p,m, n+ 1) .

The G-S complex of H is the triple complex (Hom∗(H⊗∗, H⊗∗),∇, ∂, δ). The subspace of total
r-cochains in degree p is

Cr,p
GS (H,H) :=

⊕
p+m+n=r+1

Homp
(
H⊗m, H⊗n

)
and the total differential D acts on a cochain f of tridegree (p,m, n) by

Df := (−1)m+n∇f + ∂f + (−1)m δf,

where the signs are chosen so that D2 = 0 and the restriction of D to the subspace p = 0 agrees with
the total differential on the G-S double complex of an ungraded Hopf algebra [1].

The subspace of total r-cocycles in degree p is denoted by Zr,p
GS (H;H). A general 2-cocycle has

components φn
m of tridegree (p,m, n) with p+m+ n = 3, and is an infinitesimal in the deformation

theory of dgHa’s [10]. A 2-cocycle with m+ n ≤ 4 is pictured in Figure 2. The rth G-S cohomology
group in degree p with coefficients in H is Hr,p

GS (H;H) := H∗ (Cr,p
GS (H,H) , D) .

It is truly remarkable that the KKn
m structure relations with m + n = 5 and the JJn

m structure
relations with m+ n = 4 can be expressed in terms of G-S differentials.
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Figure 2. A 2-cocycle φ1
1 + φ1

2 + φ2
1 + φ1

3 + φ2
2 + φ3

1 with components of tridegree
(3−m− n,m, n) and m+ n ≤ 4.

Example 1. To express theKK2
3 structure relation in terms of G-S differentials, recall that αn

m (θnm) =
ωn
m. Reading the graphical labels in Figure 1 from top-down and left-to-right, express each as a

composition of ω-operations. Then up to sign

∇ω2
3 = ∆ω1

3 + ω2
2(µ⊗ 1+ 1⊗ µ) + (µ⊗ µ)σ2,2(ω2

2 ⊗∆+∆⊗ ω2
2)

+
(
µ(µ⊗ 1)⊗ ω1

3 + ω1
3 ⊗ µ(1⊗ µ)

)
σ2,3∆

⊗3.

By definition,

∂ω2
2 = ω2

2(µ⊗ 1+ 1⊗ µ) + (µ⊗ µ)σ2,2(ω2
2 ⊗∆+∆⊗ ω2

2) and

δω1
3 = ∆ω1

3 +
(
µ(µ⊗ 1)⊗ ω1

3 + ω1
3 ⊗ µ(1⊗ µ)

)
σ2,3∆

⊗3

so that
∇ω2

3 = ∂ω2
2 + δω1

3 .

The KKn
m structure relations with m+ n = 5 are

KK1
4 : ∇ω1

4 = ∂ω1
3

∇=0
⇒ ∂ω1

3 = 0

KK2
3 : ∇ω2

3 = ∂ω2
2 − δω1

3 ⇒ ∂ω2
2 − δω1

3=0

KK3
2 : ∇ω3

2 = ∂ω3
1 + δω2

2 ⇒ ∂ω3
1 + δω2

2 = 0

KK4
1 : ∇ω4

1 = −δω3
1 ⇒ δω3

1 = 0.

(4.1)

The strict relations in (4.1) provide the linkage we need to form the degree −1 component ω1
3+ω

2
2+ω

3
1

of a strict G-S 2-cocycle (see Figure 3).

δω3
1 = 0

↑
ω3
1 −→ ∂ω3

1 + δω2
2 = 0

↑
ω2
2 −→ ∂ω2

2 − δω1
3 = 0

↑
ω1
3 −→ ∂ω1

3 = 0

Figure 3. The degree -1 component of a strict G-S 2-cocycle.
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Similarly, the JJn
m structure relations with m + n = 4 for an isomorphism Φ : (H, d, µ,∆, ωA) ⇒

(H, d, µ,∆, ωB) of A4-bialgebras are

JJ1
3 : ∇ϕ13 = ω1,3

A − ∂ϕ12 − ω
1,3
B

JJ2
2 : ∇ϕ22 = ω2,2

A − ∂ϕ21 − δϕ12 − ω
2,2
B

JJ3
1 : ∇ϕ31 = ω3,1

A + δϕ21 − ω
3,1
B .

(4.2)

Indeed, the algebraic representations of the 2-dimensional biassociahedra and bimultiplihedra dis-
played in (4.1) and (4.2) appear quite naturally and were hiding in the G-S complex more than a
decade before the corresponding polytopes appeared in [7].

Remark 2. The G-S differentials ∇, ∂, and δ capture the interactions of a higher order operation with
the underlying dgHa structure but completely miss its interactions with the higher order structure.
Consequently, the KKn

m structure relations cannot be expressed in terms of G-S differentials when
m+ n ≥ 6.

Now by definition, an A4-bialgebra (H,µ,∆, ω1
3 , ω

2
2 , ω

3
1) (with zero differential) is a gHa with three

higher order operations of degree −1. By homogeneity, D(ω1
3 + ω2

2 + ω3
1) = 0 if and only if δω3

1 =
∂ω2

2 − δω1
3 = ∂ω3

1 + δω2
2 = δω3

1 = 0.

Definition 3. An A4-bialgebra (H,µ,∆, ω1
3 , ω

2
2 , ω

3
1) is a Gerstenhaber–Schack bialgebra if

D(ω1
3 + ω2

2 + ω3
1) = 0. (4.3)

A G-S extension of a gHa (H,µ,∆) is a G-S bialgebra of the form (H,µ,∆, ω := {ω1
3 , ω

2
2 , ω

3
1});

we sometimes refer to ω as a G-S extension when the context is clear. G-S extensions ω and ω′ are
equivalent if there exists an isomorphism Φ : (H,µ,∆, ω) ⇒ (H,µ,∆, ω′) of A4-bialgebras. A G-S
extension ω is trivial if (H,µ,∆, ω) ∼= (H,µ,∆).

Theorem 2. Given a gHa (H,µ,∆) and multilinear operations ω := {ω1
3 , ω

2
2 , ω

3
1} ⊂ Hom−1(H⊗m,

H⊗n), let z := ω1
3 + ω2

2 + ω3
1 . Then

1. ω is a G-S extension if and only if D(z) = 0.

2. G-S extensions ω and ω′ are equivalent if and only if cls(z − z′) = 0.

Proof. The proof of Part 1 is trivial.
Proof of part 2: ω ∼ ω′ if and only if there exists an isomorphism Φ = {1H , ϕ

n
m : n + m = 3, 4} :

(H,µ,∆, ω) ⇒ (H,µ,∆, ω) of A4-bialgebras if and only if Φ satisfies the JJn
m structure relations for

m+ n = 3, 4, which hold trivially when m+ n = 3. Since ∇ = 0, the JJn
m structure relations in (4.2)

reduce to

∂ϕ12 = ω1
3 − (ω′)13

∂ϕ21 + δϕ12 = ω2
2 − (ω′)22 (4.4)

−δϕ21 = ω3
1 − (ω′)31.

Therefore ω ∼ ω′ if and only if there exists a (1,−1)-cochain ϕ12+ϕ21 such that the structure relations
in (4.4) hold if and only if

D
(
ϕ12 + ϕ21

)
= ∂ϕ12 +

(
∂ϕ21 + δϕ12

)
− δϕ21 = ω − ω′. □

Corollary 1. A G-S extension ω is trivial if and only if cls(z) = 0.

Proof. Set ω′ = 0 and apply Theorem 1, Part 2. □

Corollary 2. G-S extensions of a gHa H are parametrized by Z2,−1
GS (H;H) and classified up to

isomorphism by H2,−1
GS (H;H) .

Example 2. Consider the Z2-dg algebra (dga)

A = ⟨1, a2, a3, b3, a2a3 = a3a2⟩ ,
where |xi| = i, and the bar construction BA with standard differential dBA, shuffle product sh, and
cofree coproduct ∆BA. Denote a homogeneous element ↓ x1 ⊗ · · ·⊗ ↓ xn ∈ BA by [x1| · · · |xn]. Then
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BA is a dgHa such that dBA ([a2|a3] + [a3|a2]) = 0, and H0 := H∗ (BA) is a gHa with induced product
µ and coproduct ∆. Let αi := cls[ai+1], β := cls[b3], and γ := µ (α1 ⊗ α2) = cls([a2|a3] + [a3|a2]).
Then µ acts as the shuffle product except

µ (αi ⊗ γ) = µ (γ ⊗ αi) = 0

(by associativity) and ∆ acts as the free coproduct except

∆γ = 1⊗ γ + α1 ⊗ α2 + α2 ⊗ α1 + γ ⊗ 1

(by Hopf compatibility). Define ϕ12, ω
1
3 , and ω

2
2 to be zero except

ϕ12 (β ⊗ β) := γ, ω2
2 (β ⊗ β) := α1 ⊗ α2 + α2 ⊗ α1, and

ω1
3 (β ⊗ β ⊗ β) := µ (β ⊗ γ) .

By direct calculation, (
∂ϕ12

)
(β ⊗ β ⊗ β) = µ (β ⊗ γ) = ω1

3 (β ⊗ β ⊗ β) and(
δϕ12

)
(β ⊗ β) =

((
µ⊗ ψ1

2 + ψ1
2 ⊗ µ

)
σ2,2 (∆⊗∆) +∆ψ1

2

)
(β ⊗ β)

= α1 ⊗ α2 + α2 ⊗ α1 = ω2
2 (β ⊗ β) .

Therefore

Dϕ12 = ∂ϕ12 + δϕ12 = ω1
3 + ω2

2 .

Since cls
(
ω1
3 + ω2

2

)
= 0, the G-S extension H̃ :=

(
H,µ,∆, ω1

3 , ω
2
2

)
is trivial by Theorem 2, Part 2,

and indeed, Φ =
{
1A, ψ

1
2

}
: H̃ ⇒ H0 is an isomorphism of A4-bialgebras.

The remainder of this article considers an induced A∞-bialgebra structure ω on a particular loop
cohomology H and applies Theorem 2 to obtain a non-trivial G-S extension of the underlying gHa
structure.

5. A Topological Application

5.1. The Transfer Theorem and Algorithm. Let X be a space. Under mild conditions, the
Transfer Algorithm induces a canonical A∞-bialgebra structure on A := H∗(BA) ≈ H∗ (ΩX;Z2) .
We state the Transfer Theorem when A is free; the Transfer Algorithm appears in the proof. For the
general case and a proof of uniqueness see [8].

Theorem 3 (The Transfer Theorem). Let (A, dA) be a free dgm, let (B, dB , ωB) be an A∞-bialgebra,
and let g : A→ B be a chain map/homology isomorphism. Then g induces an A∞-bialgebra structure
ωA = {ωn,m

A } on A and extends to a map G = {gnm : g11 = g} : A⇒ B of A∞-bialgebras. Furthermore,
ωA and G are unique up to isomorphism.

Proof. (The Transfer Algorithm). For f ∈ Hom(A⊗m, A⊗n) define g̃(f) := g⊗nf and note that
g̃ is a homology isomorphism since A is free. We obtain an induced A∞-bialgebra structure by
simultaneously constructing a chain map αA : CC∗ (KK) → Hom(TA, TA) of matrads and a chain
map β : CC∗ (JJ)→ Hom(TA, TB) of relative matrads.

Thinking of JJn
m as a subdivision of the cylinder KKn

m × I, denote the top dimensional cells of

KKn
m and JJn

m by θnm and fnm, and identify the faces KKn
m× 0 and KKn

m× 1 of JJn
m with θnm

(
f11
)⊗m

and
(
f11
)⊗n

θnm, respectively. By hypothesis, there is a map of matrads αB : CC∗(KK) → (UB ,∇)
such that αB(θ

n
m) = ωn,m

B .
To initialize the induction, define β : CC∗

(
JJ1

1

)
→ Hom0 (A,B) by β

(
f11
)
= g11 = g, and extend β

to CC∗
(
JJ1

2

)
→ Hom−1 (A⊗A,B) and CC∗

(
JJ2

1

)
→ Hom−1(A, B ⊗B) in the following way: On

the vertices θ12
(
f11 ⊗ f11

)
∈ JJ1

2 and θ21f
1
1 ∈ JJ2

1 , define β
(
θ12

(
f11 ⊗ f11

))
= µB (g ⊗ g) and β

(
θ21 f

1
1

)
=

∆Bg. Since µB (g ⊗ g) and ∆Bg are ∇-cocycles, and g̃∗ is an isomorphism, there exist cocycles µA ∈
Hom0(A⊗ A,A) and ∆A ∈ Hom0(A,A⊗ A) such that g̃∗[µA] = [µB (g ⊗ g)] and g̃∗[∆A] = [∆Bg] .
Thus [gµA − µB (g ⊗ g)] = [∆Bg − (g ⊗ g)∆A] = 0, and there exist cochains g12 ∈ Hom−1(A,B ⊗B)
and g21 ∈ Hom−1(A⊗A,B) such that ∇g12 = gµA − µB (g ⊗ g) and ∇g21 = ∆Bg − (g ⊗ g)∆A .
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For m + n = 3, define αA : CC∗ (KK
n
m) → Hom0(A⊗m, A⊗n) by αA(θ

n
m) := ωn,m

A and β :
CC∗ (JJ

n
m)→ Hom∗ (A⊗m, B⊗n) by

β(fnm) := gnm ∈ Hom−1(A⊗m, A⊗n)

β(f11 θ
1
2) := g µA ∈ Hom0(A⊗A,A)

β
(
(f11 ⊗ f11) θ

2
1

)
:= (g ⊗ g)∆A ∈ Hom0(A,A⊗A) .

Inductively, given m + n ≥ 4, assume that for i + j < m + n there exists a map of matrads αA :
CC∗(KK

j
i )→ Hom3−i−j

(
A⊗i, A⊗j

)
and a map of relative matrads β : CC∗(JJ

j
i )→ Hom2−i−j(A⊗i,

B⊗j) such that αA(θ
j
i ) = ωj,i

A and β(fji ) = gji . Thus we are given chain maps αA : CC∗ (∂KK
n
m) →

Hom4−m−n (A⊗m, A⊗n) and β : CC∗ (∂JJ
n
m ∖ intKKn

m × 1) → Hom3−m−n (A⊗m, B⊗n). We wish

to extend αA to the top cell θnm of KKn
m, and β to the codimension 1 cell

(
f11
)⊗n

θnm and the top cell
fnm of JJn

m. Since αA is a map of matrads, the components of the cocycle

z = αA

(
CC∗(∂KK

n
m)

)
∈ Hom4−m−n

(
A⊗m, A⊗n

)
are expressed in terms of ωj,i

A with i+ j < m+ n; similarly, since β is a map of relative matrads, the
components of the cochain

φ = β
(
CC∗(∂JJ

n
m ∖ intKKn

m × 1)
)
∈ Hom3−m−n

(
A⊗m, B⊗n

)
are expressed in terms of ωB , ω

j,i
A and gji with i+j < m+n. Clearly g̃ (z) = ∇φ; and [z] = [0] since g̃ is

a homology isomorphism. Now choose a cochain b ∈ Hom3−m−n (A⊗m, A⊗n) such that ∇b = z; then
∇ (g̃ (b)− φ) = ∇g̃ (b)− g̃ (z) = 0. Choose a class representative u ∈ g̃−1

∗ [g̃ (b)− φ] , set ωn,m
A = b−u,

and define αA (θnm) := ωn,m
A . Then [g̃ (ωn,m

A )− φ] = [g̃ (b− u)− φ] = [g̃ (b)− φ]− [g̃ (u)] = [0] . Choose
a cochain gnm ∈ Hom2−m−n (A⊗m, B⊗n) such that ∇gnm = g⊗nωn,m

A − φ, and define β (fnm) := gnm.
To extend β as a map of relative matrads, define β

(
(f11)

⊗n θnm
)
:= g⊗n ωn,m

A . Passing to the limit we
obtain the desired maps αA and β. □

5.2. Homotopy Gerstenhaber Algebras. When a 1-connected dga (A, d, ·) over a field k admits a
hGa structure, it lifts to the bar construction BA and induces a Hopf compatible product µBA so that
BA is a dgHa. Furthermore, the dgHa structure on BA lifts to a gHa structure on H∗ (BA;k). Since
such liftings are required in the application below, we include a brief review of hGa’s for completeness.
To avoid sign complications, we limit our discussion to Z2-dga’s and follow the exposition given by
Kadeishvili in [3]; for a general exposition see [2].

A (not necessarily 1-connected or commutative) Z2-dga (A, d, ·) is a homotopy Gerstenhaber algebra
(hGa) if there exist multilinear operations

E := {E0,1 = E1,0 = 1A} ∪ {E1,q : A⊗A⊗q → A}q≥1

such that |E1,q| = −q, and satisfy the following relations:

dE1,q (a; b1, . . . , bq) + E1,q (da; b1, . . . , bq) +
∑

i
E1,q (a; b1, . . . , dbi, . . . , bq)

= b1 · E1,q−1 (a; b2, . . . bq) + E1,q−1 (a; b1, . . . , bq−1) · bq

+
∑

i
E1,q−1 (a; b1, . . . , bi · bi+1, . . . , bq) (5.1)

E1,q (a1 · a2; b2, . . . bq) = a1 · E1,q (a2; b1, . . . bq) + E1,q (a1; b1, . . . bq) · a2

+
∑q−1

p=1
E1,p (a1; b1, . . . bp) · E1,q−p (a2; bp+1, . . . bq) (5.2)

E1,n (E1,m (a; b2, . . . bm; c1, . . . , cn)) =
∑

0≤i1≤j1≤···≤im≤jm≤n

E1,m+n+(i1+···+im)−(j1+···+jm) (a; c1, . . . , ci1 , E1,j1−i1 (b1; ci1+1, . . . , cj1) ,

cj1+1, . . . , ci2 , E1,j2−i2 (b2; ci2+1, . . . , cj2) , cj2+1, . . . , cim ,

E1,jm−im (bm; cim+1, . . . , cjm) , cjm+1, . . . , cn). (5.3)
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Denote E1,1 by ⌣1; setting q = 1, relations (5.1) and (5.2) reduce to

d (a ⌣1 b) + da ⌣1 b+ a ⌣1 db = a · b+ b · a and

(a · b)⌣1 c = a · (b ⌣1 c) + (a ⌣1 c) · b.
Thus ⌣1 measures the deviation of · from commutativity and is a right derivation of the product.
Setting q = 2, relation (5.1) reduces to

dE1,2 (a; b, c) + E1,2 (da; b, c) + E1,2 (a; db, c) + E1,2 (a; b, dc)

= a ⌣1 (b · c) + (a ⌣1 b) · c+ b · (a ⌣1 c) .

Thus ⌣1 is a left derivation up to homotopy.
Let (A, d, ·) be a 1-connected dga with an hGa structure E. Consider the tensor coalgebra BA⊗BA

with coproduct ψ := σ2,2 (∆BA ⊗∆BA) .Define ψ(0) :=1 and ψ(k) :=
(
ψ ⊗ 1⊗k−1

)
· · · (ψ ⊗ 1)ψ, where

1 denotes the identity on BA⊗BA. Comultiplicatively extend the hGa structure maps E0,1 = E1,0 =
1A as coalgebra maps E0,1 : [ ]⊗BA → BA and E1,0 : BA ⊗ [ ] → BA. Then E0,1 and E1,0 have
degree zero, are undefined except with respect to units, i.e., E0,1 ([ ]⊗ [x]) = E1,0 ([x]⊗ [ ]) = [x], and
generate the shuffle product

sh :=
∑
k≥1

(E0,1 + E1,0)
⊗k
ψ(k−1) : BA⊗BA→ BA.

For example, sh ([a|b]⊗ [c]) = (E0,1 + E1,0)
⊗3
ψ(2) ([a|b]⊗ [c]) = [a|b|c] + [a|c|b] + [c|a|b].

In general, the dgHa structure of (BA, dBA,∆BA, sh) fails to induce a gHa structure on H =
H∗ (BA). However, an induced gHa structure (H,∆, µ) is obtained by comultiplicatively extending
the hGa structure and perturbing the shuffle product, i.e.,

µBA :=
∑
k≥1

(E0,1 + E1,0 + E1,1 + E1,2 + · · · )⊗k
ψ(k−1) : BA⊗BA→ BA.

Then for example, µBA ([a]⊗ [b]) = [a|b]+[b|a]+[a ⌣1 b] , and in particular, µBA ([a]⊗ [a]) = [a ⌣1 a].

5.3. A Non-trivial G-S Extension of Loop Cohomology. Let Y :=
(
S2 × S3

)
∨ ΣCP 2 and

consider the total space X of the 2-stage Postnikov system

K (Z2, 4) −→ X
↓
Y

f−→ K (Z2, 5) .
a2a3 + Sq2b ←−

f∗
ι5

Denote the generators of A := H∗ (X;Z2) by ai ∈ Hi
(
Si;Z2

)
,
{
b, Sq2b

}
∈ H∗(ΣCP 2;Z2), and{

Sq1ι4, Sq
2ι4, . . .

}
∈ H∗ (Z2, 4;Z2) . The hGa structure of A is non-degenerate with E1,1 : A⊗A→ A

given by
E1,1 (b⊗ b) = Sq2b = a2a3.

The bar construction BA with standard differential d and cofree coproduct ∆BA is a dg coalgebra.
Note that d([a2|a3] + [a3|a2]) = 0. Lift E1,0, E0,1, and E1,1 to BA and extend as coalgebra maps.
Then µBA acts as the shuffle product except

µBA ([b]⊗ [b]) = [a2a3] = d [a2|a3] ,
(BA, d,∆BA, µBA) is a dgHa, and H := H∗ (BA;Z2) ≈ H∗ (ΩX;Z2) as modules.

Let αi−1 := cls[ai], β := cls[b], and γ := cls([a2|a3] + [a3|a2]); then the induced product and
coproduct µ and ∆ on H act as in Example 2 so that (H,µ,∆) is a gHa. Represent γ by γ̄ :=
[a2|a3] + [a3|a2] , a generator x ̸= γ by x̄ := [↑ x], and a general class y1| · · · |yn by ȳ1| · · · |ȳn. Define
a cocycle-selecting homomorphism g : H → BA by g (y1| · · · |yn) := ȳ1| · · · |ȳn; then the Transfer
Algorithm transfers the dgHa structure on BA to an A∞-bialgebra structure on H along g, which
specializes to a strict Ak-bialgebra structure for each k ≥ 3.

S. Saneblidze was the first to consider hGa’s with non-trivial actions of the Steenrod algebra A2

in [6]. In general, the Steenrod ⌣1-cochain operation together with other higher cochain operations
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induce a non-trivial hGa structure on S∗ (X;Z2), but the failure of the differential to be a ⌣1-
derivation prevents an immediate lifting of the hGa structure to cohomology (for some remarks on
the history of lifting a ⌣1-operation on homology see [4] and [6]).

When no multiplicative map A → C of dga’s exists, as is the case when A = BH∗(X;Z2) and
C = S∗(ΩX;Z2), there may exist a family of dga’s {Bi} and a zig-zag of multiplicative maps
A ← B1 · · ·Bk → C. Indeed, in our application we have BH∗(X;Z2) ← B(RH∗(X;Z2)) ←
B(RaH

∗(X;Z2)) → B(S∗(X;Z2) → S∗(ΩX;Z2), where the first is induced by the Hirsch reso-
lution map H∗(X;Z2) ← RH∗(X;Z2), the second is induced by the Hirsch resolution projection
RA← RaH

∗(X;Z2), where RaH
∗(X) denotes the Hirsch (absolute) resolution of H∗(X), the third is

induced by the Hirsch modeling map RaH
∗(X;Z2) → S∗(X;Z2), and the fourth is standard. Under

this zig-zag, H := H∗ (BA;Z2) is a gHa model for H∗ (ΩX;Z2) .

Proposition 1. The gHa model H ≈ H∗(Ω(X);Z) admits a topologically invariant induced G-S
bialgebra structure {ω1

3 , ω
2
2 , ω

3
1} such that

ω1
3 ̸= 0, ω2

2 ̸= 0, and ω3
1 ≡ 0.

Thus
(
H,µ,∆, ω2

2 , ω
1
3

)
is a G-S extension of H.

Proof. First, by the Transfer Algorithm Theorem, there is a cochain homotopy g21 : H → BA ⊗ BA
satisfying the JJ2

1 structure relation ∇g21 = ∆BAg+(g⊗g)∆. Since ∇g21 = 0 by the comultiplicativity
of g, we may choose g21 = 0. Dually, note that

(gµ+ µBA(g ⊗ g)) (x⊗ y) =

{
[a2a3] , x⊗ y = β ⊗ β
0, otherwise.

By the Transfer Algorithm, there is a cochain homotopy g12 : H⊗H → BA satisfying the JJ1
2 structure

relation ∇g12 = gµ+ µBA(g ⊗ g) such that for some i ∈ {2, 3}

g12(x⊗ y) =

{
[ai|a5−i] , x⊗ y = β ⊗ β
0, otherwise.

Choose i = 2 so that g12(β ⊗ β) = [a2|a3] (the choice i = 3 gives rise to an isomorphic structure); the
analysis in [12] implies

ω2
2 (β ⊗ β) = α1 ⊗ α2.

Second, by the Transfer Algorithm, there is a cochain homotopy g31 : H → BA⊗3 satisfying the
JJ3

1 structure relation

∇g31 = g⊗3ω3
1 +

(
g ⊗ g21 + g21 ⊗ g

)
∆+ (∆BA ⊗ 1+ 1⊗∆BA) g

2
1 + ω3,1

BAg. (5.4)

Since ω3,1
BA = 0 and g21 = 0 by the choice above, (5.4) reduces to ∇g31 = g⊗3ω3

1 = g̃
(
ω3
1

)
. Since H

is free as a Z2-module, g̃ : Hom∗(H, H⊗3) → Hom∗ (H,BA⊗3
)
is a cohomology isomorphism, and

g̃
(
ω3
1

)
vanishes in cohomology, it follows that

ω3
1 ≡ 0.

Dually, there is a cochain homotopy g13 : H⊗3 → BA satisfying the JJ1
3 structure relation

∇g13 = gω1
3 + µBA

(
g ⊗ g12 + g12 ⊗ g

)
+ g12 (µ⊗ 1+ 1⊗ µ) + ω1,3

BAg
⊗3. (5.5)

For simplicity let ϕ13 := µBA

(
g ⊗ g12 + g12 ⊗ g

)
+ g12 (µ⊗ 1+ 1⊗ µ) and note that

ϕ13 (β ⊗ β ⊗ σ) = ϕ13 (σ ⊗ β ⊗ β) =

{
µBA ([a2|a3]⊗ σ̄) , σ ̸= 1, β

0, otherwise.

Since ω1,3
BA = 0, it follows that ∇g13 = gω1

3 + ϕ13. Furthermore, since gω1
3 and ϕ13 are cohomologous in

Hom
(
H⊗3, BA

)
and g̃ is a cohomology isomorphism, we have

ω1
3 (β ⊗ β ⊗ σ) = ω1

3 (σ ⊗ β ⊗ β) =

{
µ (α1|α2 ⊗ σ) , σ ̸= 1, β

0, otherwise.
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Finally, ω is invariant by uniqueness in the Transfer Theorem. □

Proposition 2. The G-S extension in Proposition 1 is non-trivial.

Proof. By Theorem 2, Part 1, the cochain ω2
2 + ω1

3 ∈ Z
2,−1
GS (H;H). I claim cls(ω2

2 + ω1
3) ̸= 0.

Suppose f = f21 ∈ Hom−1(H,H⊗2) satisfies ∂f = ω2
2 . Since ω

2
2 (β ⊗ β) = α1 ⊗ α2 by the proof of

Proposition 1, evaluating at β ⊗ β gives

(µ⊗ µ)σ2,2
(
∆(β)⊗ f(β) + f(β)⊗∆(β)

)
= α1 ⊗ α2.

Since each component of the left-hand side has a factor involving β, this is impossible.
Suppose f = f12 ∈ Hom−1(H⊗2, H) satisfies δf = ω2

2 ; then

(µ⊗ f + f ⊗ µ)σ2,2(∆⊗∆) +∆f = ω2
2 .

Note that µ (β ⊗ β) = 0 since µ acts as the shuffle product, and f (1⊗ 1) = 0 for dimensional reasons.
Evaluating the left-hand-side at β ⊗ β we obtain

1⊗ f (β ⊗ β) + β ⊗ f (1⊗ β) + β ⊗ f (β ⊗ 1) .

Since the required (primitive) component f (β ⊗ β)⊗ 1 is missing from

∆f (β ⊗ β) = 1⊗ f (β ⊗ β) + β ⊗ f (1⊗ β) + β ⊗ f (β ⊗ 1) + α1 ⊗ α2,

and this too is impossible.

Therefore D(f21 + f12 ) ̸= ω2
2 + ω1

3 for all f21 ∈ Hom−1(H,H⊗2) and all f12 ∈ Hom−1(H⊗2, H), and
it follows that cls(ω2

2 + ω1
3) ̸= 0 as claimed. The conclusion follows by Theorem 2, Part 2. □

There is a family of spaces {X(k)}k≥3 such that H∗(ΩX(k);Z2) admits an induced topologically

invariant A∞-bialgebra structure {ωj,i
(k)}i+j>3 with ωk,2

(k) ̸= 0 for each k ≥ 2 (see Example 12.5 in [8]).

Unfortunately, when k ≥ 4 the required KK structure relations cannot be expressed in terms of G-S
differentials (see Remark 2). One possible remedy might be to extend the G-S complex to a multi-
complex with additional differentials defined in terms of the higher order operations. Given such a
construction, the deformation complex for Ak-bialgebras would be in place.

Finally, the dgHa model H ≈ H∗(ΩX;Z2) in our application admits an Ak-bialgebra structure for
each k ≥ 3. It would be nice to have a family of spaces {Xk}k≥3 such that H∗(Xk) admits an Ak but
not an Ak+1-bialgebra structure. We leave this problem for the reader.
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