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TRIPLE WEAK SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM

MOHAMMAD REZA HEIDARI TAVANI1
∗
AND ABDOLLAH NAZARI2

Abstract. The aim of this work is to investigate the existence and multiplicity of solutions for a

second order Kirchhoff-type problem. Under appropriate conditions, we prove the existence of an
open interval of positive parameters under which the problem admits at least three distinct weak

solutions. Three weak solutions follow from a recent G. Bonanno variational principle.

1. Introduction

The aim of the present paper is to investigate the existence of at least three positive weak
solutions for the following second-order Kirchhoff-type problem−K

( b∫
a

|u′(x)|2dx
)
u′′(x) = λ α(x)f(x, u(x)) + h(x, u(x)), x ∈ (a, b),

u(a) = 0, u(b) = βu(γ),

(1.1)

where λ is a positive parameter, K : [0,+∞[→ R is a continuous function such that there exist positive
numbers m0 and m1 with m0 ≤ K(x) ≤ m1 for all x ≥ 0, a, b ∈ R with a < b, f : [a, b] × R → R
is a non-negative L1-Carathéodory function, α ∈ L∞([a, b]), α(x) ≥ 0, for a.e. x ∈ [a, b], α ̸≡ 0,
h : [a, b]×R → R is a non-negative Carathéodory function , there exists L > 0 such that h(x, t) ≤ L|t|
for each x ∈ [a, b] and t ∈ R, β ∈ R and γ ∈ (a, b).

In recent years, due to the widespread application of boundary value problems in engineering, the
study of three-point boundary value problems has become the subject of research by many authors.

For example, Gupta [8], under natural conditions on f, using degree-theoretic arguments, obtained
the existence and uniqueness theorems to the three-point nonlinear second-order boundary value
problem {

u′′ = f(x, u(x), u′(x))− e(x), 0 < x < 1,

u(0) = 0, u(η) = u(1),

where f : [0, 1]×R2 → R is a function satisfying Carathéodory’s conditions, e : [0, 1] → R is a function
in L1(0, 1) and η ∈ (0, 1).

He and Ge in [9], based upon the Leggett–Williams fixed-point theorem, provided the conditions
for the existence of three positive solutions to the nonlinear boundary value problem{

u′′ + f(t, u) = 0, t ∈ (0, 1),

u(0) = 0, au(η) = u(1),
(1.2)

where 0 < η < 1, 0 < a and aη < 1. Also, f : [0, 1] × [0,∞) → [0,∞) is a continuous function
and f(t, .) does not vanish identically on any subset of [0, 1] with positive measure. Recently, Lin
in [15] by using variational methods and a three-critical-point theorem, considered the existence
of at least three solutions for problem (1.2). Different types of Kirchhoff equation are expressed
in [14]. It was proposed as an extension of the classical D’Alembert’s wave equation for free vibrations
of elastic strings. The Kirchhoff’s model takes into account the length changes of the string produced
by transverse vibrations. Some interesting results can be found in [4, 7, 20]. Many researchers have
studied the problems of Kirchhoff-type (we refer the reader to the papers [3, 10, 11, 18, 19] and the
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references therein). Also, a for three-point boundary value problem of Kirchhoff-type we refer the
reader to papers [1,2,12]. For example, in [2], the authors, based on variational methods and a critical
point theorem, established the existence of at least one weak solution for the problem−K

( b∫
a

|u′(t)|2dt
)
u′′(t) = f(t, u(t)) + h(u(t)), t ∈ (a, b),

u(a) = 0, u(b) = αu(η),

where K : [0,+∞[→ R is a continuous function such that there exist positive numbers m and M with
m ≤ K(x) ≤ M for all x ≥ 0, a, b ∈ R with a < b , f : [a, b]×R → R is an L1-Carathéodory function,
h : R → R is a Lipschitz continuous function with the Lipschitz constant L > 0, α ∈ R and η ∈ (a, b).

In this paper, using a three critical points theorem obtained in [5], we establish the existence of at
least three weak solutions for problem (1.1).

2. Preliminaries

In this section, we recall some basic facts and introduce the necessary notations.

Definition 2.1. A function f : [a, b]× R → R is said to be a Carathéodory function if:
(C1) the function x → f(x, t) is measurable for every t ∈ R;
(C2) the function t → f(x, t) is continuous for a.e. x ∈ [a, b]. And f : [a, b] × R → R is said to be

an L1-Carathéodory function if, in addition to conditions (C1) and (C2), the following condition is
also satisfied:

(C3) for every ρ > 0, there is the function lρ ∈ L1([a, b]) such that sup|t|≤ρ |f(x, t)| ≤ lρ(x) for

almost every x ∈ [a, b].

Denote

X :=
{
u ∈ W 1,2(a, b)|u(a) = 0, u(b) = βu(γ)

}
,

endowed with the norm

∥u∥ :=

( b∫
a

|u′(x)|2dx
)1/2

.

Theorem 2.1 ([15, Theorem 3.2]). X is a separable and reflexive real Banach space.

Theorem 2.2 ([6, Theorem 8.8]). If I is a bounded subset of R, then the injection W 1,p(I)⊂C(Ī)
is compact for all 1 < p ≤ ∞.

Remark 2.1. From Theorem 2.2, we see that the embedding X → C([a, b]) is compact.

The following lemma is required in the proof of the main theorem of this paper.

Lemma 2.1 ([2, Lemma 2.4]). For all u ∈ X, we have

max
x∈[a,b]

|u(x)| ≤ (1 + |β|)
√
b− a

2
∥u∥. (2.1)

Remark 2.2. If {un}n∈N is a bounded sequence in X, then from the compact embedding X ↪→
C([a, b]) it has a subsequence that pointwise converges to some u ∈ X (it comes from the definition of
compact embedding) . Also, since X is a reflexive space, then there exists a subsequence that weakly
converges in X (see [6, Theorem 3.18]) and so, according to continuous embedding, X → L∞([a, b])
weakly converges in L∞([a, b]).
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In accordance with the functions f,K and h, we introduce the functions F : [a, b] × R → R, K̃ :
[0,∞) → R and H : [a, b]× R → R, respectively, as follows:

F (x, t) =

t∫
0

f(x, ξ)dξ for all (x, t) ∈ [a, b]× R,

K̃(t) =

t∫
0

K(ξ)dξ for all t ≥ 0

and

H(x, t) =

t∫
0

h(x, ξ)dξ for all (x, t) ∈ [a, b]× R.

Moreover, set

F θ =

b∫
a

sup
|ξ|≤θ

F (x, ξ)dx for all θ > 0.

In this paper, we assume that the following condition

4m0 > L(1 + |β|)2(b− a)2

holds. Let Φ, Ψ : X → R be defined by

Φ(u) =
1

2
K̃(∥u∥2)−

b∫
a

H(x, u(x))dx

and

Ψ(u) =

b∫
a

α(x)F (x, u(x))dx,

for every u ∈ X.
Now, according to (2.1), we observe that

(4m0 − L(1 + |β|)2(b− a)2)

8
∥u∥2 ≤ Φ(u) ≤ (4m1 + L(1 + |β|)2(b− a)2)

8
∥u∥2, (2.2)

for every u ∈ X. Ψ is a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =

b∫
a

α(x)f(x, u(x))v(x)dx,

and Φ is a continuously Gâteaux differentiable functional whose differential at the point u ∈ X is

Φ′(u)(v) = K

( b∫
a

|u′(x)|2
)( b∫

a

u′(x)v′(x)dx

)
−

b∫
a

h(x, u(x))v(x)dx,

for every v ∈ X.

Definition 2.2. Let Φ and Ψ be defined as above and put Iλ = Φ − λΨ. We say that u ∈ X is
a critical point of Iλ when I ′λ(u) = 0{X∗}, that is, I

′
λ(u)(v) = Φ′(u)(v)− λΨ′(u)(v) = 0 for all v ∈ X.

Definition 2.3. A function u ∈ X is a weak solution to problem (1.1) if

K

( b∫
a

|u′(x)|2
)( b∫

a

u′(x)v′(x)dx

)
−

b∫
a

h(x, u(x))v(x)dx− λ

b∫
a

α(x)f(x, u(x))v(x)dx = 0,

for every v ∈ X.
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Remark 2.3. We observe that the weak solutions of problem (1.1) are exactly the solutions of the
equation I ′λ(u)(v) = 0.

Lemma 2.2. If u0 ̸≡ 0 is a weak solution for problem (1.1), then u0 is non-negative.

Proof. From Remark 2.3, one has I ′λ(u0)(v) = 0, for all v ∈ X. Choosing v(x) = max{−u0(x), 0},
putting E = {x ∈ [a, b] : u0(x) < 0} and arguing by contradiction, we assume that E is a nonempty
set. Then we have

K

( ∫
E∪Ec

|u′
0(x)|2dx

)( ∫
E∪Ec

u′
0(x)v

′(x)dx

)

= λ

b∫
a

α(x)f(x, u0(x))v(x)dx+

b∫
a

h(x, u0(x))v(x)dx ≥ 0,

that is,

−m1

∫
E

v′(x)v′(x)dx ≥ 0

which means that −m1∥v∥2 ≥ 0 and one has ∥v∥ = 0, therefore v = 0. But this is absurd and so, E
is an empty set. Hence −u0 ≤ 0, that is, u0 ≥ 0 and the proof is complete. □

Definition 2.4. A Gâtuax differentiable function I satisfies the Palais–Smale condition (in short,
(PS)-condition) if any sequence {un} such that

(a) {I(un)} is bounded,
(b) lim

n→+∞
∥I ′(un)∥X∗ = 0,

has a convergent subsequence.

Below, we will present a non-standard state of the Palais–Smale condition that is introduced in [5].

Definition 2.5. (see [5]) Fix r ∈] −∞,+∞]. A Gâteaux differentiable function I : X → R satisfies
the Palais–Smale condition cut off upper at r (in short, (PS)[r]-condition) if any sequence {un} ⊆ X
such that

(a) {I(un)} is bounded,

(b) lim
n→+∞

∥I ′(un)∥X∗ = 0,

(c) Φ(un) < r, ∀n ∈ N,
has a convergent subsequence.

Our main tool is the following critical point theorem.

Theorem 2.3 ([5, Theorem 7.3]). Let X be a real Banach space and let Φ,Ψ : X −→ R be
two continuously Gâteaux differentiable functions with Φ bounded from below and convex such that
infX Φ = Φ(0) = Ψ(0) = 0.

Assume that there are two positive constants r1, r2 and u ∈ X, with 2r1 < Φ(u) < r2
2 such that

(b1)
supu∈Φ−1( ]−∞,r1[ ) Ψ(u)

r1
<

2

3

Ψ(u)

Φ(u)
;

(b2)
supu∈Φ−1( ]−∞,r2[ ) Ψ(u)

r2
<

1

3

Ψ(u)

Φ(u)
.

Assume also that for each

λ ∈ Λ =

]
3

2

Φ(u)

Ψ(u)
, min

{
r1

supu∈Φ−1( ]−∞,r1[ ) Ψ(u)
,

r2
2

supu∈Φ−1( ]−∞,r2[ ) Ψ(u)

}[
,

the functional Φ− λΨ satisfies the (PS)[r2]-condition and

inf
t∈[0,1]

Ψ(tu1 + (1− t)u2) ≥ 0,
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for each u1, u2 ∈ X which are local minima for the functional Φ − λΨ and such that Ψ(u1) ≥ 0 and
Ψ(u2) ≥ 0.

Then, for each λ ∈ Λ, the functional Φ − λΨ admits at least three critical points which lie in
Φ−1( ]−∞, r2[ ).

Now we present a proposition that will be needed to prove the main Theorem of this paper.

Proposition 2.1. Take Iλ = Φ−λΨ as in Definition 2.2. Then Iλ satisfies the (PS)[r]-condition for
any r > 0.

Proof. Consider the sequence {un} ⊆ X such that {Iλ(un)} is bounded, lim
n→+∞

∥I ′λ(un)∥X∗ = 0 and

Φ(un) < r, ∀n ∈ N. Since Φ(un) < r, from (2.2), we see that {un} is bounded in X. Therefore
passing to a subsequence, if necessary, we can assume that un(x) → u(x), and there is s > 0 such that
|un(x)| ≤ s for all x ∈ [a, b] and for all n ∈ N and also, {un} weakly converges to u in L∞([a, b]) (see
Remark 2.2). Now, according to Hölder’s inequality and Lebesque’s Dominated Convergence Theorem,
since α(x)f(x, un(x)) ≤ α(x). max|ξ|≤s f(x, ξ) ∈ L1([a, b]) for all n ∈ N and f(x, un(x)) → f(x, u(x))

for a.e. x ∈ [a, b] (f is L1-Carathéodory function), one has αf(x, un) is strongly converging to αf(x, u)
in L1([a, b]). Now, since un ⇀ u in L∞([a, b]) and αf(x, un) → αf(x, u) in L1([a, b]) ⊆ (L∞([a, b]))∗,
from [6, Proposition 3.5(iv)], one has

lim
n→+∞

b∫
a

α(x)f(x, un(x))(un(x)− u(x))dx = 0. (2.3)

Similarly, we have

lim
n→+∞

b∫
a

h(x, un(x))(un(x)− u(x))dx = 0. (2.4)

From lim
n→+∞

∥I ′λ(un)∥X = 0, there exists a sequence {εn}, with εn → 0+ such that

∣∣∣∣K( b∫
a

|u′
n(x)|2

)( b∫
a

u′
n(x)v

′(x)dx

)
− λ

b∫
a

α(x)f(x, un(x))v(x)dx

−
b∫

a

h(x, un(x))v(x)dx

∣∣∣∣ ≤ εn, (2.5)

for all n ∈ N and for all v ∈ X with ∥v∥ ≤ 1. Taking into account v(x) = un(x)−u(x)
∥un−u∥ , from (2.5), one

has ∣∣∣∣K( b∫
a

|u′
n(x)|2

) b∫
a

u′
n(x)(u

′
n(x)− u′(x))dx− λ

b∫
a

α(x)f(x, un(x))(un(x)− u(x))dx

−
b∫

a

h(x, un(x))(un(x)− u(x))dx

∣∣∣∣ ≤ εn∥un − u∥, (2.6)

for all n ∈ N. Now, according to the inequality |a||b| ≤ 1
2 |a|

2 + 1
2 |b|

2, one has

K

( b∫
a

|u′
n(x)|2

) b∫
a

u′
n(x)(u

′
n(x)− u′(x))dx

= K

( b∫
a

|u′
n(x)|2

)( b∫
a

|u′
n(x)|2dx−

b∫
a

u′
n(x)u

′(x)dx

)
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≥ m0

(
∥un∥2 −

b∫
a

(1
2
|u′

n(x)|2 +
1

2
|u′(x)|2

)
dx

)

= m0

(
∥un∥2 −

1

2
∥un∥2 −

1

2
∥u∥2

)
= m0

(
1

2
∥un∥2 −

1

2
∥u∥2

)
.

Hence from (2.6), we have

m0

(1
2
∥un∥2 −

1

2
∥u∥2

)
≤ λ

b∫
a

α(x)f(x, un(x))(un(x)− u(x))dx

+

b∫
a

h(x, un(x))(un(x)− u(x))dx+ εn∥un − u∥,

that is,

m0

2
∥un∥2 ≤ m0

2
∥u∥2 + λ

b∫
a

α(x)f(x, un(x))(un(x)− u(x))dx

+

b∫
a

h(x, un(x))(un(x)− u(x))dx+ εn∥un − u∥. (2.7)

Now, according to (2.3), (2.4) and (2.7), when εn → 0+, we have

lim sup
n→+∞

∥un∥ ≤ ∥u∥.

Thus [6, Proposition 3.32] ensures that un → u strongly in X, and the proof is complete. □

3. Main Results

In this section, we formulate our main results. Put

Z :=
1

γ − a
+

2(β − 1)2

b− γ
,

τ :=

√
4m0 − L(1 + |β|)2(b− a)2

4m1 + L(1 + |β|)2(b− a)2

and

Θ :=
4m0 − L(1 + |β|)2(b− a)2

2(1 + |β|)2(b− a)
.

Now, we express the main results.

Theorem 3.1. Assume that there exist three positive constants δ, θ1 and θ2 with

2
√
2θ1

(1 + |β|)
√
Z(b− a)

< δ <

√
2τθ2

(1 + |β|)
√
Z(b− a)

(3.1)

such that

(i)
F θ1

θ1
2 <

16

3

Θ

b+γ
2∫

γ

α(x)F (x, δ)dx

∥α∥∞
(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

,
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(ii)
F θ2

θ22
<

8

3

Θ

b+γ
2∫

γ

α(x)F (x, δ)dx

∥α∥∞
(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

,

where ∥α∥∞ = ∥α∥L∞ . Then, for each

λ ∈ Λ :=

]
3

16

(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

b+γ
2∫

γ

α(x)F (x, δ)dx

,min

{
Θ θ1

2

∥α∥∞ F θ1
,

Θ θ2
2

2∥α∥∞ F θ2

}[
,

problem (1.1) admits at least three non-negative weak solutions ui for i = 1, 2, 3, in X such that
0 ≤ ui(x) < θ2, ∀x ∈ [a, b], (i = 1, 2, 3).

Proof. Our aim is to apply Theorem 2.3 to problem (1.1). Fix λ, as in the conclusion. Take X, Φ and
Ψ as in the previous section. We observe that the regularity assumptions of Theorem 2.3 on Φ and Ψ
are satisfied. Also, according to Proposition 2.1, the functional Iλ satisfies the (PS)[r]-condition for
all r > 0.

Put

r1 := Θ θ21, r2 := Θ θ22

and

w(x) :=


δ

γ−a (x− a) if x ∈ [a, γ)

δ if x ∈ [γ, b+γ
2 ]

δ( 2(β−1)
b−γ x− β(b+γ)−2b

b−γ ) if x ∈ ( b+γ
2 , b].

We observe that w ∈ X and

∥w∥2 =

b∫
a

|w′(x)|2dx =
( 1

γ − a
+

2(β − 1)2

b− γ

)
δ2 = Zδ2.

In particular, from (2.2), one has(
4m0 − L(1 + |β|)2(b− a)2

)
Zδ2

8
≤ Φ(w) ≤

(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

8
. (3.2)

Therefore, from (3.1), one has 2r1 < Φ(w) < r2
2 .

Now, for each u ∈ X and bearing (2.1) in mind, we see that

Φ−1( ]−∞, ri[ ) = {u ∈ X; Φ(u) < ri}

⊆
{
u ∈ X;

(4m0 − L(1 + |β|)2(b− a)2)

8
∥u∥2 < ri

}
⊆ {u ∈ X; ∥u(x)| < θi for each x ∈ [a, b]} ,

and it follows that

sup
u∈Φ−1( ]−∞,ri[ )

Ψ(u) = sup
u∈Φ−1( ]−∞,ri[ )

( b∫
a

α(x) F (x, u(x))dx

)

≤
b∫

a

α(x) sup
|ξ|≤θi

F (x, ξ)dx ≤ ∥α∥∞ F θi .

Hence, we have
supu∈Φ−1( ]−∞,r1[ ) Ψ(u)

r1
≤ ∥α∥∞ F θ1

Θ θ1
2 <

1

λ
. (3.3)
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On the other hand, from (3.2) and since λ ∈ Λ, one has

2

3

Ψ(w)

Φ(w)
≥ 2

3

b∫
a

α(x) F (x,w(x))dx

(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

8

≥ 16

3

b+γ
2∫

γ

α(x)F (x, δ)dx

(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

>
1

λ
. (3.4)

Now, from (3.3) and (3.4), we have

supu∈Φ−1( ]−∞,r1[ ) Ψ(u)

r1
<

2

3

Ψ(w)

Φ(w)
.

Analogously, from (3.4), we get

2 supu∈Φ−1( ]−∞,r2[ ) Ψ(u)

r2
≤ 2

∥α∥∞ F θ2

Θ θ2
2 <

1

λ
<

2

3

Ψ(w)

Φ(w)

which means that
supu∈Φ−1( ]−∞,r2[ ) Ψ(u)

r2
<

1

3

Ψ(w)

Φ(w)
.

Hence, (b1) and (b2) of Theorem 2.3 are established.
Now, if u1, u2 ∈ X are the two local minima of the functional Iλ = Φ − λΨ, with Ψ(u1) ≥ 0 and

Ψ(u2) ≥ 0, then according to Lemma 2.2, u1 and u2 are nonnegative, and we get

inf
t∈[0,1]

Ψ(tu1 + (1− t)u2) ≥ 0.

Finally, for every

λ ∈ Λ ⊆

]
3

2

Φ(w)

Ψ(w)
, min

{
r1

sup
u∈Φ−1( ]−∞,r1[ )

Ψ(u)
,

r2/2

sup
u∈Φ−1( ]−∞,r2[ )

Ψ(u)

}[
,

since the weak solutions of problem (1.1) are exactly the solutions of the equation I ′λ(u) = 0, therefore
Theorem 2.3 (with u = w) and Lemma 2.2 will guarantee the conclusion. □

Remark 3.1. In Theorem 3.1, if f(x, 0) ̸= 0 or h(x, 0) ̸= 0, then problem (1.1) has at least three
non-trivial and non-negative weak solutions.

Remark 3.2. According to F (x, t) =

t∫
0

f(x, ξ)dξ, for all (x, t) ∈ [a, b] × R, we can consider F (t) =

t∫
0

f(ξ)dξ for all t ∈ R. When f is a continuous and non-negative function, then F ∈ C1(R), and since

F ′(t) = f(t) ≥ 0, for all t ∈ R, we get that F (t) is non-decreasing and so,

F θ =

b∫
a

sup
|ξ|≤θ

F (ξ)dx = (b− a) sup
|ξ|≤θ

F (ξ) = (b− a)F (θ) for all θ > 0.

Hence, when f does not depend on x, hypotheses (i) and (ii) in Theorem 3.1 take the following
forms:

(I)
F (θ1)

θ1
2 <

16

3

ΘF (δ)

b+γ
2∫

γ

α(x)dx

(b− a)∥α∥∞
(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

,
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(II)
F (θ2)

θ2
2 <

8

3

ΘF (δ)

b+γ
2∫

γ

α(x)dx

(b− a)∥α∥∞
(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

,

and the interval becomes]
3

16

(
4m1 + L(1 + |β|)2(b− a)2

)
Zδ2

F (δ)

b+γ
2∫

γ

α(x)dx

,
1

b− a
min

{
Θ θ1

2

∥α∥∞ F (θ1)
,

Θ θ2
2

2∥α∥∞ F (θ2)

}[
.

As an example, we give the following consequence of Theorem 3.1.

Corollary 3.1. Assume that

b+γ
2∫

γ

α(x)dx ̸= 0 and let f : R → [0,+∞[ be a continuous and nonzero

function such that

lim
ξ→0+

f(ξ)

ξ
= lim

ξ→+∞

f(ξ)

ξ
= 0.

Then for each λ > λ∗, where

λ∗ = inf

{
3

16

(
4m1 + L(1 + |β|)2(b− a)2

)
Z

b+γ
2∫

γ

α(x) dx

δ2

δ∫
0

f(ξ) dξ

: δ > 0,

δ∫
0

f (ξ) dξ > 0

}
,

the problem −K
( b∫

a

|u′(x)|2dx
)
u′′(x) = λ α(x)f(u(x)) + h(x, u(x)), x ∈ (a, b),

u(a) = 0, u(b) = βu(γ)

admits at least three distinct non-negative weak solutions.

Proof. Since

b+γ
2∫

γ

α(x)dx ̸= 0 and f ̸≡ 0, we see that

3

16

(
4m1 + L(1 + |β|)2(b− a)2

)
Z

b+γ
2∫

γ

α(x) dx

δ2

δ∫
0

f(ξ) dξ

< +∞.

Suppose that λ > λ∗ is fixed. Let δ > 0 such that

δ∫
0

f (ξ) dξ > 0 and

λ >
3

16

(
4m1 + L(1 + |β|)2(b− a)2

)
Z

b+γ
2∫

γ

α(x) dx

δ2

δ∫
0

f(ξ)dξ

.
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Also, we can consider F (t) =

t∫
0

f(ξ)dξ for all t ∈ R, and hence from Remark 3.2, we have

F θ = (b− a)F (θ) for all θ > 0.

Now, from lim
ξ→0+

f(ξ)

ξ
= 0, we have lim

ξ→0+

ξ∫
0

f(t)dt

ξ2
= 0 and so, there is θ1 > 0 such that

2
√
2 θ1

(1 + |β|)
√
Z(b− a)

< δ and

θ1∫
0

f(t)dt

θ1
2 =

F (θ1)

θ1
2 =

F θ1

(b− a)θ1
2 <

Θ

λ (b− a) ∥α∥∞
.

Also, from lim
ξ→+∞

f(ξ)

ξ
= 0, we have lim

ξ→+∞

ξ∫
0

f(t)dt

ξ2
= 0 and so, there is θ2 > 0 such that

δ <

√
2 τ θ2

(1 + |β|)
√

Z(b− a)
and

θ2∫
0

f(t)dt

θ2
2 =

F (θ2)

θ2
2 =

F θ2

(b− a)θ2
2 <

Θ

2λ (b− a) ∥α∥∞
.

Now, we can apply Theorem 3.1 and the conclusion follows. □

In the following, we will present an example to illustrate Corollary 3.1.

Example 3.1. Let f(t) = t4e−t5 and hence

δ∫
0

f(ξ)dξ =
1

5
(1− e−δ5) for all δ > 0. Also, suppose that

α(x) :=

{
2

b−γ if x ∈ (γ, b+γ
2 ),

1 otherwise

and hence

b+γ
2∫

γ

α(x)dx = 1. Put K(t) = 2 + tanh t for all t ≥ 0 with m0 = 1 and m1 = 3.

Now, as an example, we can consider h(x, t) =
ex

2(b− a)2eb
|t| for each x ∈ [a, b] and t ∈ R with

L =
1

2(b− a)2
. We see that the condition 4m0 > L(1 + |β|)2(b − a)2 is satisfied with β = 1. Then,

according to Corollary 3.1, for each

λ > inf

{
105 δ2

8(γ − a)(1− e−δ5)
, δ > 0

}
,
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the problem

−
(
2 + tanh

( ∫ b

a
|u′(x)|2dx

))
u′′(x)

=


2λ

b− γ
u(x)4e−u(x)5 +

ex

2(b− a)2eb
|u(x)| if x ∈ (γ, b+γ

2 ),

λu(x)4e−u(x)5 +
ex

2(b− a)2eb
|u(x)| if x ∈ (a, γ] ∪ [ b+γ

2 , b),

u(a) = 0, u(b) = u(γ)

admits at least three non-negative weak solutions.
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