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THE BOUNDARY-CONTACT PROBLEM OF DYNAMICAL VISCOELASTICITY

NUGZAR SHAVLAKADZE1,2 AND GIORGI KEKELIA2

Abstract. The dynamical contact problem for a viscoelastic half-plane is considered. The half-

plane is reinforced along its boundary by thin elastic cover plate (patch), which in general excited by
harmonic tangential and normal forces. Using the methods of integral transformations the problems

is reduced to the integro-differential equations with respect unknown contact stresses. The properties

and method of orthogonal polynomials the integro-differential equation reduces to an infinite system
of linear algebraic equations. The quasi-completely regularity of the obtained systems is proved.

1. Statement of the Problem

We consider the dynamical contact problem for a viscoelastic half-plane which is reinforced along its
boundary by an elastic cover plate (patch) with small thickness. The cover plate is under the action
of harmonic horizontal −τ0e

−iωtδ(x + 1) and vertical p0e
−iωtδ(x) forces with oscillation frequency

ω, δ(x) is the Dirac function. In the linear theory of viscoelasticity for Kelvin–Voigt materials it is
required to find the unknown contact stresses along of contact line, τ(x)e−iωt and p(x)e−iωt, where t
is time parameter.
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The problem is formulated in the form of the Lame’s differential equations [2, 5–7]

µ∆u+ µ0∆
∂u

∂t
+ (λ+ µ)

∂θ

∂x
+ (λ0 + µ0)

∂2θ

∂x∂t
= ρ

∂2u

∂t2
,

µ∆v + µ0∆
∂v

∂t
+ (λ+ µ)

∂θ

∂y
+ (λ0 + µ0)

∂2θ

∂y∂t
= ρ

∂2v

∂t2

(1.1)

with the boundary condition

σy =
(
λθ + 2µ

∂v

∂y
+ λ0

∂θ

∂t
+ 2µ0

∂2v

∂y∂t

)
y=0
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τxy = µ
(∂u
∂y

+
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)
y=0

+ µ0
∂

∂t

(∂u
∂y

+
∂v

∂x

)
y=0

= −τ(x)e−iωt,

(1.2)

where u(x, y, t) and v(x, y, t) are the components of the displacement vector, σy, τxy are stresses com-
ponents, λ, µ and λ0, µ0 are elastic and viscoelastic Lame’s constants, respectively. ρ is density of the
material of plate, p(x) and τ(x) are amplitudes of normal and tangential contact stress, respectively.
θ(x, y, t) = ∂u

∂x + ∂v
∂y .

2. Solution of the Problem

Considering stationary oscillation of the elastic half-plate and assuming that

u(x, y, t) = u0(x, y)e
−iωt, v(x, y, t) = v0(x, y)e

−iωt

from (1.1), (1.2), we obtain the following boundary value problem

(∆ + p22)u0 +
(C1

C2
− 1

)∂θ0
∂x

= 0, (∆ + p22)v0 +
(C1

C2
− 1

)∂θ0
∂y

= 0,(
λ∗θ0 + 2µ∗ ∂v0

∂y

)
y=0

= p(x), µ∗
(∂u0

∂y
+

∂v0
∂x

)
y=0

= −τ(x),

(2.1)

where

θ0(x, y) =
∂u0

∂x
+

∂v0
∂y

, λ∗ = λ− iλ0ω, µ∗ = µ− iµ0ω,

C1 =
λ∗ + 2µ∗

ρ
= c21 −

i(λ0 + 2µ0)ω

ρ
, C2 =

µ∗

ρ
= c22 −

iµ0ω

ρ
,

p21 =
ω2

C1
, p22 =

ω2

C2
,

c1 =
(
λ+2µ

ρ

) 1
2 , c2 =

(
µ
ρ

) 1
2 are velocity propagation of extension and distortion waves, respectively.

p1 = k1 + ik
′

1, p2 = k2 + ik
′

2, k1 > 0, k2 > 0, k
′

1 > 0, k
′

2 > 0.
To solve the boundary value problem (2.1), we use the method of the complex Fourier integral

transformation with respect to the variable x and we obtain a system of ordinary differential equations
under the boundary conditions [3, 12]

d2u∗
0

dy2
+

C1

C2
(p21 − α2)u∗

0 − iα
(C1

C2
− 1

)dv∗0
dy

= 0,

C1

C2

d2v∗0
dy2

+ (p22 − α2)v∗0 − iα
(C1

C2
− 1

)du∗
0

dy
= 0,

(2.2)

[
− λ∗iαu∗ + (λ∗ + 2µ∗)

dv∗

dy

]
y=0

= p∗(α), µ∗
[du∗

dy
− iαv∗

]
y=0

= −τ∗(α), (2.20)
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where

u0
∗(α, y) =

∞∫
−∞

u0(x, y)e
iαxdx, v0

∗(α, y) =

∞∫
−∞

v0(x, y)e
iαxdx,

p∗(α) =

∞∫
−∞

p(x)eiαxdx, τ∗(α) =

∞∫
−∞

τ(x)eiαxdx, α = σ + iτ.

The general solutions of the system (2.2) have the form

u∗
0(α, y) = iαAe−γ1y − γ2Be−γ2y + Ceγ1y +Deγ2y,

v∗0(α, y) = γ1Ae−γ1y + iαBe−γ2y + Eeγ1y + Feγ2y.

The boundary values (y = 0) of solutions of the problem (2.2)–(2.20) vanishing at infinity (y → ∞)
are represented as follows

u0
∗(α, 0) =

γ2p
2
2

µ∗∆(α)
τ∗(α) +

iα(2α2 − p22 − 2γ1γ2)

µ∗∆(α)
p∗(α),

v0
∗(α, 0) =

iα(2α2 − p22 − 2γ1γ2)

µ∗∆(α)
τ∗(α)− γ1p

2
2

µ∗∆(α)
p∗(α),

(2.3)

where ∆(α) = 4α2γ1(α)γ2(α)− (2α2 − p22)
2, γ1(α) =

√
α2 − p21, γ2(α) =

√
α2 − p22.

The function ∆(α) does not have roots on the real axis. According (2.3), the amplitudes u0(x) =
u0(x, 0) and v0(x) = v0(x, 0) of horizontal and vertical displacements of boundary points of the
viscoelastic half-plane from the amplitudes of contact stresses are given by the formulas

u0(x) =

1∫
−1

k1(|x− s|)τ(s)ds+
1∫

−1

k2(|x− s|)p(s)ds,

v0(x) =

1∫
−1

k2(|x− s|)τ(s)ds+
1∫

−1

k3(|x− s|)p(s)ds,

where

k1(x) =
1

2πµ∗

∞∫
−∞

γ2(σ)p
2
2e

−iσxdσ

∆(σ)
, k2(x) =

1

2πµ∗

∞∫
−∞

σ(2σ2 − p22 − 2γ1(σ)γ2(σ))e
−iσxdσ

∆(σ)
,

k3(x) =
1

2πµ∗

∞∫
−∞

γ1(σ)p
2
2e

−iσxdσ

∆(σ)
.

Now let’s consider the dynamical boundary value problem of an viscoelastic half-plane whose bound-
ary on the segment [−1, 1] is only under the action of horizontal harmonic forces. Based on the latest
formulas, we have

u0(x, 0) =
1

µ∗

1∫
−1

K(p2|x− s|)τ(s)ds, (2.4)

where

K(z) =
1

2π

∞∫
−∞

√
s2 − 1e−izsds

(2s2 − 1)2 − 4s2
√
(s2 − 1)(s2 − q2)

, q2 =
p21
p22

.

The function k(s) ≡
√
s2 − 1

(2s2 − 1)2 − 4s2
√
(s2 − 1)(s2 − q2)

in the neighbourhood of infinity has the

following representation k(s) = − 1

2(1− q2)
1
|s| + O(|s|−1), |s| → ∞. Therefore, its inverse Fourier
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transform K(p2x) is represented as a sum of principal and regular part by the formula

K(p2x) = − 1

2π(1− q2)
ln

1

|p2x|
+R(|p2x|). (2.5)

The equation of stationary oscillation of the elastic patch have the form( d2

dx2
+

ρ0
E0

ω2
)
u(1)(x) = − 1

h0E0
τ(x)− 1

h0E0
τ0δ(x+ 1), −1 < x < 1

where u(1)(x) is horizontal displacement of the patch points, E0 and ρ0 are the elasticity modulus and
the density of the patch material, respectively, h0 is its thickness [10,11].

Based of the contact condition: u(1)(x) = u0(x, 0) and formulas (2.4), (2.5) we obtain the following
integro-differential equation

( d2

dx2
+

ρ0
E0

ω2
)[ 1

2πµ∗(1− q2)

1∫
−1

ln
1

|p2| |x− s|
τ(s)ds+

1∫
−1

R(|p2| |x− s|)τ(s)ds
]

= − 1

h0E0
τ(x)− 1

h0E0
τ0δ(x+ 1), −1 < x < 1 (2.6)

with following condition
1∫

−1

τ(s)ds = −τ0. (2.7)

A solution of the problem (2.6), (2.7) will be sought in the form

τ(x) =
a0√
1− x2

+
1√

1− x2

∞∑
m=1

amTm(x), (2.8)

where Tm(x) are the first kind Chebyshev’s orthogonal polynomials, {an}n≥1 is unknown sequences.
By virtue of the equilibrium conditions (2.7) of the patch, we obtain a0 = − τ0

π .
Using the Rodrigue’s formula for the Jacobi’s polynomials and following spectral relation [13]

1

π

1∫
−1

ln
1

|x− y|
Tm(y)dy√
1− y2

= µmTm(x), µm =


ln 2, m = 0

1

m
, m ̸= 0

from integro-differential equation (2.6) and formul (2.8) we have

√
π

4

∞∑
m=2

am
Γ(m+ 2)

Γ(m+ 0.5)
P

( 3
2 ,

3
2 )

m−2 (x) +
ρ0ω

2

E0

∞∑
m=0

am
m

Tm(x)+

∞∑
m=0

am

1∫
−1

K0(|p2| |x− s|) Tm(s)√
1− s2

ds

+
r0√

1− x2

∞∑
m=0

amTm(x) = τ0g(x), (2.9)

where

K0(|p2| |x− s|) = ∂2R(|p2| |x− s|)
∂x2

+
ρoω

2

E0
R(|p2| |x− s|), r0 =

2πµ∗(1− q2)

h0E0
,

g(x) =
1

π

1∫
−1

K0(|p2||x− s|)Tm(s)ds√
1− s2

+
r0

π
√
1− x2

− r0δ(x+ 1) +
ρ0ω

2

E0

(
ln 2

π
− ln |p2|

)
,

p
( 3
2 ,

3
2 )

m−2 are Jacob’s orthogonal polynomials.
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Multiplying both parts of the relation (2.9) by (1−x2)
3
2 P

( 3
2 ,

3
2 )

n−2 (x) integrating in the interval (−1, 1)
and based on orthogonality of the Jacobi’s polynomials, we obtain the infinite system of linear algebraic
equations

an +

∞∑
m=1

Rnmam = τ0gn, n = 2, 3, . . . (2.10)

where

Rnm =
ρ0ω

2

E0
R(1)

nm +R(2)
nm + r0R

(3)
nm, R(1)

nm =
1

γnm

1∫
−1

(1− x2)
3
e2 P

( 3
2 ,

3
2 )

n−2 (x)Tm(x)dx,

R(2)
nm =

1

γn

1∫
−1

(1− x2)
3
2 P

( 3
2 ,

3
2 )

n−2 (x)

( 1∫
−1

K(|p2| |x− s|Tm(s)ds√
1− s2

)
dx,

R(3)
nm =

1

γn

1∫
−1

(1− x2)P
( 3
2 ,

3
2 )

n−2 (x)Tm(x)dx,

gn =
1

γn

1∫
−1

g(x)(1− x2)
3
2 P

( 3
2 ,

3
2 )

n−2 (x)dx, γn =
2
√
πΓ(n+ 1

2 )

nΓ(n− 1)
.

Now one investigates the regularity of the infinite system (2.10).
According to the Stirling’s formula for Γ(z) function [1] we have:

γn = O(n
1
2 ), n → ∞. (2.11)

Using now the Rodrigue’s formula and Darboux asymptotic formula for the Jacobi’s polynomials
[1, 13], after some calculations, we get

R(1)
nm =

1

γn
√

π(n− 2)m


0, m ̸= n, m ̸= n± 2,

π, m = n,

−π

2
, m = n± 2,

+O(n− 3
2 )

1

γnm


0, m ̸= 2, 4,

−π

4
, m = 2,

− π

16
, m = 4,

n → ∞,

R(2)
nm = −

√
πΓ(m+ 1)

8Γ
(
m+

1

2

)
(n− 2)γnm(m− 1)

1∫
−1

d

dx
(1− x2)

5
2P

( 5
2 ,

5
2 )

n−3 (x)

×
( 1∫
−1

K0(|p2| |x− s|) d
2

ds2
(1− s2)

3
2P

( 3
2 ,

3
2 )

m−2 (s)ds

)
dx

=

√
πΓ(m+ 1)

8Γ
(
m+

1

2

)
(n− 2)γnm(m− 1)

1∫
−1

(1− x2)
5
2P

( 5
2 ,

5
2 )

n−3 (x)

×
( 1∫
−1

(1− s2)
3
2P

( 3
2 ,

3
2 )

m−2 (s)
∂3K0(|p2| |x− s|)

∂x∂s2
ds

)
dx,

gn = O
(
n− 3

2

)
, n → ∞.
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For R
(3)
nm we obtain the following estimate

R(3)
nm ∼ 2[(−1)n+m + 1]√

π(n− 2)γn

(
1

(n+m)2 − 1
+

1

(n−m)2 − 1

)

+O(n− 3
2 )

6[(−1)m + 1]

γn(m2 − 1)(m2 − 9)
, n ̸= m± 1, n ̸= 1; 3, n → ∞, m → ∞

and the corresponding double series satisfies the following estimate

∞∑
n=3,m=1

∣∣∣R(3)
nm

∣∣∣2 =

∞∑
n=3,m=1

[(−1)n+m + 1]

(n− 2)γ2
n

2 {
1

(n+m)2 − 1
+

1

(n−m)2 − 1

}2

≤ 4

∞∑
n=3,m=1

1

n(n− 2)

1

[(n+m)2 − 1]2
+ 4

∞∑
n=3,m=1

1

n(n− 2)

1

[(n−m)2 − 1]2
.

We study the convergence of double series:

∞∑
n=3,m=1

1

n(n− 2)

1

[(n+m)2 − 1]2
≤

∞∑
n=3,m=1

1

[(n+m)2 − 1]2
.

To do this, let’s present it in the form of a simple series, lying its terms along the diagonals, n+m = 2p,
p = 2, 3, 4, . . .

0
1

152
0

1

352
0

1

632
0

1

152
0

1

352
0

1

632
0

0
1

352
0

1

632
0

1

352
0

1

632
0

0
1

632
0

1

632
0

0 .

Since the term lying on the same diagonal are equal, combining them for ease of calculation, we
obtain the series

∞∑
p=3

2p− 2

(4p2 − 1)2

and this series is convergent.
The convergence of double series

∞∑
n=3,m=1

1

n(n− 2)

1

[(n−m)2 − 1]2

follows from following estimate

∞∑
n=3,m=1

1

n(n− 2)

1

[(n−m)2 − 1]2
≤

∞∑
n=3,p=0

1

n(n− 2)

1

(4p2 − 1)2

=

∞∑
p=0

1

(4p2 − 1)2

∞∑
n=3

1

n(n− 2)
< ∞, n−m = 2p, p = 0, 1, 2, . . . .
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Taking into account the obtained estimations including (2.11), for the system (2.10) we obtain the
following conditions

∞∑
m=1,n=2

|Rnm|2 < ∞,

∞∑
n=2

|gn|2 < ∞.

These conditions prove that the infinite system is quasi-completely regular in space l2 that is, their
solutions satisfy the conditions

∑∞
n=1 |an|

2
< ∞ [8, 9].

The results of [8, p. 534] are applicable to an infinite system (2.10). On the basis of this fact, the
system

aNn +

N∑
m=1

RnmaNm = τ0gn, n = 1, 2, . . . N, (2.12)

is solvable for sufficiently large N and convergence of approximate solutions {aNn }n=1,...,N to exact
solution {an}n≥1 is valid in the sense of the norm of the space l2.

The convergence rate is determined by the inequality

∥∥a− φ−1
0 āN

∥∥
l2
≤ C1

[ ∞∑
n=N+1

∞∑
m=1

|Rnm|2
] 1

2

+ C2


∞∑

n=N+1

g2n

∞∑
n=1

g2n


1
2

,

where a = {an}n≥1=(a1, a2, . . . an, . . . ) is the solution of the system (2.10), āN = (aN1 , aN2 , . . . , aNN ) is

the solution of the system (2.12), φ−1
0 āN = (aN1 , aN2 , . . . , aNN , 0, 0, . . . ).

Considering the expression for Rnm, we have

C1

[ ∞∑
n=N+1

∞∑
m=1

|Rnm|2
] 1

2

≤ C∗
1

[ ∞∑
n=1

1

(n+N)4

] 1
2

= C∗
1 [ζ(4, N)]

1
2 ,

C2


∞∑

n=N+1

g2n

∞∑
n=1

g2n


1
2

< C∗
2

[ ∞∑
n=1

1

(n+N)4

] 1
2

= C∗
2 [ζ(4, N)]

1
2

where ζ(s,N) is known generalized Zeta function.
Using the asymptotic of the Zeta function [4, p. 62]

ζ(2m,N) ≡
∞∑

n=1

1

(n+N)2m
=

N−2m+1

2m− 1
+

1

2
N−2m +

∞∑
k=1

B2k
Γ(N + 2k + 1)

(2k)!N2k+2m+1
+O(N−2m−2N−1),

we obtain ∥∥a− φ−1
0 āN

∥∥
l2
≤ CN− 3

2 .

Thus, the solutions of the system (2.10) can be constructed by the reduction method with any accuracy
[8, 9].
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